馬露露 毛慧娟
·綜述·
慢性腎臟病-礦物質(zhì)骨代謝紊亂新型生物標(biāo)志物的研究進(jìn)展
馬露露 毛慧娟
慢性腎臟病(chronic kidney disease, CKD)是指腎小球濾過率<60 ml·min-1·(1.73 m2)-1或者有尿異常、影像學(xué)或者組織學(xué)異常超過3個月,根據(jù)KDIGO指南,CKD分為CKD 1~5期[1]。2012年我國人群CKD發(fā)病率已達(dá)10.8%[2]。在糖尿病伴有高血壓的人群中,CKD的發(fā)病率為59.6%[3]。慢性腎臟病-礦物質(zhì)骨代謝紊亂(chronic kidney disease-mineral and bone disorder,CKD-MBD)是CKD的常見并發(fā)癥。根據(jù)2009年KDIGO指南CKD-MBD定義為:一種系統(tǒng)性的礦物質(zhì)和骨代謝異常,具有以下一個或多個特征:鈣、磷、甲狀旁腺素(parathyroid hormone,PTH)或者維生素D代謝異常;骨轉(zhuǎn)化、骨礦化、骨容量、骨線性生長、骨強(qiáng)度的異常;血管或其他軟組織鈣化[4]。CKD-MBD會引起骨折、血管鈣化,而血管鈣化會增加心血管疾病的病死率與全因病死率[5]。下面就CKD-MBD的發(fā)病機(jī)制及新型生物標(biāo)志物的研究進(jìn)展做一綜述。
從腎臟病的早期(CKD 3)開始,腎臟排泄磷的能力下降,從而導(dǎo)致血磷升高、PTH升高、1,25-(OH)2D3下降以及成纖維細(xì)胞生長因子23(fibroblast growth factor,F(xiàn)GF23)升高。25-(OH)2D3轉(zhuǎn)換成1,25-(OH)2D3受到影響,從而小腸吸收鈣減少與PTH升高,腎臟對PTH及 FGF23的反應(yīng)下降,組織內(nèi)維生素D受體下降,抵抗PTH活性。在CKD患者中,礦物質(zhì)與內(nèi)分泌的功能對于骨形成與骨重塑是至關(guān)重要的。在CKD 3~5期患者中,骨異常很常見,會出現(xiàn)骨外鈣化。礦物質(zhì)代謝紊亂、骨異常與骨外鈣化都會增加CKD患者的患病率與病死率[4]。
1.腎性骨病 低轉(zhuǎn)運(yùn)性骨病指骨軟化癥與無動力性骨病,鈣鹽、維生素D受體激動劑的過度使用或鋁中毒會導(dǎo)致PTH降低,骨礦化減少,鈣、磷入骨困難,從而血鈣與血磷升高。
高轉(zhuǎn)運(yùn)性骨病又稱纖維性骨炎,以甲狀旁腺功能亢進(jìn)、破骨細(xì)胞與成骨細(xì)胞活動增加,松質(zhì)骨周圍纖維性增生為特征。
骨組織分泌多種內(nèi)分泌激素包括FGF23、硬骨素、Dickkopf-1蛋白(DKK1)、骨鈣素等,其中隨著腎臟病進(jìn)展而增加的FGF23可誘發(fā)左室肥厚,并且可能參與血管鈣化。硬骨素與DKK1均由骨細(xì)胞分泌,作為Wnt通路抑制劑,可在血管壁中參與生物學(xué)功能。骨鈣素由成骨細(xì)胞或者礦化血管分泌,參與胰島素抵抗等[6]。這些內(nèi)分泌激素在CKD-MBD中參與多重生物學(xué)作用,這也提示骨在骨-腎-心血管軸中的核心地位。
2.血管鈣化 CKD患者易發(fā)生血管鈣化,在CKD 3~5期非透析患者中,血管鈣化的發(fā)生率為79%[7],并且血管鈣化會增加心血管病死率與全因病死率[5]。血管鈣化的機(jī)制復(fù)雜,包括鈣磷沉積、細(xì)胞凋亡、炎癥與氧化應(yīng)激、彈性蛋白的降解、鈣化抑制劑的丟失[胎球蛋白、骨橋素、基質(zhì)梭基谷氨酸蛋白、焦磷酸]以及血管平滑肌細(xì)胞向成骨樣細(xì)胞、軟骨樣細(xì)胞轉(zhuǎn)化的主動過程[8]。體外研究中,高磷可誘導(dǎo)血管平滑肌細(xì)胞轉(zhuǎn)分化,同時骨源性蛋白mRNA表達(dá)增加,并且Wnt/β-連環(huán)蛋白(Wnt/β-catenin)通路被激活,β-catenin入核后使靶基因表達(dá)增加[9]。
