胡中平 程念 楊帆 蘇正定
(湖北工業(yè)大學(xué)生物醫(yī)藥研究院 工業(yè)發(fā)酵協(xié)同創(chuàng)新中心 教育部發(fā)酵工程重點(diǎn)實(shí)驗(yàn)室,武漢 430068)
GLP-1R結(jié)構(gòu)和功能及小分子藥物篩選研究進(jìn)展
胡中平 程念 楊帆 蘇正定
(湖北工業(yè)大學(xué)生物醫(yī)藥研究院 工業(yè)發(fā)酵協(xié)同創(chuàng)新中心 教育部發(fā)酵工程重點(diǎn)實(shí)驗(yàn)室,武漢 430068)
胰高血糖素樣肽-1受體(glucagon-like peptide-1 receptor,GLP-1R)作為2-型糖尿?。═2DM)藥物研發(fā)和治療的靶點(diǎn)有著十分重要的臨床意義。盡管通過結(jié)構(gòu)生物學(xué),蛋白質(zhì)工程等方法和手段對于GLP-1R結(jié)構(gòu)的研究有了較大突破。但是關(guān)于其全長結(jié)構(gòu)解析,多肽結(jié)合受體的分子機(jī)理及受體激活的內(nèi)在機(jī)制還不曾得到解決。近些年有關(guān)GLP-1R相關(guān)研究發(fā)展較快,簡述了該受體的結(jié)構(gòu)與功能以及已有的小分子藥物先導(dǎo)化合物,并討論GLP-1受體分子結(jié)構(gòu)作用機(jī)制的發(fā)展方向及應(yīng)用前景,旨為進(jìn)一步探尋2型糖尿病的治療方案提供有利的幫助。
GLP-1R;分子結(jié)構(gòu);小分子藥物
胰高血糖素樣肽-1受體(glucagon-like peptide-1 receptor,GLP-1R)是2-型糖尿病最為有效的治療靶點(diǎn)之一。經(jīng)過多年基礎(chǔ)研究積累,轉(zhuǎn)化和臨床研究表明GLP-1與其受體相互作用能夠有效調(diào)控機(jī)體糖穩(wěn)態(tài)和能量代謝[1]。GLP-1R屬于G蛋白偶聯(lián)受體(GPCR)B簇亞族(B1)的一員,它的典型特征是具有一個相對比較大的胞外域(ECD)和有α-螺旋束構(gòu)成的7次跨膜核心域(TMD)。GLP-1R作為GLP-1/GLP-1R途徑下游信號的靶標(biāo),主要是通過“two-domain model”來激活受體。首先GLP-1 C端域(cGLP-1)同GLP-1R胞外域(ECD)形成的“affinity trap”結(jié)合,從而確保GLP-1 N端域(nGLP-1)與受體核心域(TMD)形成的“pocket”互交。這種相互作用能夠有效激活PKA、PI3K、MAPK等多種下游信號通路,參與諸如胰島素的釋放,β-細(xì)胞增生,胰高血糖素釋放減少,延遲胃排空[2],增強(qiáng)記憶等重要生理過程[3]。所以,GLP-1R作為GLP-1發(fā)揮效能的靶點(diǎn)對于人們研究多種疾病有著潛在的指導(dǎo)意義。本文就GLP-1R的結(jié)構(gòu)和功能的研究進(jìn)展進(jìn)行綜述,并針對基于該受體的小分子先導(dǎo)化合物進(jìn)行歸納,以便為進(jìn)一步開發(fā)合適治療T2DM的口服藥物提供借鑒。
胰高血糖素樣肽(GLP-1)和葡萄糖依賴性促胰島素多肽(GIP)作為腸促胰素都能夠直接作用于胰島細(xì)胞加強(qiáng)餐后胰島素釋放[4,5],但是在治療2-型糖尿?。═2DM)方面首選GLP-1。主要有兩個原因:首先,GLP-1和GIP都會抑制胃的排空,延遲餐后血糖升高,但只有GLP-1會引起飽足感;其次,這兩種多肽對胰高血糖素的釋放具有相反的效用,GLP-1起抑制作用但GIP會促進(jìn)胰高血糖素釋放[6]。GLP-1主要是由胰高血糖素原基因表達(dá)通過腸L細(xì)胞分泌的多肽類激素,其很容易被DPP-Ⅳ降解成無生理活性GLP-1(9-37),半衰期較短僅有1-2 min[6]。GLP-1發(fā)揮生理功能主要是通過結(jié)合并激活G蛋白偶聯(lián)受體B家族(分泌素家族)中的GLP-1R,誘發(fā)信號分子cAMP增加,使偶聯(lián)的G蛋白α亞基與β,γ亞基解離,并分別介導(dǎo)胞內(nèi)不同信號通路來完成的[7]。
1.1 GLP-1R的表達(dá)及糖基化
人的GLP-1受體(hGLP-1R)基因位于人染色體6p21上,編碼463個氨基酸。GLP-1R表達(dá)于模式生物和人體中并呈現(xiàn)出高度保守性,它在機(jī)體中廣泛分布于被檢測的胰島、胃、小腸、心臟、腎臟、肺及大腦等組織中。GLP-1R在胰島β細(xì)胞中表達(dá)較多,在人胰島α和δ細(xì)胞中表達(dá)尚屬爭議[8]。人GLP-1受體(hGLP-1R)同小鼠GLP-1受體(rGLP-1R)序列具有高度相似性,同源性達(dá)到84%。該受體屬于G蛋白偶聯(lián)受體B簇中胰高血糖素受體亞家族,這類受體有3個顯著的特征:一個相對較長的大約100-150個氨基酸的胞外N端域(ECD),與之相連的7次跨膜結(jié)構(gòu)域(7TMD)以及連接跨膜段的相對較短的胞內(nèi)域C端域(ICD)[9]。其中胞外域(ECD)包括兩組通過loop環(huán)相連的反向β折疊,6個保守的半胱氨酸形成的3對二硫鍵以及一個柔性的α螺旋(圖1,參照PDB ID:2QKH[10])。研究發(fā)現(xiàn)在RINm5F細(xì)胞[11]中,糖基化肽酶F能夠使GLP-1受體分子量從63 kD減少到51 kD,表明GLP-1受體的N端連接有聚糖分子。衣霉素也會減少GLP-1受體的表達(dá),但不會影響其配體親和力。在重組CHO細(xì)胞中,任何兩三個N端糖基化位點(diǎn)(Asn63、Asn82、Asn115)的突變都會阻止受體穿梭于質(zhì)膜[12]。在HEK-293細(xì)胞中,GLP-1R胞外域(ECD)存在的信號肽(23個氨基酸)會在GLP-1受體正確加工和運(yùn)輸過程中被切斷,以便在質(zhì)膜形成成熟和完整的糖基化。此外,抑制 hGLP-1R糖基化會阻礙該受體細(xì)胞穿膜表達(dá)[13,14]??梢姡腔托盘栯膶LP-1R的穿梭和加工十分重要。
