梁海英 鞠 薇 吳振東 焦學(xué)勝 陳東風(fēng) 傅元勇
(中國原子能科學(xué)研究院 北京 102413)
預(yù)處理浸泡對聚酰亞胺重離子微孔膜蝕刻的影響
梁海英 鞠 薇 吳振東 焦學(xué)勝 陳東風(fēng) 傅元勇
(中國原子能科學(xué)研究院 北京 102413)
聚酰亞胺(Polyimide, PI)膜是一種新型的有機(jī)膜,具有耐高溫、耐強(qiáng)酸和耐輻射等特性,用其制備的重離子微孔膜可以用于電池隔膜和放射性廢氣過濾等特殊領(lǐng)域。應(yīng)用中國原子能科學(xué)研究院HI-13串列加速器產(chǎn)生的重離子束32S離子轟擊25μm的PI薄膜,再對薄膜進(jìn)行化學(xué)蝕刻處理,使由重離子輻照損傷產(chǎn)生的徑跡形成微孔。為改善微孔質(zhì)量,在化學(xué)蝕刻前采用具有強(qiáng)氧化性溶液對PI膜進(jìn)行預(yù)處理浸泡,系統(tǒng)分析了常溫下采用高錳酸鉀和雙氧水兩種溶液浸泡不同時(shí)間對PI膜化學(xué)蝕刻的影響。實(shí)驗(yàn)結(jié)果顯示,預(yù)處理浸泡可明顯加快PI膜的徑跡蝕刻速率,縮短蝕刻時(shí)間,減小微孔的錐角和提高PI重離子微孔膜的蝕刻質(zhì)量。
聚酰亞胺重離子微孔膜,電導(dǎo)法,預(yù)處理浸泡
在PI重離子微孔膜的制備中,蝕刻溶液通常采用次氯酸鈉(NaClO)溶液,由于NaClO溶液濃度低,導(dǎo)致蝕刻時(shí)間較長,而NaClO溶液又具有較強(qiáng)的揮發(fā)性,蝕刻過程中溶液濃度變化大,會(huì)影響PI重離子微孔膜的成孔質(zhì)量。為了解決這個(gè)難題,在對PI膜化學(xué)蝕刻前,采用具有強(qiáng)氧化性的溶液常溫下對PI膜進(jìn)行預(yù)處理浸泡,以縮短PI重離子微孔膜的蝕刻時(shí)間。本文詳細(xì)介紹采用高錳酸鉀溶液和雙氧水兩種強(qiáng)氧化性的溶液進(jìn)行浸泡預(yù)處理過程及其對徑跡蝕刻速率、成孔孔徑和微孔孔形等影響。
1.1 輻照
利用中國原子能科學(xué)研究院HI-13串列加速器提供的重離子束對PI膜進(jìn)行輻照。采用的離子束是32S,離子能量為140MeV,離子注量為2×106cm-2。實(shí)驗(yàn)采用美國杜邦公司提供的PI膜,厚度為25μm。
1.2 預(yù)處理
在常溫條件下,采用飽和高錳酸鉀溶液對輻照后的樣品浸泡,浸泡時(shí)間分別為1h、2h和3h。由于雙氧水的易揮發(fā)性,在溫度為20°C情況下,采用分析純雙氧水密封遮光浸泡,浸泡時(shí)間分別為1h、2h和3h。對預(yù)處理浸泡后的PI膜進(jìn)行清洗并烘干保存。
1.3 蝕刻
采用NaClO溶液作為蝕刻液,電導(dǎo)法監(jiān)測薄膜的蝕刻過程。由于NaClO溶液見光易分解和具有揮發(fā)性,所以采用帶蓋密封的蝕刻槽,用輻照后PI膜將蝕刻液分為的兩部分放置在恒溫的水浴槽中,如圖1所示。通過監(jiān)測穿過膜的電流隨時(shí)間的變化,可以獲知PI膜隨蝕刻時(shí)間的成孔過程。
圖1 電導(dǎo)蝕刻裝置示意圖Fig.1 Sketch of implement used for etching.