近年來,關(guān)于血管鈣化機(jī)制研究越來越多比如甲狀腺素、microRNA、血鎂水平等。研究發(fā)現(xiàn),終末期腎臟病(end-stage renal disease,ESRD)患者血清中游離甲狀腺素水平與冠狀動脈鈣化以及動脈硬化相關(guān)[10]。另外,不同的microRNA對血管鈣化有不同的調(diào)節(jié)作用,microRNA 205通過作用于Runx2 和Smad1負(fù)向調(diào)節(jié)血管鈣化[11],而microRNA 221與microRNA222協(xié)同促進(jìn)鈣化[12]。血鎂水平也被證實與透析患者病死率相關(guān)[13],但研究中并未證實補(bǔ)充血鎂與患者預(yù)后的關(guān)系。因此,我們還需要更多關(guān)于血管鈣化的研究,從而找到防治血管鈣化的新的靶點(diǎn)。
1.FGF23/klotho軸 FGF23是主要由骨細(xì)胞和成骨細(xì)胞分泌,通過與受體結(jié)合調(diào)節(jié)鈉磷共轉(zhuǎn)運(yùn)體促進(jìn)磷的排泄,同時抑制腎臟合成1-α羥化酶,減少1,25-(OH)2D3合成。在甲狀旁腺中,一方面FGF23可通過與受體結(jié)合后使ERK磷酸化,激活Egr-1通路抑制PTH基因表達(dá);另一方面,促進(jìn)腎臟的磷排泄及減少的1,25-(OH)2D3會刺激PTH的分泌[14]。CKD患者血清中,F(xiàn)GF23的升高早于PTH及血磷的變化,并且早期FGF23及PTH的升高有助于降低血磷[15]。
目前對于FGF23升高機(jī)制的研究涉及到骨源性基因、成纖維生長因子受體(fibroblast growth factor receptor, FGFR)、高磷、1,25-(OH)2D3以及PTH等。骨源性基因PHEX、DMP1以及MEPE分子突變均會引起FGF23表達(dá)增加,這與激活FGFR通路有關(guān),其可能的機(jī)制是DMP1與MEPE相似,會通過MEPE相關(guān)的富含酸性絲氨酸天冬氨酸鹽多肽(acid serine aspartate-rich MEPE associate,ASARM)與PHEX結(jié)合,從而通過αVβ3整合素與FGF1結(jié)合,激活FGFR通路增加FGF23表達(dá)[16]。體外研究已經(jīng)證實,在大鼠成骨細(xì)胞株UMR-106細(xì)胞中,F(xiàn)GFR配體包括FGF1、FGF2、FGF9、FGF18均能通過激活FGFR從而增加FGF23的表達(dá),在體外急性腎損傷小鼠及CKD大鼠模型中升高的FGF23均能被FGFR通路阻滯劑所下調(diào),由此更加證實FGFR通路在FGF23升高機(jī)制中起到重要作用[17]。高磷刺激FGF23表達(dá),這也與激活FGFR通路有關(guān),但是高磷與FGFR相互作用的具體分子機(jī)制尚不明確[18]。1,25-(OH)2D3以及PTH能促進(jìn)FGF23的表達(dá)[19],其中PTH一方面通過與骨表面受體PTH1R結(jié)合從而激活PKA通路,通過核孤受體Nurr1結(jié)合于FGF23啟動子區(qū)域,增加FGF23表達(dá)。另一方面,PTH可減少Wnt通路抑制劑硬骨素的表達(dá),從而Wnt通路表達(dá)增加,F(xiàn)GF23表達(dá)增加[20]。