李慧麗
摘 要:高中數(shù)學(xué)作為高中教學(xué)體系中的重要內(nèi)容,對(duì)于學(xué)生的成長和發(fā)展有著不可小覷的促進(jìn)作用。而新課程體系的落實(shí)更加強(qiáng)調(diào)學(xué)生素質(zhì)的培養(yǎng),所以,現(xiàn)階段的高中數(shù)學(xué)教學(xué)要求教師不僅能夠傳授給學(xué)生既定的知識(shí),而且能夠讓學(xué)生在生活中靈活應(yīng)用所學(xué)習(xí)的知識(shí),并學(xué)會(huì)思考和探索。變式教學(xué)作為一種新的教學(xué)方法,有助于高中數(shù)學(xué)課堂教學(xué)效率的提高,而且對(duì)于學(xué)生的個(gè)人發(fā)展也有著一定的促進(jìn)作用。所以,就變式教學(xué)在高中數(shù)學(xué)教學(xué)中應(yīng)用的相關(guān)問題進(jìn)行了分析和研究。
關(guān)鍵詞:變式教學(xué);高中數(shù)學(xué);應(yīng)用;注意事項(xiàng)
一、變式教學(xué)的定義及優(yōu)勢(shì)
變式教學(xué)是指采用變式的方法在實(shí)際教學(xué)中不斷變化概念或者命題中的非本質(zhì)因素來揭示問題的本質(zhì)特征或者內(nèi)在聯(lián)系,以使得學(xué)生的知識(shí)技能和情感思維方式得到有效的鍛煉,常用的方式有變換問題中的條件或結(jié)論,以不同的教學(xué)語言去轉(zhuǎn)換問題的形式或內(nèi)容,設(shè)立變式題組或者各種實(shí)際應(yīng)用環(huán)境等。
可以說,變式教學(xué)是新課程體制下的一種全新的教學(xué)方式,經(jīng)實(shí)踐證明,變式教學(xué)方式在高中數(shù)學(xué)教學(xué)中的應(yīng)用有著以下幾點(diǎn)突出的優(yōu)勢(shì):(1)能夠幫助學(xué)生理解更高的高中數(shù)學(xué)知識(shí)的含義;
(2)能夠使得學(xué)生更快地熟悉數(shù)學(xué)的基本方法;(3)能夠使得學(xué)生總結(jié)出更多的數(shù)學(xué)規(guī)律;(4)有助于學(xué)生將高中各階段的知識(shí)進(jìn)行有效的銜接,使得學(xué)生形成自己的數(shù)學(xué)知識(shí)網(wǎng)絡(luò),而這不僅能夠使學(xué)生掌握更多的數(shù)學(xué)知識(shí),提高數(shù)學(xué)學(xué)習(xí)成績,同時(shí)也有助于學(xué)生將數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際生活中去,達(dá)到理論應(yīng)用于實(shí)踐的素質(zhì)教育效果。
二、變式教學(xué)在高中數(shù)學(xué)教學(xué)中的應(yīng)用
對(duì)于變式教學(xué)在高中數(shù)學(xué)教學(xué)中的實(shí)際應(yīng)用,本文主要從四個(gè)方面著手,就其如何應(yīng)用到高中數(shù)學(xué)教學(xué)中進(jìn)行了簡單的分析,即一是概念的變式教學(xué);二是數(shù)學(xué)技能的變式教學(xué);三是數(shù)學(xué)思想方法的變式教學(xué);四是數(shù)學(xué)問題解決的變式教學(xué)。具體內(nèi)容如下所述:
1.概念的變式教學(xué)
對(duì)于概念的變式教學(xué),高中數(shù)學(xué)教師可以通過設(shè)置情景,引入學(xué)生已有的知識(shí),或者從直觀想象出發(fā),讓學(xué)生自己去發(fā)現(xiàn)、猜想,然后給出一定的證明,在使得學(xué)生能夠?qū)⒏行越?jīng)驗(yàn)和抽象概念進(jìn)行有機(jī)聯(lián)系的同時(shí)使其形成一個(gè)完整的認(rèn)知過程。這樣一來就完成了概念引入環(huán)節(jié)中的變式教學(xué)。
對(duì)于概念辨析的變式教學(xué),可以以向量這一概念為例。定義:我們把既有大小又有方向的量叫做向量。而在此基礎(chǔ)上,我們就可以通過變式來使得學(xué)生對(duì)向量這一概念有更深入的了解。變式1:零向量:長度為零的向量;變式2:單位向量:長度為一個(gè)單位的向量;變式3:相等向量:大小相等,方向相同的向量。以此類推,每一個(gè)概念都可以通過變式來進(jìn)行衍生,使學(xué)生對(duì)概念有更深一步的認(rèn)識(shí)。