1.4 電鏡觀察
用掃描電子顯微鏡(Scanning Electron Microscope, SEM)對樣品進(jìn)行表面觀察,得到蝕刻后PI重離子微孔膜的孔徑大小和孔形等信息。
2.1 不同預(yù)處理溶液對徑跡蝕刻速率的影響
PI膜蝕刻過程中,膜的表面體蝕刻速率Vb和潛徑跡方向的徑跡蝕刻速率Vt兩者的共同作用使得膜成孔與變薄[8-9]。Vb在膜種類和蝕刻條件不變的情況下近似于常數(shù)。徑跡蝕刻速率Vt=0.5L/t,其中:L是膜的厚度,t是開孔時(shí)間??s短開孔時(shí)間,能夠增加徑跡速率和改變孔的形狀,其中孔形是由錐角φ決定的。圖2是PI膜成孔蝕刻過程的示意圖,其中D是雙面蝕刻形成的內(nèi)徑。
圖2 膜蝕刻過程原理示意圖Fig.2 Sketch of the process of track etching.
通過電導(dǎo)法監(jiān)測電流隨蝕刻時(shí)間的變化。圖3為在溫度為75 oC、濃度為8% NaClO溶液和直流電壓5V的條件下,經(jīng)過高錳酸鉀溶液預(yù)處理浸泡2h膜、雙氧水預(yù)處理浸泡2h和未浸泡的PI膜在蝕刻過程中電流隨蝕刻時(shí)間的變化。蝕刻分為三個(gè)階段:第一階段是蝕刻溶液在輻照區(qū)域潛徑跡方向和表面作用下還沒有形成通孔,此時(shí)段電流接近于0;隨著蝕刻時(shí)間的延續(xù),蝕刻溶液在潛徑跡方向和表面作用下開孔,電流突然增加;開孔后,蝕刻液在與膜孔接觸區(qū)域的作用下以體蝕刻速率Vb繼續(xù)擴(kuò)孔,最終電流不再隨孔徑增大而發(fā)生變化??筛鶕?jù)需要選擇不同的蝕刻時(shí)間得到不同的孔徑。從圖3中可以看出,經(jīng)過高錳酸鉀溶液預(yù)處理浸泡2h后,膜的開孔時(shí)間約為31min,其Vt是未浸泡膜的1.6倍;經(jīng)過雙氧水預(yù)處理浸泡2h膜的開孔時(shí)間是37min,其Vt是未浸泡膜的1.3倍。
圖3 電導(dǎo)蝕刻法監(jiān)測電流隨時(shí)間變化曲線Fig.3 The current curves as a function of time monitored byconductance etching measurement.
2.2 不同預(yù)處理浸泡時(shí)間對Vt的影響
圖4是在溫度為70oC、蝕刻濃度為8% NaClO溶液和直流電壓5V的條件下,高錳酸鉀溶液預(yù)處理浸泡時(shí)間分別為1h、2h和3h的膜蝕刻過程中的電流隨蝕刻時(shí)間的變化情況。從圖4中看出,開孔時(shí)間分別是57min、45min和41min,浸泡時(shí)間越長開孔時(shí)間越短。但是經(jīng)過大量實(shí)驗(yàn)表明,浸泡時(shí)間過長影響成品膜的強(qiáng)度。雙氧水浸泡后的PI膜也有類似的情況。
圖4 不同預(yù)處理時(shí)間后電流隨時(shí)間變化曲線Fig.4 The current curves as a function of etching time at different time of soaking.