1,25-(OH)2D3增加FGF23表達(dá)是因為在小鼠FGF23啟動子區(qū)域Nurr1的-200 bp至-399 bp區(qū)域存在維生素D受體區(qū)[17]。升高的FGF23會增加心血管事件發(fā)生率、增加左心室質(zhì)量、降低左心室射血分?jǐn)?shù)[21-22]。此外,F(xiàn)GF23也可獨(dú)立于FGF23/Klotho復(fù)合體,在心臟中通過磷酸酶途徑引起左室肥厚[23]。目前仍需進(jìn)一步探討FGF23升高機(jī)制以阻斷各種代謝異常及惡性事件的發(fā)生。
Klotho蛋白主要由腎小管分泌,也可由大腦脈絡(luò)叢、血管平滑肌細(xì)胞、內(nèi)皮細(xì)胞等分泌。尿毒癥患者血清及尿液中的Klotho蛋白水平顯著降低??缒ば问降腒lotho蛋白通過與FGFR形成共受體,調(diào)節(jié)FGF23的生物學(xué)功能??扇苄缘腒lotho蛋白(soluble Klotho,sKlotho)釋放入循環(huán),參與多種生物學(xué)功能,包括氧化應(yīng)激、Wnt通路、離子轉(zhuǎn)運(yùn)等。近來有研究顯示:在腹透患者血清中,sKlotho蛋白水平更低的患者,其血清中8-異前列烷水平更高,提示在ESRD患者中Klotho缺乏增加了氧化應(yīng)激[24]。Klotho蛋白干預(yù)血管鈣化的機(jī)制包括:與FGF23形成Klotho/FGF23/FGFR復(fù)合物在遠(yuǎn)端小管調(diào)節(jié)尿磷排泄;sKlotho可直接作用于遠(yuǎn)端小管,使鈉磷共轉(zhuǎn)運(yùn)體II去糖基化,促磷排泄減輕鈣化。近期,通過在體外培養(yǎng)大鼠血管平滑肌細(xì)胞發(fā)現(xiàn),Klotho蛋白可通過Wnt/β-catenin途徑改善血管平滑肌鈣化[25]。在冠脈鈣化的患者血管壁中Klotho基因表達(dá)減少,并且Klotho是冠脈鈣化的獨(dú)立危險因素,這也提示著Klotho蛋白與血管鈣化的關(guān)系[26]。
2.胎球蛋白/鈣磷結(jié)合體 胎球蛋白A是由肝細(xì)胞產(chǎn)生,并能與鈣、磷結(jié)合成鈣蛋白微粒(calciprotein particles,CPP),阻止鈣磷的沉積,從而抑制血管鈣化。臨床研究證實,在CKD 3~4期患者中,CPP水平隨著腎功能的下降而增加,同時CPP與血磷水平、C反應(yīng)蛋白、氧化的低密度脂蛋白以及骨形成蛋白(bone morphogenetic protein,BMP)正相關(guān),與動脈硬化相關(guān)[27]。Smith等[28]研究了CKD 3~4期患者鈣蛋白微粒成熟時間T50發(fā)現(xiàn),低T50發(fā)生死亡的危險是高T50的2倍,同時提出T50可以作為預(yù)防鈣化的新的生物標(biāo)志物。
3.Wnt信號通路抑制劑 經(jīng)典Wnt通路也稱為Wnt/β-catenin 信號通路,當(dāng)Wnt配體與卷曲蛋白-低密度脂蛋白受體相關(guān)蛋白5/6(frizzeld-low density lipoprotein receptorrelated protein 5/6,F(xiàn)zd-LRP5/6)復(fù)合體結(jié)合后,促進(jìn)糖原合成激酶-3β(glycogen synthase kinase-3β,GSK-3β)磷酸化,β-catenin 復(fù)合體解離,使胞漿β-catenin不能降解從而入核β-catenin增加,進(jìn)入核與T細(xì)胞因子/淋巴增強(qiáng)因子家族(TCF/LEF)結(jié)合,激活Wnt信號靶基因,參與多種生物學(xué)功能[29]。