宋峰宇
摘 要:“數(shù)學(xué)前測(cè)”是數(shù)學(xué)教學(xué)的依據(jù),能夠號(hào)準(zhǔn)數(shù)學(xué)課堂教學(xué)之脈搏?!皵?shù)學(xué)前測(cè)”要研究“具體兒童”,關(guān)注兒童的“動(dòng)態(tài)成長(zhǎng)”。教學(xué)中,要積極探尋數(shù)學(xué)教學(xué)的起點(diǎn),靈活生成數(shù)學(xué)教學(xué)過程,根據(jù)前測(cè)積極反思有效教學(xué)。
關(guān)鍵詞:數(shù)學(xué)前測(cè);數(shù)學(xué)教學(xué);教學(xué)對(duì)策
有效的數(shù)學(xué)課堂教學(xué)建基于教師對(duì)數(shù)學(xué)知識(shí)邏輯起點(diǎn)的精準(zhǔn)把握和對(duì)兒童認(rèn)知起點(diǎn)的精準(zhǔn)把脈。作為一種“客觀性知識(shí)”,數(shù)學(xué)知識(shí)是結(jié)構(gòu)性、系統(tǒng)性、連貫性的,教師可以通過發(fā)掘知識(shí)的“源”與“流”,通過研讀“數(shù)學(xué)史”等把握數(shù)學(xué)知識(shí)的來龍去脈、前世今生。實(shí)踐中,兒童的學(xué)情猶如“看不見的手”始終牽制著教師的數(shù)學(xué)教學(xué)。由于對(duì)學(xué)情的誤診、誤判,常常讓教師的教學(xué)顯得捉襟見肘。據(jù)此,筆者在教學(xué)實(shí)踐中,始終運(yùn)用問卷調(diào)查、習(xí)題探測(cè)、操作摸底等教學(xué)手段對(duì)兒童的學(xué)情展開“前研究”,以期獲得數(shù)學(xué)教學(xué)的“前反饋”,進(jìn)而讓數(shù)學(xué)教學(xué)走向高效。
一、前測(cè):號(hào)準(zhǔn)數(shù)學(xué)課堂教學(xué)之脈搏
所謂“學(xué)情前測(cè)”,是指教師在教學(xué)活動(dòng)展開之前,通過問卷、談話、前習(xí)題檢測(cè)等多種手段對(duì)學(xué)生的已有數(shù)學(xué)知識(shí)、認(rèn)知經(jīng)驗(yàn)、學(xué)習(xí)技能等進(jìn)行的一種調(diào)查研究?!皩W(xué)情前測(cè)”是教師有效教學(xué)的前提,能夠消除“教學(xué)假象”。同時(shí)“學(xué)情前測(cè)”也是教師設(shè)計(jì)教學(xué)的依據(jù),是教師展開教學(xué)行動(dòng)的指南。
1. 研究“具體兒童”
兒童是一個(gè)活生生的生命體,有著自身的喜怒哀樂。任何一個(gè)兒童都是區(qū)別于其他兒童的獨(dú)特的“這一個(gè)”,有著自身獨(dú)特的認(rèn)知風(fēng)格、認(rèn)知傾向、認(rèn)知個(gè)性和認(rèn)知特色。因此任何“學(xué)情前測(cè)”都必須研究“具體兒童”,研究獨(dú)特的“這一個(gè)兒童”。過去,由于對(duì)“具體兒童”的忽視,導(dǎo)致教學(xué)目標(biāo)制定的空化、泛化、淺化、窄化。如“通過教學(xué),激發(fā)兒童的好奇心與求知欲”。這里的“兒童”顯然是“普遍兒童”,因?yàn)橥粋€(gè)知識(shí)點(diǎn),對(duì)有些兒童來說是“已知經(jīng)驗(yàn)”,而對(duì)有些兒童來說卻是“未知經(jīng)驗(yàn)”;對(duì)有些兒童來說,能夠激發(fā)興趣,而對(duì)有些兒童來說則很難激發(fā)興趣。