圖1 GPCR B簇受體胞外域(ECD)通用結(jié)構(gòu)示意圖
1.2 GLP-1R胞外域(ECD)特征
鑒于人們研究GLP-1R全長的長期性和復(fù)雜性,單獨(dú)分離出GLP-1R胞外域(ECD)已經(jīng)成為了探究GLP-1受體結(jié)構(gòu)和功能的重要手段。1996年,Wilmen等[15]運(yùn)用大腸桿菌表達(dá)ECD(殘基20-144)并通過六聚組氨酸標(biāo)簽純化到可溶性片段。盡管純化的具有活性功能蛋白也能像GLP-1R全長受體一樣同125I-GLP-1(用碘125標(biāo)記的GLP-1)發(fā)生互交作用,但是這些純化的蛋白處于較低的表達(dá)水平,之后用β-巰基乙醇處理發(fā)現(xiàn)125I-GLP-1結(jié)合受體的能力喪失。2002年,Bazarsuren等[16]也通過大腸桿菌表達(dá)出GLP-1R胞外域。與前者不同之處在于表達(dá)的蛋白是以包涵體形式存在,后來經(jīng)過變性、重折疊和復(fù)性成功的做出了具有生物活性的GLP-1R胞外域(ECD),實(shí)現(xiàn)了蛋白可逆性復(fù)性。之后用胃蛋白酶處理發(fā)現(xiàn)存在有二硫鍵,進(jìn)一步分析證實(shí)二硫鍵的位置分別是Cys46和Cys71、Cys62和Cys104以及Cys85和Cys126。這些具有保守性二硫鍵對蛋白結(jié)構(gòu)的穩(wěn)定具有至關(guān)重要的意義。2008年,Runge等[17]解析出GLP-1R胞外域同Exendin-4(9-39)形成的復(fù)合體,其分辨率為2.2 ?晶體結(jié)構(gòu)。該結(jié)構(gòu)通過N端的α螺旋和兩個反向β延伸形成的loop結(jié)構(gòu)闡釋了其疏水結(jié)合位點(diǎn)并發(fā)現(xiàn)了Asp67、Trp72、Pro86、Arg102、Gly108和Trp110六個保守的氨基酸殘基。其中Asp67形成分子內(nèi)相互作用,通過水分子與Arg102相互作用并直接作用于Trp72和Arg121(圖2,參照PDB ID:3C5T數(shù)據(jù)[17])。另外,Asp67還會與Tyr69和Ala70作用來穩(wěn)定β1和β2鏈的反轉(zhuǎn)。可見,這些殘基對胞外域折疊和受體結(jié)構(gòu)穩(wěn)定必不可少。2009年,Chritina等[18]解析出GLP-1胞外域同GLP-1形成的復(fù)合體,其分辨率為2.2 ?晶體結(jié)構(gòu)。該結(jié)構(gòu)表明激動劑和拮抗劑與受體結(jié)合是通過疏水性相互作用來完成的并且這種作用呈現(xiàn)保守性,但是配體結(jié)合位點(diǎn)的某些殘基賦予了GLP-1的特殊構(gòu)象(圖3-A,3-B,參照PDB ID:3IOL數(shù)據(jù)[18])。當(dāng)GLP-1結(jié)合受體胞外域時,會呈現(xiàn)出扭曲構(gòu)象,但從Thr13到Val33展現(xiàn)出連續(xù)的α-螺旋結(jié)構(gòu),這與之前解析的Exendin-4(9-39)與GLP-1R-ECD形成的晶體復(fù)合體結(jié)構(gòu)有所不同(圖3-C)。2011年,Day等[19]發(fā)現(xiàn)GLP-1受體N端域Glu68殘基的改變會使GLP-1的親和力減少8倍,加強(qiáng)GLP-1多肽的C端的正電荷有利于多肽傾向于受體68位氨基酸殘基處靠攏,說明Glu68氨基酸對于配體的行為十分重要。最近研究表明,GLP-1受體N端域較大的疏水性作用能夠驅(qū)使多肽的結(jié)合并定位于配體N端激活受體[20]。高蔚豐等[21]通過S52R突變會引起GLP-1受體N端片段活性失活,但缺失前面20個氨基酸以及后面10個氨基酸都不會影響N端域的生物活性,表明Ser52對于維持配體活性至關(guān)重要。盡管在探究胞外域結(jié)構(gòu)方面戰(zhàn)果累累,然而與所預(yù)期的GLP-1R胞外域結(jié)構(gòu)相比,ECD上的很多殘基未曾出現(xiàn)過共價修飾。
圖2 GLP-1R胞外域(ECD)與Exendin-4(9-39)形成復(fù)合物結(jié)構(gòu)[17]
1.3 GLP-1R核心域特征