Wnt通路激活可促進(jìn)成骨細(xì)胞活動以及調(diào)整骨保護(hù)素/核因子κB受體活化因子配體(osteoprotegerin/receptor activator for nuclear factor-κB ligand,OPG/RANKL)比例從而抑制破骨細(xì)胞活動[30]。另外,Wnt通路參與血管及瓣膜鈣化,在異位鈣化及鈣化防御中Wnt通路過表達(dá)[31],而硬骨素、DKK1、分泌型Frizzled相關(guān)蛋白(secreted frizzled-related proteins,sFRPs)是Wnt通路抑制劑,通過抑制Wnt通路,從而影響骨形成、骨礦化與血管鈣化。
(1)硬骨素:硬骨素由骨細(xì)胞分泌,通過與LRP5/6結(jié)合從而抑制Wnt配體與Fzd-LRP5/6復(fù)合體結(jié)合,抑制Wnt信號通路[32-33]。在CKD 患者血清中,硬骨素水平升高并不是由于腎功能的下降所引起的[34]。目前關(guān)于硬骨素與血管鈣化的結(jié)論并不統(tǒng)一:有研究顯示,在67例血液透析患者中,硬骨素的升高與主動脈瓣瓣膜鈣化相關(guān)[30]。相反,Claes等[35]研究發(fā)現(xiàn),主動脈鈣化患者血清中硬骨素水平更高,但是在多元回歸分析中,低硬骨素水平才是主動脈鈣化的獨(dú)立危險因素。因此,我們還需進(jìn)一步探討硬骨素是否是鈣化的保護(hù)因素。目前,關(guān)于硬骨素與CKD患者病死率的研究,結(jié)論也不盡相同[36-38],這可能是由于不同研究所納入的人群不盡相同,并且隨著硬骨素水平增加,一方面會抑制Wnt通路從而減輕鈣化,另一方面抑制Wnt通路會導(dǎo)致骨形成減少,骨重吸收增加,從而引起血磷、血鈣異常,又會加重血管鈣化??偟膩碚f,還需進(jìn)一步研究血清硬骨素水平與心血管的關(guān)系。CKD患者血清及骨中升高的硬骨素水平與骨形成、骨破壞生物學(xué)標(biāo)志物負(fù)相關(guān),但是升高的硬骨素水平與骨密度正相關(guān)[39]。目前,應(yīng)用硬骨素單克隆抗體治療CKD大鼠時發(fā)現(xiàn)在PTH低的大鼠中,硬骨素抗體可增加骨容量和骨礦化面積,在PTH較高的大鼠中,硬骨素抗體無作用[40]。因此,我們還需要更多的臨床試驗來證實硬骨素抗體在低轉(zhuǎn)運(yùn)性骨病的治療作用以及相關(guān)的心血管作用。另外,硬骨素水平在預(yù)測高轉(zhuǎn)運(yùn)性骨病以及成骨細(xì)胞數(shù)方面優(yōu)于全段甲狀旁腺素(intact parathyroid hormone,iPTH)[41],這也給我們臨床上判斷骨轉(zhuǎn)運(yùn)狀態(tài)提供了新的思路。
(2)DKK1:DKK1主要由骨細(xì)胞及成骨細(xì)胞分泌,與LRP5/6以及細(xì)胞表面Kremen-1蛋白結(jié)合,并且使Fzd-LRP5/6共受體內(nèi)在化而不能與Wnt配體結(jié)合,從而抑制Wnt信號通路[33]。DKK1抑制間充質(zhì)干細(xì)胞向成骨細(xì)胞分化并抑制成骨細(xì)胞產(chǎn)生OPG,增加RANKL/OPG比例,增加破骨細(xì)胞活動[42]。關(guān)于CKD患者血清中DKK1水平,不同的研究團(tuán)隊有不同的結(jié)果[43-44]。升高的DKK1水平與股骨頸密度以及動脈硬化指數(shù)負(fù)相關(guān)[39]。在CKD 2期糖尿病小鼠中,血中DKK1升高,并且使用DKK1單克隆抗體中和DKK1可增加骨形成率,糾正腎性骨營養(yǎng)不良以及預(yù)防血管鈣化[42]。需要更多關(guān)于DKK1的研究,探討在CKD不同分期血清及尿液中DKK1的代謝情況及其對心血管及骨代謝的影響情況。
