覃佳韻
【教學(xué)內(nèi)容】
浙教版三年級(jí)上冊(cè)第60、61頁(yè)。
【教學(xué)過(guò)程】
師:我們學(xué)校的同學(xué)準(zhǔn)備去看球賽,你能從圖中找到什么數(shù)學(xué)信息?
生:我在圖中找到關(guān)于足球票價(jià)格的信息——甲級(jí)票的價(jià)格是28元/張,乙級(jí)票的價(jià)格是23元/張。
生:我在圖上看到的信息是,15位同學(xué)買(mǎi)甲級(jí)票,19位同學(xué)買(mǎi)乙級(jí)票。
師:你們能通過(guò)這些數(shù)學(xué)信息提一個(gè)數(shù)學(xué)問(wèn)題嗎?
生:15位同學(xué)買(mǎi)甲級(jí)票一共花了多少錢(qián)?
生:19位同學(xué)買(mǎi)乙級(jí)票,他們買(mǎi)票花了多少錢(qián)?比買(mǎi)甲級(jí)票的錢(qián)多還是少?
師:我們先來(lái)解決買(mǎi)15張甲級(jí)票,一共需要多少錢(qián)?
生:15×28,28×15。
師:這兩個(gè)算式是一樣的,那老師就這樣寫(xiě):28×15。
師:算式列出來(lái)了,答案等于多少呢?這就是我們這節(jié)課要研究的《兩位數(shù)乘兩位數(shù)》的計(jì)算。
【設(shè)計(jì)意圖:從生活情境引入,引導(dǎo)學(xué)生經(jīng)歷整理信息、提出問(wèn)題的過(guò)程,培養(yǎng)圖文閱讀能力。進(jìn)而從情境中抽象出算式,產(chǎn)生計(jì)算兩位數(shù)乘法的需要,轉(zhuǎn)入相關(guān)的數(shù)學(xué)學(xué)習(xí)?!?/p>
師:28×15你們會(huì)算嗎?別著急,今天我們不只是要比誰(shuí)算得對(duì),還要比一比誰(shuí)想到的方法多?誰(shuí)的方法好?
(學(xué)生嘗試——教師巡視,選擇部分學(xué)生答案謄抄)
(學(xué)生集體反饋)
師:請(qǐng)停筆。老師找了一些方法比較有特點(diǎn)的同學(xué),我們把這些方法編上號(hào),請(qǐng)他們先來(lái)介紹自己的方法。
生 :28×15= (20+8)×15=20×15+8×15=420①我先把28拆成20和8,再乘以15,也就是20×15+8×15=420。
師:聽(tīng)懂他的方法了嗎?他是把哪個(gè)數(shù)拆分開(kāi)了?
生:把28拆成20+8的和。
生:28×15=28×(10+5)=10×28+5×28=420②我先把15分成10和5,再乘以28,也就是 10×28+5×28=420。
師:同學(xué)們,你們看懂他是怎么拆的了嗎?
生:把15拆成10+5的和。
生:這兩種方法都是把其中一個(gè)因數(shù)拆成一個(gè)整十?dāng)?shù)加一個(gè)一位數(shù)的和。
生:接下來(lái)都可以應(yīng)用乘法分配律計(jì)算整十?dāng)?shù)乘兩位數(shù)和一位數(shù)乘兩位數(shù)。
生:28×15=(30-2)×15=30×15-2×15=450-30=420③把28分成30-2,先算 30×15-2×15,再算 450-30,等于 420。
生:他是拆成了兩個(gè)數(shù)的差。
生:28×15=28×5×3=140×3=420④我先把15拆成3×5,先算 5×28 等于 140,再算3×140等于120。
生:他是把15拆成3×5的積,沒(méi)有用乘法分配律,用的是乘法結(jié)合律。
師:真有眼光!這里還有一位同學(xué)是這樣的算法,比較特別,請(qǐng)你也來(lái)介紹介紹吧!
⑤我先算五八四十,寫(xiě)0進(jìn)4,再算二五一十,與進(jìn)上來(lái)的40加起來(lái),就是140。再算一二得二,就是200,2寫(xiě)在百位,一八得八,8個(gè)十,寫(xiě)在十位,這樣加起來(lái)是420。
師:這些方法的答案都是420,看一看,想一想,你們能給這些方法分分類(lèi)嗎?
生:第①、②、③種分成一類(lèi),他們都是用乘法分配律來(lái)計(jì)算的。第④種分成一類(lèi),它利用的是結(jié)合律。第⑤種再分一類(lèi),別的都是橫式,它是豎式。
師:其他同學(xué)的想法呢?