由于受體跨膜域結(jié)構(gòu)的特殊性,人們主要是通過定點(diǎn)誘變以及蛋白互交實(shí)驗(yàn)等相關(guān)手段來探究其結(jié)構(gòu)。Xiao等[22]對跨膜域 TM2-TM3的5個殘基(K197A、D198A、K202A、D215A、R227A) 進(jìn) 行定點(diǎn)誘變,發(fā)現(xiàn)配體結(jié)合力存在明顯的下降(IC50值相對于WT高出4-20倍)。研究發(fā)現(xiàn),GLP-1受體第二個跨膜螺旋(TMH2)的膜外端的一個殘基Asp198[23]和第4個跨膜螺旋(TMH4)的殘基Lys288[24]特異性的參與了GLP-1R N端域的結(jié)合。將M204A和Y205A進(jìn)行雙突變[25]發(fā)現(xiàn)該突變受體同GLP-1的親和力相對于野生型(WT)受體明顯減少了30倍,而Exendin-4只減少了3倍并且對拮抗劑卻沒有影響,原因可能是這兩個位點(diǎn)側(cè)鏈的疏水性發(fā)生了改變。研究調(diào)查表明,Ⅱ型糖尿病患者胰島β細(xì)胞中GLP-1受體出現(xiàn) T149M天然突變會引起GLP-1 結(jié)合力下降并且能夠降低多肽誘使cAMP調(diào)控信號的效能,但cAMP的含量不變。說明這種受體的多態(tài)性會影響其結(jié)合激動劑的效能[26]。Mann等[27]發(fā)現(xiàn)Cys226(TM3)和Cys296(ECL2)之間會形成二硫鍵,并靠近受體激活“pocket”。進(jìn)一步通過ECL2上殘基定點(diǎn)誘變得出該loop對于激動劑激活受體十分重要。Coopman等[28]發(fā)現(xiàn)跨膜域的一些殘基(K197A、W284A、R310A等)的突變更傾向與受體效能的降低。人們用點(diǎn)突變和嵌合GLP1R/ GIPR同嵌合GLP-1/GIP 相互作用的分子模擬[29]表明GLP-1的His1和Thr7會同GLP-1受體中的殘基Asn302(ECL2)、Ile196(TMH2)和Leu232/Met233(ECL1)相互作用,這為配體與受體結(jié)合以及受體激活提供了很重要的線索。Cassandra等[30]通過將跨膜段第2個loop域的相應(yīng)殘基(C296A、D297A、R299A、N300A、N302A、N304A、Y305A和L307A等)進(jìn)行突變都會影響到GLP-1的結(jié)合力和耦合效率及CAMP形成,鈣離子內(nèi)流和胞外信號調(diào)控激酶1和2的磷酸化(PERK1/2)的激活,說明第2個loop域的結(jié)構(gòu)對配體結(jié)合十分重要,尤其是Trp306Ala會使受體的生物活性喪失。Jin等[31]通過GLP-1R突變發(fā)現(xiàn)ECL3上保守殘基Arg380與疏水性殘基Leu379和Phe381相連可能會同GLP-1的Asp9和Gly4相互作用。后來又用VPAC1R的ECL3去取代GLP-1R的ECL3區(qū)域形成GLP-1Rs嵌合受體,結(jié)果表明此嵌合受體同GLP-1的結(jié)合比較弱,說明GLP-1R受體的ECL3對于受體激活顯得十分重要。進(jìn)一步進(jìn)行氨基酸點(diǎn)突變表明,GLP-1R受體保守殘基Arg380以及疏水性殘基Leu379和Phe381可以調(diào)控GLP-1的Gly4和Asp9的相互作用。從而提出了配體結(jié)合“pocket”主要由GLP-1受體TMH2,ECL1,ECL2和 ECL3的保守性殘基構(gòu)成。近些年,發(fā)現(xiàn)了C端對GLP-1R跨膜域表達(dá)和內(nèi)源化產(chǎn)生很大影響,研究表明氨基酸殘基411-418對于跨膜域定位于質(zhì)膜很關(guān)鍵,氨基酸殘基419-430可能對于受體耦合Gαs,cAMP誘使產(chǎn)生受體活性十分重要,氨基酸殘基431-450對于激動劑誘導(dǎo)hGLP-1R內(nèi)源化是必不可少的[32]。通過分子模擬發(fā)現(xiàn),受體胞外域靠近跨膜核心區(qū)的ECL3并且GLP-1R同配體結(jié)合也存在著“closed state”和“open state”兩種形式[33],這與之前的胰高血糖素受體(GCGR)與配體結(jié)合狀況相似[34]。
圖3 GLP-1R胞外域(ECD)同GLP-1疏水性相互作用
2.1 受體激活
GLP-1R屬于G蛋白偶聯(lián)受體B簇亞類。GPCR B簇受體與配體作用機(jī)制主要是被大家公認(rèn)的“twodomain model”[35](圖4)。配體的C端螺旋首先同GLP-1R胞外域(ECD)結(jié)合,從而確保配體的N端同GLP-1受體的核心區(qū)域(TMD)進(jìn)行二次交合,后者相互作用對于激動劑激活受體至關(guān)重要[35]。因此提出了解釋GPCR B簇受體激活模型,即配體結(jié)合誘使內(nèi)源性激動劑構(gòu)象改變,然后同受體核心域相互作用產(chǎn)生活性[36]。已經(jīng)報道了配體的α螺旋二級結(jié)構(gòu)在二域模型中調(diào)控受體胞外域ECD的起始作用十分重要,并提出了螺旋包被模型來解釋GPCR B簇不同配體是怎樣激活受體[9]。
GLP-1和Exendin-4都是α-螺旋的多肽,能與GLP-1R胞外域多個接觸位點(diǎn)相互作用誘導(dǎo)受體信號。它們的兩性特征決定了它們同受體ECD相互作用呈現(xiàn)出保守性,其中配體的疏水面是相互作用的關(guān)鍵并且受體激動劑多肽疏水區(qū)形成的微小結(jié)合能對結(jié)合最為關(guān)鍵。受體激活模型的第二階段表明,ECD對接多肽直接促進(jìn)配體N端同受體核心“pocket”相互作用引起跨膜α-螺旋構(gòu)象重排,誘使膜內(nèi)Loop環(huán)刺激胞內(nèi)信號傳導(dǎo)。