(3)sFRPs:sFRPs具有與Fzd相似的富含半胱氨酸區(qū)域(cysteine-rich domain,CRD),sFRPs的CRD區(qū)域可以與Wnt配體結(jié)合從而阻斷Wnt配體與Fzd-LRP5/6共受體相結(jié)合,阻斷Wnt通路[45]。目前關(guān)于sFRPs與CKD的研究較少。在多囊腎病進(jìn)展性腎病小鼠模型中,存在腎性骨營養(yǎng)不良和sFRPs表達(dá)升高,sFRPs通過抑制Wnt通路從而提高RNAKL/OPG比值,增加破骨細(xì)胞活動[46]。sFRPs作為調(diào)磷因子的作用尚有爭論。研究發(fā)現(xiàn),sFRPs過表達(dá)轉(zhuǎn)基因小鼠較野生型小鼠尿磷輕度增高、血磷輕度降低,但并無統(tǒng)計學(xué)差異[47]。至此,我們還需要更多關(guān)于sFRPs作為調(diào)磷因子的研究,介于目前較多研究局限于動物模型,還需要更多的臨床相關(guān)實驗去探討sFRPs與CKD-MBD的關(guān)系。
骨分泌激素在CKD-MBD中的生物學(xué)作用得到重視,這提示骨在CKD-MBD中骨-腎-心血管軸的核心地位。但是,目前關(guān)于多種生物標(biāo)志物的研究尚不充足,如FGF23增高機(jī)制尚不明確;Wnt通路抑制劑與血管鈣化、病死率的相關(guān)性尚無統(tǒng)一的結(jié)論;Wnt通路抑制劑單克隆抗體的有效性及安全性尚缺乏有效的評估。因此,我們還需要更多關(guān)于CKD-MBD新型生物標(biāo)志物的研究,明確其在CKD-MBD診治中的價值。
[1] KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int Suppl, 2013, 3(1): 1-150.
[2] Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey[J]. Lancet, 2012, 379(9818): 815-822.
[3] Temimovic R, Rasic S, Muslimovic A. High prevalence of early chronic kidney disease in high risk outpatients[J]. Mater Sociomed, 2015, 27(2): 79-82.
[4] KDIGO. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder(CKD-MBD)[J]. Kidney Int Suppl, 2009, 1(1):1-130.
[5] Cox AJ, Hsu FC, Agarwal S, et al. Prediction of mortality using a multi-bed vascular calcification score in the diabetes heart study[J]. Cardiovasc Diabetol, 2014, 13(1): 160-171.
[6] Vervloet MG, Massy ZA, Brandenburg VM, et al. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders[J]. Lancet Diabetes Endocrinol, 2014, 2(5): 427-436.