生:我建議把第⑤種豎式也分到第一類(lèi)。你們看,豎式的第一層算的就是28×5,第二層算的是28×10,相當(dāng)于把15分成了10+5的和,用的其實(shí)也是乘法分配律。
小結(jié):28×15的算法有很多,既可以利用乘法分配律進(jìn)行計(jì)算,也可以利用乘法結(jié)合律。同樣利用乘法分配律,有的同學(xué)用橫式計(jì)算,有的同學(xué)用豎式計(jì)算。
【設(shè)計(jì)意圖:充分考慮學(xué)生已有的認(rèn)知基礎(chǔ),鼓勵(lì)學(xué)生自主探索、構(gòu)建新的算法,感悟化歸的思想方法。通過(guò)交流,豐富學(xué)生個(gè)體的認(rèn)知,增加思維的發(fā)散性。在理解各種算法步驟及其依據(jù)的基礎(chǔ)上,進(jìn)行分類(lèi),突出基本的算理——乘法分配律和乘法結(jié)合律,培養(yǎng)思維的深刻性?!?/p>
師:剛才我們解決了第一個(gè)問(wèn)題,后面還有一個(gè)問(wèn)題“買(mǎi)19張乙級(jí)票,一共需要多少錢(qián)?”怎樣列式?
生:23×19。
師:這也是兩位數(shù)乘兩位數(shù),你們也能把它算出來(lái)嗎?現(xiàn)在請(qǐng)你們動(dòng)筆寫(xiě)一寫(xiě)。
(學(xué)生嘗試——教師巡視,選擇部分學(xué)生答案謄抄)
師:我看到很多同學(xué)已經(jīng)算出來(lái)啦,而且不止一種方法。現(xiàn)在我們看這位同學(xué)是怎么算出來(lái)的。
生:23×19=23×(10+9)=10×23+9×23=230+207=437。
生:23×19=(20+3)×19=20×19+3×19=380+57=437。
師:計(jì)算根據(jù)的是什么?
生:乘法分配律!
師:還有其他方法嗎?
生:我用 23×(20-1)。
師:這位同學(xué)把19看成了?
生:20-1。
師:他的算法是分配律還是結(jié)合律呢?
生:分配律。
師:還是分配律。那老師就有疑問(wèn)了,為什么你們都是用分配律,沒(méi)有用結(jié)合律呢?
生:因?yàn)?3和19都不能拆成幾和幾相乘。
師:但是23和19可以拆成一個(gè)整十?dāng)?shù)和另一個(gè)數(shù)相加或相減。
師:所以這道題我們不能用乘法結(jié)合律,只能用乘法分配律??磥?lái),計(jì)算兩位數(shù)乘兩位數(shù)時(shí),乘法分配律的應(yīng)用范圍會(huì)比較廣一些。
【設(shè)計(jì)意圖:通過(guò)設(shè)計(jì)數(shù)據(jù),巧妙地讓學(xué)生體會(huì)到乘法分配律的通用性和乘法結(jié)合律的適用性。從探索“多法”到深入“通法”經(jīng)歷的是一個(gè)理性選擇的過(guò)程,這樣的過(guò)程,有助于學(xué)生體會(huì)數(shù)學(xué)學(xué)科的特點(diǎn),培養(yǎng)學(xué)生的自主精神和理性精神?!?/p>
師:這道題也有同學(xué)用豎式計(jì)算。兩位數(shù)乘兩位數(shù)的豎式我們還沒(méi)有正式學(xué)習(xí)過(guò),讓我們重點(diǎn)來(lái)研究一下——
師:他是怎么算的?“207”是從哪里來(lái)的?
生:207是23×9得到207。(教師在豎式旁對(duì)應(yīng)板書(shū):23×9)
師:下一層的“23”呢?
生:是23×10得到的。(教師對(duì)應(yīng)板書(shū):23×10)
生:為什么豎式只寫(xiě)了23?
生:“23”中的3是和十位對(duì)齊的,說(shuō)明是23個(gè)十,就是230。
生:十位上的“1”乘“23”得到23個(gè)十,直接在十位處寫(xiě)23就可以了。
小結(jié):直接相乘,算起來(lái)比較快;寫(xiě)在對(duì)應(yīng)位置上,就可以表示相應(yīng)的數(shù)值。
師:老師也進(jìn)行了計(jì)算,請(qǐng)你們看看我是怎么算的?算得對(duì)嗎?
(如果學(xué)生有高位算法就展示學(xué)生的)
高位算式:
生:老師只是把230和207位置換了一下。
生:老師算23乘10。
師:能不能請(qǐng)同學(xué)完整地介紹一下老師的算法?我第一步是算什么?第二步是算什么?我的方法和你們的方法有什么不同?
生:老師的這種豎式是先算23乘10,從高位開(kāi)始算,我們的豎式是先算23乘9,從低位開(kāi)始算。都是利用乘法分配律,結(jié)果是一樣的。
師(指板書(shū)):28×15也有同學(xué)寫(xiě)了一個(gè)豎式:
你們看看這個(gè)豎式屬于——
生:屬于28×10+28×5,高位算起。
師:你還能夠根據(jù)乘法分配律,作出不同的拆分、寫(xiě)出不同的豎式嗎?