2.數(shù)學(xué)技能的變式教學(xué)
數(shù)學(xué)技能的掌握是提高學(xué)生數(shù)學(xué)學(xué)習(xí)能力,提高數(shù)學(xué)成績的關(guān)鍵。而對(duì)于數(shù)學(xué)技能的變式教學(xué),高中數(shù)學(xué)教師可以通過應(yīng)用配方法、待定系數(shù)法、換元法、反證法、參數(shù)法、構(gòu)造法等數(shù)學(xué)教學(xué)方法來完成數(shù)學(xué)技能的變式教學(xué)。例如,對(duì)于“用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的四位數(shù)”的命題可以變式為“6個(gè)字母a,b,c,d,e,f排成一列”等相關(guān)命題來解決排列的相關(guān)問題。
3.數(shù)學(xué)思想的變式教學(xué)
數(shù)學(xué)思想的掌握也是高中數(shù)學(xué)教學(xué)的重要內(nèi)容,而對(duì)于數(shù)學(xué)思想的變式教學(xué),高中數(shù)學(xué)教師可以通過將數(shù)學(xué)知識(shí)灌輸?shù)綌?shù)學(xué)知識(shí)的發(fā)生、數(shù)學(xué)知識(shí)的小節(jié)概述以及數(shù)學(xué)知識(shí)的具體應(yīng)用等各個(gè)環(huán)節(jié)中。
4.數(shù)學(xué)問題解決的變式教學(xué)
數(shù)學(xué)教學(xué)的本質(zhì)就是引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)知識(shí)探索的過程,就是一個(gè)將具體問題抽象化,之后用數(shù)學(xué)思維和數(shù)學(xué)方式解決具體問題的過程。所以,在數(shù)學(xué)解題過程中落實(shí)變式教學(xué)是十分重要和必要的。就目前情況來看,數(shù)學(xué)問題解決過程中,教師為了確保變式教學(xué)得到有效的落實(shí),可以通過一題多解(證)變式,一題多變變式,多題一解或者說是一法多用變式等變式方法來確保變式教學(xué)在高中數(shù)學(xué)解題過程中的應(yīng)用,以有效緩解題海戰(zhàn)術(shù)給學(xué)生帶來的疲倦心理的影響。
三、做好變式教學(xué)工作的注意事項(xiàng)
為了確保變式教學(xué)在高中數(shù)學(xué)教學(xué)中得到切實(shí)的應(yīng)用,提高此教學(xué)方法的應(yīng)用效率和效果,就需要高中教師在實(shí)際落實(shí)此教學(xué)方法的同時(shí)注意以下幾個(gè)注意事項(xiàng)。即,一是要加強(qiáng)對(duì)變式教學(xué)本質(zhì)的理解;二是要把握變式的“度”;三是要適時(shí)地歸納、概括、總結(jié);四是要有效提高學(xué)生的參與程度;五是要根據(jù)學(xué)生的特點(diǎn)和需求靈活應(yīng)用變式教學(xué),也只有這樣才能在確保變式教學(xué)實(shí)現(xiàn)價(jià)值最大化的同時(shí)使得高中數(shù)學(xué)教學(xué)效果得到有效的提高。
總之,變式教學(xué)是一種新的教學(xué)方法,不僅有助于既定知識(shí)的傳授,而且對(duì)于學(xué)生學(xué)習(xí)和探究能力的培養(yǎng)也有一定的促進(jìn)作用,所以,作為高中數(shù)學(xué)教育教學(xué)工作者一定要明確自身的責(zé)任和重任,在實(shí)際教學(xué)中能夠掌握變式教學(xué)的精髓,并確保其能夠切實(shí)應(yīng)用到高中數(shù)學(xué)的教育教學(xué)課堂中去。而由于本人能力有限,本文僅是筆者的探索性分析,必將在今后的教學(xué)和理論知識(shí)的學(xué)習(xí)過程中對(duì)變式教學(xué)進(jìn)行進(jìn)一步的分析和研究。
參考文獻(xiàn):
陸習(xí)曉.靈活教學(xué)思維例談高中數(shù)學(xué)教學(xué)的變式策略[J].中學(xué)數(shù)學(xué),2016(11).