[7] Gorriz JL, Molina P, Cerveron MJ, et al. Vascular calcification in patients with nondialysis CKD over 3 years[J]. Clin J Am Soc Nephrol, 2015, 10(4): 654-666.
[8] Gluba-Brzozka A, Michalska-Kasiczak M, Franczyk-Skora B, et al. Markers of increased cardiovascular risk in patients with chronic kidney disease[J]. Lipids Health Dis, 2014, 13(1): 135-146.
[9] Martinez-Moreno JM, Munoz-Castaneda JR, Herencia C, et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/beta-catenin activation[J]. Am J Physiol Renal Physiol, 2012, 303(8): 1136-1144.
[10]Meuwese CL, Olauson H, Qureshi AR, et al. Associations between thyroid hormones, calcification inhibitor levels and vascular calcification in end-stage renal disease[J]. PLoS One, 2015, 10(7): e0132353.
[11]Qiao W, Chen L, Zhang M. MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells[J]. Cell Physiol Biochem, 2014, 33(6): 1945-1953.
[12]Mackenzie NC, Staines KA, Zhu D, et al. miRNA-221 and miRNA-222 synergistically function to promote vascular calcification[J]. Cell Biochem Funct, 2014, 32(2): 209-216.
[13]Sakaguchi Y, Fujii N, Shoji T, et al. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis[J]. Kidney Int, 2014, 85(1): 174-181.
[14]Komaba H, Fukagawa M. FGF23-parathyroid interaction: implications in chronic kidney disease[J]. Kidney Int, 2010, 77(4): 292-298.
[15]Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease[J]. Kidney Int, 2011, 79(12): 1370-1378.
[16]Martin A, Liu S, David V, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor(FGFR) signaling[J]. Faseb J, 2011, 25(8): 2551-2562.
[17]Hassan A, Durlacher K, Silver J, et al. The fibroblast growth factor receptor mediates the increased FGF23 expression in acute and chronic uremia[J]. Am J Physiol Renal Physiol, 2016, 310(3): 217-221.
[18]Sun N, Zou H, Yang L, et al. Inorganic polyphosphates stimulate FGF23 expression through the FGFR pathway[J]. Biochem Biophys Res Commun, 2012, 428(2): 298-302.
[19]Guo YC, Yuan Q. Fibroblast growth factor 23 and bone mineralisation[J]. Int J Oral Sci, 2015, 7(1): 8-13.
[20]Lavi-Moshayoff V, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop[J]. Am J Physiol Renal Physiol, 2010, 299(4): 882-889.
[21]Seiler S, Reichart B, Roth D, et al. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment[J]. Nephrol Dial Transplant, 2010, 25(12): 3983-3989.
[22]Shibata K, Fujita S, Morita H, et al. Association between circulating fibroblast growth factor 23, alpha-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients[J]. PLoS One, 2013, 8(9): e73184.
[23]Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy[J]. J Clin Invest, 2011, 121(11): 4393-4408.
[24]Oh HJ, Nam BY, Lee MJ, et al. Decreased circulating klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation[J]. Perit Dial Int, 2015, 35(1): 43-51.
[25]Chen T, Mao H, Chen C, et al. The role and mechanism of alpha-klotho in the calcification of rat aortic vascular smooth muscle cells[J]. Biomed Res Int, 2015, 2015: 194362.
[26]Navarro-Gonzalez JF, Donate-Correa J, Muros de Fuentes M, et al. Reduced klotho is associated with the presence and severity of coronary artery disease[J]. Heart, 2014, 100(1): 34-40.
[27]Smith ER, Ford ML, Tomlinson LA, et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD[J]. Nephrol Dial Transplant, 2012, 27(5): 1957-1966.
[28]Smith ER, Ford ML, Tomlinson LA, et al. Serum calcification propensity predicts all-cause mortality in predialysis CKD[J]. J Am Soc Nephrol, 2014, 25(2): 339-348.