生:我把28拆成20和8,先算15×20得300,再算15乘8得120,最后加起來(lái)得420。
師:這是高位算起還是低位算起?
生:高位。
生:我還能寫(xiě)一個(gè)低位算起的豎式。
小結(jié):同樣根據(jù)乘法分配律,拆分方法不同,計(jì)算順序不同,可能寫(xiě)出不同的豎式。
【設(shè)計(jì)意圖:豎式也可以多樣化。提供多樣的豎式,允許學(xué)生選擇自己喜歡的算法進(jìn)行計(jì)算,在使用和比較的過(guò)程中,一是進(jìn)一步感悟基本算理——乘法分配律。二是體會(huì)算法的自主和自覺(jué),自主是指:哪些是算法可以變化的部分,哪些是不能變化的;自覺(jué)是指:不同算法有什么優(yōu)點(diǎn)?適合計(jì)算什么樣的數(shù)據(jù)?等等。】
【教學(xué)反思】
浙教版《兩位數(shù)乘兩位數(shù)》的編寫(xiě)與一般教材不同。從課程的脈絡(luò)上看,浙教版先安排學(xué)習(xí)乘法分配律和乘法結(jié)合律,幫助學(xué)生準(zhǔn)備好了知識(shí)基礎(chǔ),使算法的探究成為可能。從課時(shí)編排看,浙教版不只強(qiáng)調(diào)豎式算法,還為學(xué)生預(yù)留了自主的空間,通過(guò)設(shè)計(jì)因數(shù)的特點(diǎn)來(lái)調(diào)控教學(xué)的進(jìn)程。例題 1“28×15”,學(xué)生既可以根據(jù)乘法分配律計(jì)算,也可以利用乘法結(jié)合律來(lái)計(jì)算;例題2“23×19”,聚焦到乘法分配律,進(jìn)而聚焦到豎式計(jì)算。在這樣的過(guò)程中,學(xué)生始終在主動(dòng)地思考、選擇和創(chuàng)造。
理解到浙教版教材的這些意圖,并通過(guò)與張?zhí)煨⒗蠋熂捌鋱F(tuán)隊(duì)面對(duì)面的交流,我對(duì)《兩位數(shù)乘兩位數(shù)》一課的認(rèn)識(shí)從“計(jì)算”提升到了“能力”。原來(lái),教一節(jié)計(jì)算課,不僅是要讓學(xué)生會(huì)算,更要通過(guò)學(xué)會(huì)算的過(guò)程,發(fā)展思維的深刻性、靈活性和創(chuàng)造性。因此,在課堂上,我對(duì)這樣的理念進(jìn)行了充分的實(shí)踐和小小的創(chuàng)造。
首先,根據(jù)三年級(jí)學(xué)生的特點(diǎn),創(chuàng)設(shè)看球賽的情境,激發(fā)學(xué)生的興趣,引起計(jì)算的需要;其次,充分信任學(xué)生的潛能,直接把“28×15”的計(jì)算任務(wù)拋給學(xué)生,鼓勵(lì)學(xué)生根據(jù)自己的認(rèn)知儲(chǔ)備和認(rèn)知偏好,自主探索各種算法。通過(guò)交流,來(lái)豐富和深化個(gè)體的認(rèn)識(shí),包括:1.聽(tīng)取和理解不同的算法;2.分類(lèi),理解不同的算法背后相同的依據(jù)。尤其是突破“橫式”和“豎式”的表征,認(rèn)識(shí)到豎式的計(jì)算原理;3.體會(huì)一道題有不同的算法,培養(yǎng)思維的開(kāi)放性。再次,利用素?cái)?shù)“23×19”,引導(dǎo)學(xué)生感悟乘法分配律的通用性,并正式學(xué)習(xí)新算法——豎式算法,結(jié)合算理的理解突破豎式寫(xiě)法上的一些特殊性。最后,對(duì)經(jīng)典豎式再作突破,引導(dǎo)學(xué)生根據(jù)乘法分配律及豎式的書(shū)寫(xiě)約定,創(chuàng)造新豎式,包括高位算起和低位算起、包括第二因數(shù)去乘第一因數(shù)和第一因數(shù)去乘第二因數(shù)等等,幫助學(xué)生再次體會(huì)到算理的主導(dǎo)性和算法的創(chuàng)造性。
誠(chéng)如學(xué)生在陳述課堂收獲時(shí)所說(shuō)的,上完這節(jié)課,他們不是簡(jiǎn)單地學(xué)會(huì)了“兩位數(shù)乘兩位數(shù)”的豎式計(jì)算,而是把“兩位數(shù)乘兩位數(shù)”計(jì)算當(dāng)作一個(gè)研究任務(wù),經(jīng)歷了分析和綜合的過(guò)程、理解和推理的過(guò)程、創(chuàng)造和評(píng)價(jià)的過(guò)程,激發(fā)和激勵(lì)了他們的自主性和成就感,鍛煉和提升了他們的數(shù)學(xué)思維能力。