圖4 G蛋白偶聯(lián)受體與其配體結(jié)合的“two-domain model”
2.2 GLP-1R信號傳導(dǎo)調(diào)控機(jī)制
一般來說,GLP-1受體N端主要是識別特異性的配體,但是受體的核心區(qū)對于信號特異性傳導(dǎo)發(fā)揮重要作用。GLP-1R屬于G蛋白偶聯(lián)受體中Gs亞類。它是一種多效性偶聯(lián)受體,主要通過與多種G蛋白(Gαs、Gαi、Gαo和Gαq/11)偶聯(lián)來調(diào)控細(xì)胞通路。當(dāng)與GLP-1結(jié)合后,G蛋白α亞基與β、γ亞基解離并對不同信號通路進(jìn)行介導(dǎo)[7]。在β細(xì)胞中偶聯(lián)Gαs蛋白,激活腺苷環(huán)化酶,促使cAMP在細(xì)胞內(nèi)含量升高并增加蛋白激酶A(PKA)和cAMP-2激活交換蛋白(Epac2)的含量,引起離子通道活性改變,鉀離子通道關(guān)閉,電壓依賴性鈣離子通道打開(VDCCs),鈣離子內(nèi)流,胰島素原基因轉(zhuǎn)錄增加,胰島素分泌小泡釋放。GLP-1可以通過cAMPPKA途徑提高葡萄糖感受性,刺激血糖依賴性胰島素的分泌[37]。除此之外,GLP-1R受體還可以通過G蛋白β、γ亞基來激活磷脂酰基醇-3-激酶(PI3K)和絲裂原活化蛋白激酶(MAPK)的信號通絡(luò)誘導(dǎo)β細(xì)胞的增值和分化;另外,cAMP還可以以不依賴PKA的方式,通過與β細(xì)胞中cAMP調(diào)節(jié)的鳥苷酸交換因子(cAMP-regulated guaninenucleotide exchange factors,cAMP-GEFs)相互作用,激活Ras/MAPK[38](mitogen-activated protein kinase)信號通路,促進(jìn)β細(xì)胞的生長和分化[38]。不僅如此,GLP-1R還能夠通過調(diào)控cAMP反應(yīng)元件結(jié)合蛋白(CREB)和蛋白復(fù)活因子Bcl-2、Bcl-XL來抑制細(xì)胞凋亡(圖5)。近些年也發(fā)現(xiàn)β-arrestin的募集也參與了GLP-1R功能[39]。如敲出β細(xì)胞中β-arrestin1會誘使cAMP的降低和胰島素釋放減少80%[40],敲出β-arrestin2的野生小鼠會產(chǎn)生餐后高血糖,糖耐性降低并會引起胰島素抵抗等癥狀[41]。研究表明[42,43],β-arrestins主要是通過形成β-arrestins依賴性信號復(fù)合物和信號分子(ERK 1/2,JNK3)作為信號載體傳遞信號于MAPK,從而調(diào)控β-arrestins依賴性胰島素信號通路。
圖5 胰島β細(xì)胞中GLP-1R調(diào)控的信號通路
2.3 GLP-1R生理功能
GLP-1R作為糖尿病治療的重要靶點(diǎn)。在機(jī)體內(nèi)廣泛表達(dá)由于分布于胃、小腸、心臟、腎臟、肺及大腦等組織。在胰島細(xì)胞中,GLP-1R主要是促進(jìn)胰島素的釋放,增加胰島β細(xì)胞的再生,抑制β細(xì)胞的凋亡,降低胰高血糖素的釋放。在胃腸道等組織中[44],GLP-1R可以通過與其激動劑結(jié)合抑制胃腸道的蠕動和胃液分泌,延遲胃的排空,增加飽食感。在神經(jīng)組織中,小分子GLP-1R激動劑能夠穿透于大腦激活GLP-1R表達(dá)的神經(jīng)元子集,保護(hù)神經(jīng)細(xì)胞的凋亡和加強(qiáng)學(xué)習(xí)記憶能力[45]。不僅如此,GLP-1R也能夠控制食物攝取來減輕體重[46]。在心血管方面,通過對2個月的鼠進(jìn)行GLP-1R基因的敲出發(fā)現(xiàn)其靜息心率降低,左心室舒張壓升高[47];除此之外,GLP-1R還能調(diào)控降低氧化應(yīng)激壓和抑制心肌細(xì)胞的凋亡[48]。
GLP-1R非肽激動劑因具有潛在口服活性能避免T2DM患者長期自我注射,因而引起了人們的廣泛關(guān)注。目前,已報道的有關(guān)基于GLP-1受體治療糖尿病藥物而開發(fā)的小分子先導(dǎo)化合物較多(表1)。
3.1 小分子拮抗劑
事實(shí)上,第一個GLP-1R非肽類配體T-0632實(shí)際上是一種拮抗劑[49]。相比較125I-Exendin-4(9-39)而言,它同hGLP-1R的IC50為1.2 μmol/L并且在COS-7細(xì)胞中能夠抗拒GLP-1誘導(dǎo)產(chǎn)生cAMP。W33S突變會使得這種拮抗劑同受體結(jié)合力降低100倍,表明它同ECD的結(jié)合位點(diǎn)為Trp33,該氨基酸位于GLP-1受體胞外域α-螺旋中但不參與多肽的結(jié)合。盡管這種化合物能夠作為很好的分子工具被用來研究機(jī)體中的生理化學(xué)特征,但是結(jié)合力相對較弱以致不足以用來研究GLP-1受體。Catein是一種天然的多酚類物質(zhì)[50],能夠作為GLP-1R選擇性的負(fù)調(diào)控變構(gòu)調(diào)節(jié)劑。在鈣離子流動實(shí)驗(yàn)中,Catein不會對激動劑調(diào)控信號產(chǎn)生影響。但是在cAMP積累實(shí)驗(yàn)中,Catein卻發(fā)揮著GLP-1(7-36)NH2和GLP-1(1-36)NH2的負(fù)調(diào)控調(diào)節(jié)劑的作用。例如,Catein會降低由cAMP引起的GLP-1信號傳導(dǎo)效能,但對由GLP-1受體多肽(Exendin-4)引起的非cAMP信號通路不起調(diào)控作用[50]。