[29]MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases[J]. Dev Cell, 2009, 17(1): 9-26.
[30]Brandenburg VM, Kramann R, Koos R, et al. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study[J]. BMC Nephrol, 2013, 14(1): 219-229.
[31]Kramann R, Brandenburg VM, Schurgers LJ, et al. Novel insights into osteogenesis and matrix remodelling associated with calcific uraemic arteriolopathy[J]. Nephrol Dial Transplant, 2013, 28(4): 856-868.
[32]Kubota T, Michigami T, Ozono K. Wnt signaling in bone[J]. Clin Pediatr Endocrinol, 2010, 19(3): 49-56.
[33]Evenepoel P, D'Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease[J]. Kidney Int, 2015, 88(2): 235-240.
[34]Cejka D, Marculescu R, Kozakowski N, et al. Renal elimination of sclerostin increases with declining kidney function[J]. J Clin Endocrinol Metab, 2014, 99(1): 248-255.
[35]Claes KJ, Viaene L, Heye S, et al. Sclerostin: another vascular calcification inhibitor?[J]. J Clin Endocrinol Metab, 2013, 98(8): 3221-3228.
[36]Kanbay M, Siriopol D, Saglam M, et al. Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients[J]. J Clin Endocrinol Metab, 2014, 99(10): 1854-1861.
[37]Desjardins L, Liabeuf S, Oliveira RB, et al. Uremic toxicity and sclerostin in chronic kidney disease patients[J]. Nephrol Ther, 2014, 10(6): 463-470.
[38]Drechsler C, Evenepoel P, Vervloet MG, et al. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study[J]. Nephrol Dial Transplant, 2015, 30(2): 288-293.
[39]Thambiah S, Roplekar R, Manghat P, et al. Circulating sclerostin and Dickkopf-1(DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness[J]. Calcif Tissue Int, 2012, 90(6): 473-480.
[40]Moe SM, Chen NX, Newman CL, et al. Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy[J]. J Bone Miner Res, 2015, 30(3): 499-509.
[41]Cejka D, Herberth J, Branscum AJ, et al. Sclerostin and Dickkopf-1 in renal osteodystrophy[J]. Clin J Am Soc Nephrol, 2011, 6(4): 877-882.
[42]Fang Y, Ginsberg C, Seifert M, et al. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder[J]. J Am Soc Nephrol, 2014, 25(8): 1760-1773.
[43]Oliveira RB, Graciolli FG, Reis LM, et al. Disturbances of Wnt/beta-catenin pathway and energy metabolism in early CKD: effect of phosphate binders[J]. Nephrol Dial Transplant, 2013, 28(10): 2510-2517.
[44]Morena M, Jaussent I, Dupuy AM, et al. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications[J]. Nephrol Dial Transplant, 2015, 30(8): 1345-1356.
[45]Povelones M, Nusse R. The role of the cysteine-rich domain of frizzled in wingless-armadillo signaling[J]. Embo J, 2005, 24(19): 3493-3503.
[46]Sabbagh Y, Graciolli FG, O'Brien S, et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy[J]. J Bone Miner Res, 2012, 27(8): 1757-1772.
[47]Cho HY, Choi HJ, Sun HJ, et al. Transgenic mice overexpressing secreted frizzled-related proteins(sFRP)4 under the control of serum amyloid P promoter exhibit low bone mass but did not result in disturbed phosphate homeostasis[J]. Bone, 2010, 47(2): 263-271.
10.3969/j.issn.1671-2390.2017.02.011
江蘇省六大高峰人才項目(No.WSN-056);江蘇省臨床醫(yī)學(xué)科技專項(No.BL2014080)
210029 南京,南京醫(yī)科大學(xué)第一附屬醫(yī)院腎內(nèi)科
毛慧娟,E-mail:huijuanmao@126.com
2016-03-05
2016-12-16)