2.3 預(yù)處理對孔形的影響
圖5分別給出了在溫度為70oC、濃度8% NaClO溶液條件下,高錳酸鉀溶液預(yù)處理浸泡2h、雙氧水預(yù)處理浸泡2h和未浸泡PI膜蝕刻時(shí)間為55min時(shí)的電鏡圖片。由圖5可見,經(jīng)高錳酸鉀溶液預(yù)處理浸泡2h的膜錐角最小。
圖5 不同預(yù)處理膜蝕刻后的成孔情況(a) 浸泡高錳酸鉀,(b) 浸泡雙氧水,(c) 未浸泡Fig.5 Shape of pore after etching in soaking of different solution.(a) Soaking in potassium permanganate, (b) Soaking in hydrogen peroxide, (c) No soaking
2.4 孔徑隨蝕刻時(shí)間的變化
圖6是當(dāng)溫度為75oC時(shí)PI膜孔徑蝕刻時(shí)間的變化曲線。從圖6中看出,如果要得到內(nèi)徑為1.0μm的孔,在同樣的濃度和溫度下,經(jīng)高錳酸鉀溶液浸泡2h的膜蝕刻時(shí)間為40min,雙氧水浸泡2h膜蝕刻為52min,未浸泡的膜蝕刻時(shí)間為60min。可見預(yù)處理浸泡縮短了蝕刻時(shí)間。
圖6 孔徑與蝕刻時(shí)間的關(guān)系Fig.6 Diameters of micropores as a function of etching time.
在常溫條件下,分別采用高錳酸鉀和雙氧水兩種溶液對高能離子輻照PI膜進(jìn)行浸泡預(yù)處理,然后再對預(yù)處理浸泡后的PI膜進(jìn)行化學(xué)蝕刻,測試蝕刻速率、蝕刻孔形和孔徑。實(shí)驗(yàn)結(jié)果顯示,經(jīng)過預(yù)處理浸泡后的PI膜的開孔時(shí)間明顯比沒有預(yù)處理的PI膜的開孔時(shí)間短,浸泡時(shí)間越長開孔時(shí)間越短。同樣的浸泡時(shí)間,采用高錳酸鉀溶液預(yù)處理的PI膜的成孔時(shí)間明顯短于采用雙氧水預(yù)處理的PI膜。電鏡的觀測結(jié)果顯示,預(yù)處理浸泡后的蝕刻得到的PI膜的成孔質(zhì)量明顯好于未浸泡的膜。本研究結(jié)果對PI重離子微孔膜的生產(chǎn)有重要的參考意義。
1 Schiedt B, Healy K, Morrison A, et al. Transport of ions and biomolecules through single asymmetric nanopores in polymer films[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 236: 109-116. DOI: 10.1016/j.nimb.2005.03.265.
2 Siwy Z, Dobrev D, Neumann R, et al. Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal[J]. Applied Physics A: Materials Science amp; Processing, 2003, 76: 781-785. DOI: 10.1007/ s00339-002-1982-7.
3 Heins E A, Siwy Z S, Baker L A, et al. Martin detecting single porphyrin molecules in a conically shaped synthetic nanopore[J]. Nano Letters, 2005, 5: 1824-1829. DOI: 10.1021/nl050925i.
4 Sudowe R, Vater P, Brandt R, et al. Filters with <100 nm radius pores for gas separation formed by high-energy ion irradiation of polymers[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 8: 175-177. DOI: 10.1016/S0168-583X(00)00676-5.
5 Stefureac R, Long Y T, Kraatz H B, et al. Transport of α-helical peptides through α-hemolysin and aerolysin pores[J]. Biochemistry, 2006, 45: 9172-9179. DOI: 10.1021/bi0604835.
6 彭良強(qiáng), 王世成, 巨新, 等. 納米孔徑核孔膜的制備研究[J]. 高能物理與核物理, 2001, 25(4): 359-364. PENG Liangqiang, WANG Shicheng, JU Xin, et al. Fabrication of nanoporous nuclear track membranes[J]. High Energy Physics and Nuclear Physics, 2001, 25(4): 359-364.
7 Ensinger W, Vater P, Happel S, et al. Nuclear track micro-filters: gas separation ability and radiation stability[J]. Radiation Measurements, 2003, 36: 707-711. DOI: 10.1016/S1350-4487(03)00231-2.