表1 基于GLP-1受體的先導(dǎo)化合物類別[58]
3.2 小分子激動劑
2007年,人們通過高通量篩選方法從多達(dá)48 000個的合成和天然化合物中篩選出兩個GLP-1R非肽激動劑,Boc5[51]和它的類似物S4P。它們會在DMSO長期儲存液中自發(fā)形成二聚化合物。基于CRE-熒光素酶分析表明,Boc5在HEK-293細(xì)胞表達(dá)rGLP-1R中扮演著完全激動劑的角色并具有1.08 μmol/L的效能,但是與其結(jié)構(gòu)相似的小分子S4P卻是一種部分激動劑。然而,在cAMP積累實(shí)驗(yàn)中卻發(fā)現(xiàn)Boc5和S4P都是部分激動劑。更加重要的是,用Boc5和S4P代替125I-GLP-1進(jìn)行受體結(jié)合實(shí)驗(yàn)也會引起Exendin-4(9-39)功能性拮抗作用。進(jìn)一步實(shí)驗(yàn)表明,Boc5能夠促進(jìn)分離的鼠胰島糖依賴性胰島素的分泌,抑制鼠食物攝取并能夠減少db/db小鼠HbA1c含量到正常水平。由于它們?nèi)狈︻愃幏肿铀哂械慕Y(jié)構(gòu)特征(背離了Lipinsky和Veber規(guī)律),Boc5只是作為一種有用的概念性分子,并且有關(guān)該分子結(jié)合受體的機(jī)理可能同GLP-1類似[52]。2007年發(fā)現(xiàn)另外一種非肽類激動劑,compound2(Cmp2)及其類似結(jié)構(gòu)物[53]。這些化合物較Boc5分子量小并且具有不同的藥理學(xué)特性。它們是GLP-1R的一種變構(gòu)調(diào)節(jié)劑,因?yàn)樗鼈儾粌H能夠獨(dú)立發(fā)揮調(diào)節(jié)作用而且也能夠作為變構(gòu)調(diào)節(jié)劑加強(qiáng)天然激動劑的活性。然而,這種變構(gòu)調(diào)節(jié)劑只是局限于增加GLP-1親和力(26倍)而對其效能卻無任何作用。但是,在hGLP-1R表達(dá)的FIpIn-CHO細(xì)胞中有助于提高GLP-1的效能[54]。Cmp2還能夠刺激正常小鼠胰島糖依賴性胰島素的釋放但是對于GLP-1R敲出的小鼠卻效用較小。Cmp2和GLP-1對GLP-1R表達(dá)的HEK-293細(xì)胞產(chǎn)生影響表明這兩種激動劑都是通過Gαs發(fā)揮調(diào)控作用[55]。進(jìn)一步研究表明EX4(9-39)會抑制Cmp2調(diào)控受體內(nèi)源化。最新研究表明Cmp2結(jié)合GLP-1R會引起受體偶聯(lián)Gαs構(gòu)象改變,但不會引起鈣離子聚集,ERK磷酸化以及受體內(nèi)源化[56]。黃酮類化合物是另外一種GLP-1R的激動劑。盡管它不會直接激活GLP-1R受體,但可以通過GLP-1和Exendin-4加強(qiáng)鈣離子調(diào)控反應(yīng)。黃銅類結(jié)構(gòu)表明3-OH基團(tuán)是發(fā)揮活性的關(guān)鍵基序[57]。
已知有大約80%多肽類激素都是依靠激活GPCR信號通路來調(diào)控生理機(jī)能。因此,GPCR紊亂會引起人類的一些疾病。目前,有大約50%的藥物靶點(diǎn)都屬于GPCR[59]。GPCR B簇成員GLP-1R作為治療2-型糖尿病的重要靶點(diǎn),對于該受體與配體的相互作用的研究顯得尤為重要。但是,有關(guān)配體結(jié)合受體核心區(qū)的位點(diǎn)目前還是停留在推測階段,受體激活的分子機(jī)制尚不明朗。但是有關(guān)GPCR B簇受體GCGR,CRF1R[60,61]相繼被解析,這為GLP-1R分子結(jié)構(gòu)作用機(jī)理研究提供了較好的借鑒。盡管有關(guān)基于GLP-1受體藥物發(fā)展很多,但是還不曾有能夠有效口服GLP-1R小分子受體激活劑被用于治療。讓人更加欣慰的是,目前有關(guān)小分子GLP-1受體配基的鑒定步伐正在加速。盡管多肽結(jié)合機(jī)理和GLP-1R受體激活很復(fù)雜以致于模擬小分子化合物十分困難,但是通過變構(gòu)模型促使小分子發(fā)揮效用的實(shí)例[52]表明針對靶點(diǎn)的藥物化學(xué)策略是可行的。因此,運(yùn)用先進(jìn)的結(jié)構(gòu)生物方法學(xué)和更復(fù)雜分析系統(tǒng)及測試方案包括理解受體配體偏向性信號傳導(dǎo)將有可能推進(jìn)類藥分子的發(fā)展。這也有助于為下一代糖尿病藥物研發(fā)利用提供參考,具有十分重要的臨床應(yīng)用價值。
[1] Blad CC, Tang C, Offermanns S. G protein-coupled receptors for energy metabolites as new therapeutic targets[J]. Nature Reviews Drug Discovery, 2012, 11:603-619.