這樣脫離兒童實(shí)際的教學(xué)目標(biāo)的制定,究其本質(zhì)而言是從教師的“成人立場(chǎng)”出發(fā),描繪的是統(tǒng)一的、抽象的兒童,是普遍的、理想的兒童,是“兒童群”。正因?yàn)槿绱耍覀冊(cè)诮虒W(xué)中總是磕磕絆絆的。而“學(xué)情前測(cè)”能夠讓我們直面兒童本身,從“理想的兒童”走向“現(xiàn)實(shí)的兒童”,從“抽象的兒童”走向“具體的兒童”,從“一群兒童”走向“這一個(gè)兒童”。在教學(xué)之前,筆者經(jīng)常和孩子們展開貼心的談話,了解兒童的知識(shí)基礎(chǔ),引發(fā)兒童的“學(xué)習(xí)心向”,揣摩兒童的“認(rèn)識(shí)風(fēng)格和傾向”。尤其對(duì)于數(shù)學(xué)學(xué)習(xí)的“弱勢(shì)群體”,筆者總是讓其敞亮內(nèi)心,探究數(shù)學(xué)教學(xué)的切入點(diǎn)。
2. 關(guān)注“動(dòng)態(tài)成長(zhǎng)”
兒童的數(shù)學(xué)生命是不斷生長(zhǎng)的,這就要求教師對(duì)兒童的關(guān)注必須保持一種“動(dòng)態(tài)”,即讓我們的教學(xué)必須始終切入兒童的“最近發(fā)展區(qū)”。兒童數(shù)學(xué)學(xué)習(xí)的“最近發(fā)展區(qū)”是不斷更新的,前一次的“潛在發(fā)展區(qū)”可能就是這一次的“數(shù)學(xué)現(xiàn)實(shí)”;而這一次的“潛在發(fā)展區(qū)”也將成為下一次的“數(shù)學(xué)現(xiàn)實(shí)”。教學(xué)中,由于教師對(duì)“學(xué)情前測(cè)”的忽視,導(dǎo)致教師的教學(xué)不是“拔高”教學(xué)目標(biāo)就是降低“教學(xué)目標(biāo)”,由此,學(xué)生對(duì)教師的教學(xué)要么是“不知所云”,要么是感到厭煩而產(chǎn)生“審美疲勞”。筆者在教學(xué)中,通過“課堂前測(cè)”,精選學(xué)情樣本(抽樣)分析,從而精準(zhǔn)掌握學(xué)生的知識(shí)經(jīng)驗(yàn)與能力。據(jù)此,形成分層教學(xué)目標(biāo)和教學(xué)內(nèi)容:一是“基礎(chǔ)性目標(biāo)”,即要求所有學(xué)生都必須達(dá)到的目標(biāo)設(shè)定;二是“發(fā)展性目標(biāo)”,即讓部分學(xué)生充分發(fā)掘自己的數(shù)學(xué)學(xué)習(xí)潛能,“跳一跳摘果子”。如此,教學(xué)目標(biāo)不再是虛擬的,而是現(xiàn)實(shí)性的,它讓優(yōu)等生“吃得飽”,后進(jìn)生“吃得了”。
二、建構(gòu):讓“前測(cè)”照亮有效教學(xué)之路
當(dāng)我們俯下身子站到“兒童立場(chǎng)”上去傾聽兒童,與兒童對(duì)話的時(shí)候,我們就能了解兒童個(gè)體間的差異,把握教師教與兒童學(xué)的“落差”,進(jìn)而靈活調(diào)整教學(xué),讓教學(xué)“軟著陸”。據(jù)此,我們將會(huì)發(fā)現(xiàn)教學(xué)中的別樣風(fēng)景。