8 Fromm M, Meyer P, Chambaudet A. Ion track etching in isotropic polymers: etched shape and detection efficiency[J]. Nuclear Instruments and Methods in Physics Research B, 1996, 107: 337-343. DOI: 10.1016/ 0168-583X(95)00801-2.
9 劉慶云, 周劍良, 劉永輝, 等. 納米孔徑重離子微孔膜的制備[J]. 原子能科學(xué)技術(shù), 2012, 46(3): 341-345. LIU Qingyun, ZHOU Jianliang, LIU Yonghui, et al. Fabrication of nanoporous heavy-ion track-etched membrane[J]. Atomic Energy Science and Technology, 2012, 46(3): 341-345.
Effect of soaking on etching of polyimide heavy-ion microfiltration membranes
LIANG Haiying JU Wei WU Zhendong JIAO Xuesheng CHEN Dongfeng FU Yuanyong
(China Institute of Atomic Energy, Beijing 102413, China)
Background:Polyimide (PI) film is a new type of organic film possessing properties of high temperature resistance, acid resistance and radiation resistance, etc. The heavy-ion microporous membrane prepared by polyimide film can be used for battery diaphragm, radioactive waste gas filtering and other special areas. Purpose: This study aims to improve the quality of PI heavy-ion micro-filtration membrane by soaking pretreatment. Methods: First of all, 25-μm PI films were irradiated by32S ions produced by HI-13 tandem accelerator in China Institute of Atomic Energy to break the polymer chains. Latent tracks were created along the track of the ions. Then soaking pretrestment with two types of strong oxidizing solutions, i.e., potassium permanganate and hydrogen peroxide, was conducted before the chemical etching processing to form the micropores. Finally, etching time and the quality of micropores were compared and analyzed. Results: The etching rate for PI film pre-processed by soaking in potassium permanganate solution and hydrogen peroxide solution for 2 h are 1.6 times and 1.3 times respectively, compared with that no soaking pretreatment at normal temperature. More narrow cone angle is formed for faster etching rate. Conclusion: The experimental results showed that soaking pretreatment can obviously increase the track etching rate of PI membrane, decrease etching time, narrow the cone angle of pores and improve the quality of PI heavy-ion microporous membrane.
Polyimide heavy-ion micro-filtration membranes, Conductance method, Soaking
重離子微孔膜是采用加速器提供的重離子束輻照高分子薄膜后,再經(jīng)過化學(xué)蝕刻處理,制備出的一種優(yōu)質(zhì)微孔膜。它具有孔徑和孔密度可調(diào)以及化學(xué)穩(wěn)定性和熱穩(wěn)定性好等優(yōu)點(diǎn),是一種性能優(yōu)異的過濾材料,已廣泛地用于生物通道、醫(yī)學(xué)藥液過濾、微電子和防偽等諸多領(lǐng)域[1-7]。特別是孔形為錐形的納米級重離子微孔膜在模擬生物分子通道和細(xì)胞分離[2-5]上具有重要的應(yīng)用,這是其它纖維膜無法替代的。聚酰亞胺(Polyimide, PI)膜制備的重離子微孔膜是一種新型重離子微孔膜。它的耐高低溫性、耐強(qiáng)酸性、耐濕熱性、耐輻射性和生物相容性[3]等性能明顯優(yōu)于其它材料制備的重離子微孔膜,在電池隔膜和放射性廢氣的過濾等特殊領(lǐng)域[3,5,7]具有重要的應(yīng)用價(jià)值。
LIANG Haiying, female, born in 1983, graduated from China Institute of Atomic Energy with a master’s degree in 2011
TL99
10.11889/j.0253-3219.2017.hjs.40.010501
No.11475267)資助
梁海英,女,1983年出生,2011年于中國原子能科學(xué)研究院獲碩士學(xué)位
2016-07-05,
2016-11-03
Supported by National Natural Science Foundation of China (No.11475267)
Received date: 2016-07-05, accepted date: 2016-11-03