[2] 田洪斌. 注射用艾塞那肽凍干粉針劑的研究[D]. 長春:吉林大學(xué), 2008.
[3] Koole C, Savage EE, Christopoulos A, et al. Minireview:Signal bias, allosterism, and polymorphic variation at the GLP-1R:implications for drug discovery[J]. Molecular Endocrinology, 2013, 27:1234-1244.
[4] Lauritsen KB, Moody AJ, Christensen KC, et al. Gastric inhibitory polypeptide(GIP)and insulin release after small-bowel resection in man[J]. Scandinavian Journal of Gastroenterology, 1980, 15:833-840.
[5] Thorens B, Widmann C. Structure and function of the glucagon-like peptide-1 receptor[M]. Springer Berlin Heidelberg, 1996:255-273.
[6] Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors:the glucagon, GIP, GLP-1, and GLP-2 receptors[J]. Receptors & Channels, 2011, 8:179-188.
[7] Sloop FSW, Kyle W. Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor[J]. Experimental Diabetes Research, 2012, 2012:344-350.
[8] Pabreja K, Mohd MA, Koole C, et al. Molecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation[J]. British Journal of Pharmacology, 2014, 171:1114-1128.
[9] Parthier C, Reedtz-Runge S, Rudolph R, et al. Passing the baton in class B GPCRs:peptide hormone activation via helix induction?[J]. Trends in Biochemical Sciences, 2009, 34:303-310.
[10] Parthier C, Kleinschmidt M, Neumann P, et al. Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:13942-13947.
[11] G?ke R, Just R, Lankat-Buttgereit B, et al. Glycosylation of the GLP-1 receptor is a prerequisite for regular receptor function[J]. Peptides, 1994, 15:675-681.
[12] Chen Q, Miller LJ, Dong M. Role of N-linked glycosylation in biosynthesis, trafficking, and function of the human glucagon-like peptide 1 receptor[J]. Ajp Endocrinology & Metabolism, 2010, 299:E62-68.
[13] Aiysha T, Venkateswarlu K. The regions within the N-terminus critical for human glucagon like peptide-1 receptor(hGLP-1R)cell surface expression[J]. Scientific Reports, 2014, 4:7410.
[14] Huang Y, Wilkinson GF, Willars GB. Role of the signal peptide in the synthesis and processing of the glucagon-like peptide-1 receptor[J]. Experimental Biology & Medicine, 2007, 67:141-145.
[15] Wilmen A, Goke B, G?ke R. The isolated N-terminal extracellular domain of the glucagon-like peptide-1(GLP)-1 receptor has intrinsic binding activity[J]. Febs Letters, 1996, 398(45):43-47.