1. 探尋學(xué)習(xí)起點(diǎn),展開有效教學(xué)
著名教育心理學(xué)家奧蘇貝爾深刻地指出,“影響學(xué)生的唯一重要的因素就是學(xué)生已經(jīng)知道了什么,并據(jù)此展開教學(xué)。”在“學(xué)情前測(cè)”中筆者主要是探尋兒童的學(xué)習(xí)起點(diǎn),包括認(rèn)知起點(diǎn)、情感起點(diǎn)等。學(xué)生的起點(diǎn)從何而來,從生活經(jīng)驗(yàn)中來,從語詞理解中來,從數(shù)學(xué)舊知中來。不僅如此,教師還必須對(duì)“學(xué)習(xí)起點(diǎn)”展開診斷,甚至“會(huì)診”。因?yàn)閷W(xué)生有的認(rèn)知經(jīng)驗(yàn)?zāi)軌虼龠M(jìn)數(shù)學(xué)學(xué)習(xí),但有的認(rèn)知經(jīng)驗(yàn)卻能阻礙數(shù)學(xué)學(xué)習(xí)。例如教學(xué)《長(zhǎng)方形和正方形的周長(zhǎng)》,教學(xué)前筆者給學(xué)生設(shè)計(jì)了“前測(cè)題”:①你認(rèn)為周長(zhǎng)指的是圖形的________;②對(duì)于長(zhǎng)方形的周長(zhǎng)你是怎樣計(jì)算的?③正方形的周長(zhǎng)又是指什么呢?你能計(jì)算正方形的周長(zhǎng)嗎?通過“前測(cè)題”,筆者發(fā)現(xiàn),學(xué)生的認(rèn)知存在著較大的差異。如對(duì)于“長(zhǎng)方形的周長(zhǎng)”的理解,有學(xué)生是這樣表述的:長(zhǎng)方形一周邊線的長(zhǎng)度;長(zhǎng)方形四條邊的長(zhǎng)度和;長(zhǎng)方形兩條長(zhǎng)與兩條寬的和;長(zhǎng)方形長(zhǎng)和寬之和的2倍;……相應(yīng)的,對(duì)于“長(zhǎng)方形周長(zhǎng)”的計(jì)算就存在著不同的計(jì)算方法,有的按順序?qū)㈤L(zhǎng)和寬相加;有的先算兩條長(zhǎng)的和,再算兩條寬的和;有的算長(zhǎng)寬之和的2倍。據(jù)此,筆者首先出示多個(gè)多邊形,讓學(xué)生用鉛筆描出周長(zhǎng),然后將教學(xué)重點(diǎn)放在探究、比較長(zhǎng)方形周長(zhǎng)的計(jì)算方法上。在比較中,學(xué)生普遍認(rèn)為“(長(zhǎng)+寬)×2”的方法簡(jiǎn)便,因?yàn)橛?jì)算步驟少。為了凸顯“長(zhǎng)寬之和”的線段表象,筆者用多媒體課件將長(zhǎng)方形的邊線分成兩組“長(zhǎng)寬之和”,然后將兩組“長(zhǎng)寬之和”的邊線拉直,讓學(xué)生清晰感知長(zhǎng)方形的周長(zhǎng)就是兩組“長(zhǎng)寬之和”。這樣,便于兒童理解優(yōu)化后的長(zhǎng)方形周長(zhǎng)計(jì)算公式。
2. 靈活生成過程,聚焦有效教學(xué)
在兒童數(shù)學(xué)學(xué)習(xí)過程中,教師要始終關(guān)注個(gè)體間的學(xué)習(xí)差異。通過前測(cè),探究?jī)和膯栴}解決過程。例如對(duì)于二年級(jí)的這樣一道習(xí)題,學(xué)生在前測(cè)中展現(xiàn)了不同的認(rèn)知水平。
(1)問題描述:小白兔買了20千克蘋果,比小灰兔的蘋果多5千克,小灰兔有多少千克蘋果?