[16] Bazarsuren AGU, Wozny M, Reusch D, et al. In vitro folding, functional characterization, and disulfide pattern of the extracellular domain of human GLP-1 receptor[J]. Biophysical Chemistry, 2002, 96:305-318.
[17] Steffen R, Henning TG, Kjeld M, et al. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain[J]. Journal of Biological Chemistry, 2008, 283:11340-11347.
[18] Christina Rye U, Patrick G, Lotte Bjerre K, et al. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor[J]. Journal of Biological Chemistry, 2010, 285:723-730.
[19] Day JW, Li P, Patterson JT, et al. Charge inversion at position 68 of the glucagon and glucagon-like peptide-1 receptors supports selectivity in hormone action[J]. Journal of Peptide Science, 2011, 17:218-225.
[20] Patterson JT, Li P, Day JW, et al. A hydrophobic site on the GLP-1 receptor extracellular domain orients the peptide ligand for signal transduction[J]. Molecular Metabolism, 2013, 2:86-91.
[21] 高蔚豐, 王娟. 保守的第52位色氨酸突變引起的胰高血糖素樣肽1受體N端片段活性喪失[J]. 生物工程學(xué)報, 2013, 29:87-94.
[22] Xiao Q, Jeng W, Wheeler MB. Characterization of glucagonlike peptide-1 receptor-binding determinants[J]. Journal of Molecular Endocrinology, 2000, 25:321-335.
[23] Maturana RLD, Dan D. The glucagon-like peptide-1 receptor binding site for the N-terminus of GLP-1 requires polarity at Asp198 rather than negative charge[J]. Febs Letters, 2002, 530:244-248.
[24] Al-Sabah S, Donnelly D. The positive charge at Lys-288 of the glucagon-like peptide-1(GLP-1)receptor is important for binding the N-terminus of peptide agonists-FEBS Letters[J]. Febs Letters, 2003, 553:342-346.
[25] Rakel LDM, Janet TB, Fatima A, et al. Met-204 and Tyr-205 are together important for binding GLP-1 receptor agonists but not their N-terminally truncated analogues[J]. Protein & Peptide Letters, 2004, 11:15-22.
[26] Beinborn M, Worrall CI, Mcbride EW, et al. A human glucagonlike peptide-1 receptor polymorphism results in reduced agonist responsiveness[J]. Regulatory Peptides, 2005, 130:1-6.
[27] Mann RJ, Suleiman AS, Rakel López DM, et al. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1(GLP-1)receptor indicates a disulfide bond that is close to the activation pocket[J]. Peptides, 2010, 31:2289-2293.
[28] Coopman K, Wallis R, Robb G, et al. Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation:modelling the ligand-bound receptor[J]. Molecular Endocrinology, 2011, 25:1804-1818.
[29] Jin MM, Hee Young K, Sumi P, et al. Evolutionarily conserved residues at glucagon-like peptide-1(GLP-1)receptor core confer ligand-induced receptor activation[J]. Journal of Biological Chemistry, 2011, 287:3873-3884.
[30] Cassandra K, Denise W, John S, et al. Second extracellular loop of human glucagon-like peptide-1 receptor(GLP-1R)has a critical role in GLP-1 peptide binding and receptor activation[J]. Journal of Biological Chemistry, 2012, 287:3642-3658.
[31] Jin MM, Yoo-Na L, Sumi P, et al. Ligand binding pocket formed by evolutionarily conserved residues in the glucagon-like peptide-1(GLP-1)receptor core domain[J]. Journal of Biological Chemistry, 2015, 290:5696-5706.
[32] Thompson A, Kanamarlapudi V. Distinct regions in the C-Terminus required for GLP-1R cell surface expression, activity and internalisation[J]. Molecular & Cellular Endocrinology, 2015, 413:66-77.
[33] Zhang J, Gu S, Sun X, et al. Computational insight into conformational states of glucagon-like peptide-1 receptor(GLP-1R)and its binding mode with GLP-1[J]. Rsc Advances, 2016, 6:13490-13497.
[34] Yang L, Yang D, De GC, et al. Conformational states of the fulllength glucagon receptor[J]. Nature Communications, 2015, 6:2708-2713.
[35] Hoare SRJ. Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors[J]. Drug Discovery Today, 2005, 10:417-427.
[36] Dong M, Gao F, Pinon DI, et al. Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors[J]. Molecular Endocrinology, 2008, 22:1489-1499.
[37] Holz GG, Leech CA, Heller RS, et al. cAMP-dependent mobilization of intracellular Ca2+stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37)[J]. Journal of Biological Chemistry, 1999, 274:14147-14156.
[38] Leech CA, Holz GG, Chepurny O, et al. Expression of cAMP-regulated guanine nucleotide exchange factors in pancreatic β-cells[J]. Biochemical & Biophysical Research Communications, 2000, 278:44-47.
[39] Noriyuki S, Takeshi I, Takeshi Y, et al. Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105:6614-6619.
[40] Shukla AK, Xiao K, Lefkowitz RJ. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling[J]. Trends in Biochemical Sciences, 2011, 36:457-469.
[41] Luan B, Zhao J, Wu H, et al. Deficiency of a β-arrestin2 signal complex contributes to insulin resistance[J]. Nature, 2009, 457:1146-1149.
[42] Dalle S, Ravier MA, Bertrand G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass:New therapeutic strategies and consequences for drug screening[J]. Cellular Signalling, 2011, 23:522-528.