(2)問題解決后的訪談歸類:
①整體感知型學(xué)生。這一類學(xué)生有著豐富的生活經(jīng)驗(yàn),憑著自己對(duì)問題描述的整體感知,直接列出了正確的算式,他們有著良好的數(shù)感,其數(shù)學(xué)判斷依靠的是敏銳的“數(shù)學(xué)直覺”,這部分學(xué)生在全班學(xué)生中大約占了15%。
②意義分析型學(xué)生。這類學(xué)生能夠主動(dòng)展開初步的問題分析,如他們知道小白兔比小灰兔多5千克蘋果,也就是說小灰兔比小白兔少5千克蘋果,進(jìn)而正確列式,這部分學(xué)生大約占了全班學(xué)生的25%。
③意義判斷型學(xué)生。這一類學(xué)生能夠主動(dòng)地自我發(fā)問、思考,他們比較朦朧地認(rèn)識(shí)到小白兔多,小灰兔少,因而他們依著感覺列式。由于對(duì)問題的意義判斷正確,所以他們也能解決問題,這部分學(xué)生大約占了學(xué)生總數(shù)的30%。
④機(jī)會(huì)主義型學(xué)生。這一類學(xué)生對(duì)問題沒有敏銳性,認(rèn)識(shí)模糊,缺乏判斷力,不能對(duì)條件展開意義分析和意義判斷,因而他們往往是隨意地選擇數(shù)學(xué)信息,胡亂地進(jìn)行數(shù)學(xué)計(jì)算。
基于“學(xué)情前測(cè)”,筆者將教學(xué)聚焦于分析數(shù)量之間的關(guān)系,精準(zhǔn)發(fā)力,從兩個(gè)角度展開教學(xué):一是通過實(shí)物或圖形操作,強(qiáng)化學(xué)生的數(shù)理判斷——誰多、誰少,豐富學(xué)生的“圖式”;二是訓(xùn)練學(xué)生的數(shù)學(xué)表達(dá)——如“A比B多多少個(gè),那么B比A少多少個(gè)”;三是借助線段圖幫助學(xué)生展開數(shù)理分析。如此讓整體感知型學(xué)生和意義判斷型學(xué)生都能夠走向數(shù)學(xué)的數(shù)理分析,由此提升學(xué)生的“數(shù)學(xué)化”素養(yǎng)。
3. 調(diào)整預(yù)設(shè)流程,反思有效教學(xué)
“學(xué)情前測(cè)”讓我們從“想當(dāng)然”的教學(xué)開始走向“理性反思”,在反思中不斷提升教師的教學(xué)力。于是,教師的嘀咕聲少了,取而代之的是改進(jìn)自己的教學(xué)。例如聽一位教師執(zhí)教《平行四邊形的面積》,其教法是讓學(xué)生猜想怎樣將平行四邊形轉(zhuǎn)化成長(zhǎng)方形,然后讓學(xué)生比較長(zhǎng)方形和平行四邊形對(duì)應(yīng)邊的關(guān)系,進(jìn)而形成平行四邊形面積的計(jì)算公式。在課末,一位孩子小心地嘀咕著,“為什么要變成長(zhǎng)方形?。俊睘榇?,筆者組織了一次“操作性學(xué)情前測(cè)”。課前,筆者向孩子們發(fā)了一張平行四邊形的紙,給出了平行四邊形的底、高和斜邊的數(shù)據(jù),結(jié)果發(fā)現(xiàn),大部分學(xué)生都是用“斜邊的長(zhǎng)度乘高”,只有極少數(shù)學(xué)生用“底乘高”。這是由于學(xué)生只關(guān)注了“平行四邊形”與“長(zhǎng)方形”形似的部分,沒有從面積的拼擺上來理解、探究?;诖?,筆者調(diào)整教學(xué)預(yù)設(shè)流程,首先讓學(xué)生猜想,形成了兩種面積計(jì)算方法。然后讓學(xué)生想辦法驗(yàn)證。學(xué)生都想到了數(shù)方格。于是筆者用多媒體課件展示方格,學(xué)生發(fā)現(xiàn)平行四邊形邊上的方格不好數(shù),怎么辦呢?孩子們發(fā)現(xiàn),只要將平行四邊形沿著高剪開,轉(zhuǎn)化成長(zhǎng)方形就可以數(shù)了。平行四邊形的底就是長(zhǎng)方形的長(zhǎng),也就是每行的小正方形的個(gè)數(shù);而平行四邊形的寬就是長(zhǎng)方形的高,也就是有多少行的小正方形,在整個(gè)轉(zhuǎn)化的過程中,平行四邊形的面積沒有發(fā)生變化。由此,學(xué)生深刻理解了平行四邊形為什么要轉(zhuǎn)化成長(zhǎng)方形的數(shù)學(xué)本質(zhì)內(nèi)涵。
“學(xué)情前測(cè)”促進(jìn)了教師的專業(yè)成長(zhǎng),它讓教師以研究者姿態(tài)投入到數(shù)學(xué)教育教學(xué)中來,刺激了教師的“教學(xué)生活”,改變了教師的“教學(xué)狀態(tài)”。在“學(xué)情前測(cè)”中,教師找到了教學(xué)問題的癥結(jié)所在,對(duì)教學(xué)問題展開了更精準(zhǔn)的研判,并由此自覺調(diào)整自我的教學(xué)行為,讓數(shù)學(xué)教學(xué)走向高效!