[43] Etienne K, Ljiljana N, May S, et al. Differential regulation of endosomal GPCR/β-arrestin complexes and trafficking by MAPK[J]. Journal of Biological Chemistry, 2014, 289:23302-23317.
[44] Koliaki C, Doupis J. Incretin-based therapy:a powerful and promising weapon in the treatment of type 2 diabetes mellitus[J]. Diabetes Therapy, 2011, 2:101-121.
[45] During MJ, Cao L, Zuzga DS, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection[J]. Nature Medicine, 2003, 9:1173-1179.
[46] Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptors in the brain:controlling food intake and body weight[J]. Journal of Clinical Investigation, 2014, 124:4223-4226.
[47] Robert G, Xiaomang Y, Baggio LL, et al. Cardiac function in mice lacking the glucagon-like peptide-1 receptor[J]. Endocrinology, 2003, 144:2242-2252.
[48] Laviola L, Leonardini A, Melchiorre M, et al. Glucagon-like peptide-1 counteracts oxidative stress-dependent apoptosis of human cardiac progenitor cells by inhibiting the activation of the c-Jun N-terminal protein kinase signaling pathway[J]. Endocrinology, 2012, 153:5770-5781.
[49] Tibaduiza EC, Chen C, Beinborn M. A small molecule ligand of the glucagon-like peptide 1 receptor targets its amino-terminal hormone binding domain[J]. Journal of Biological Chemistry, 2001, 276:37787-37793.
[50] Denise W, John S, Cassandra K, et al. Modulation of the glucagonlike peptide-1 receptor signaling by naturally occurring and synthetic flavonoids[J]. Journal of Pharmacology & Experimental Therapeutics, 2011, 336:540-550.
[51] Chen D, Liao J, Li N, et al. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:943-948.
[52] Lin F, Wang R. Molecular modeling of the three-dimensional structure of GLP-1R and its interactions with several agonists[J]. Journal of Molecular Modeling, 2008, 15:53-65.
[53] Knudsen LB, Kiel D, Teng M, et al. Small-molecule agonists for the glucagon-like peptide 1 receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:937-942.
[54] Koole C, Wootten D, Simms J, et al. Allosteric ligands of the glucagon-like peptide 1 receptor(GLP-1R)differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner:implications for drug screening[J]. Molecular Pharmacology, 2010, 78:456-465.
[55] Coopman K, Huang Y, Johnston N, et al. Comparative effects of the endogenous agonist Glucagon-Like Peptide-1(GLP-1)-(7-36)amide and the small-molecule ago-allosteric agent "compound 2" at the GLP-1 receptor[J]. Journal of Pharmacology & Experimental Therapeutics, 2010, 334:795-808.
[56] Thompson A, Stephens JW, Bain SC, et al. Molecular characterisation of small molecule agonists effect on the human glucagon like peptide-1 receptor internalisation[J]. PLoS One, 2016, 11:e0154229.
[57] Wootten D, Simms J, Koole C, et al. Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids[J]. Journal of Pharmacology & Experimental Therapeutics, 2011, 336:540-550.
[58] Willard FS, Bueno AB, Sloop KW. Small molecule drug discovery at the glucagon-like peptide-1 receptor[J]. Journal of Diabetes Research, 2012, 2012:344-350.
[59] Millar RP, Newton CL. The year in G protein-coupled receptor research[J]. Molecular Endocrinology, 2009, 24:261-274.
[60] Siu FY, He M, de Graaf C, et al. Structure of the human glucagon class B G-protein-coupled receptor[J]. Nature, 2013, 499:444-449.
[61] Hollenstein K, Kean J, Bortolato A, et al. Structure of class B GPCR corticotropin-releasing factor receptor 1[J]. Nature, 2013, 499:438-443.
(責(zé)任編輯 馬鑫)
Research Progress on Structure and Function of GLP-1R and Screening for Small Molecule Drugs
HU Zhong-ping CHENG Nian YANG Fan SU Zheng-ding
(Institute of Biomedical and Pharmaceutical Sciences,Hubei Collaborative Innovation Center for Industrial Fermentation,the Key Laboratory of Industrial Fermentation of Ministry of Education,Hubei University of Technology,Wuhan 430068)
Glucagon-like peptide-1 receptor(GLP-1R)as an important target for type 2 Diabetes mellitus(T2DM)therapy,presents clinic significance. The breakthroughs on GLP-1R structures and functions have been made via structural biology and protein engineering. However,it is still unknown on the analysis of its full length structure,the molecular mechanism of polypeptide binding receptors,and the intrinsic mechanism of receptor activation. Owing to the rapid research progresses relating to GLP-1R,this article briefly describes the structure and function of the GLP-1 receptor and the leading compound of existing small molecule drugs,also discusses the developing direction and application prospects of action mechanism of the GLP-1 receptor molecule structure,aiming to provide structure base for the treatment of T2DM.
GLP-1R;molecular structure;small molecule drugs
10.13560/j.cnki.biotech.bull.1985.2017.02.005
2016-05-23
武漢市自然科學(xué)基金重點(diǎn)項(xiàng)目(2015060101010033)
胡中平,男,碩士研究生,研究方向:蛋白質(zhì)結(jié)構(gòu);E-mail:15623601030@163.com
蘇正定,男,教授,研究方向:蛋白質(zhì)工程與生物醫(yī)藥;E-mail:zhengdingsu@mail.hbut.edu.cn