高陽(yáng)陽(yáng),劉 國(guó),陳春梅,徐熊鯤,陳政陽(yáng) (成都理工大學(xué)環(huán)境與土木工程學(xué)院,地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,四川省環(huán)境保護(hù)地下水污染防治與資源安全重點(diǎn)實(shí)驗(yàn)室,四川 成都 610059)
改性納米鐵/炭填充PRB去除地下水硝態(tài)氮研究
高陽(yáng)陽(yáng),劉 國(guó)*,陳春梅,徐熊鯤,陳政陽(yáng) (成都理工大學(xué)環(huán)境與土木工程學(xué)院,地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,四川省環(huán)境保護(hù)地下水污染防治與資源安全重點(diǎn)實(shí)驗(yàn)室,四川 成都 610059)
采用鼠李糖脂對(duì)納米鐵進(jìn)行改性后負(fù)載在活性炭上制備出改性納米鐵/炭,將其作為PRB填充材料,并采用有機(jī)玻璃柱模擬連續(xù)墻式PRB來(lái)進(jìn)行水中硝態(tài)氮地去除研究.結(jié)果表明:經(jīng)過(guò)改性后的納米鐵能夠有效負(fù)載在活性炭上,懸浮穩(wěn)定性得到明顯提高;改性納米鐵/炭粒徑遠(yuǎn)大于納米鐵,將其作為填充材料可有效緩解PRB堵塞問(wèn)題;當(dāng)納米鐵與活性炭質(zhì)量比為5:2時(shí),PRB運(yùn)行效果最佳;pH值越小,污染液硝態(tài)氮濃度越低,水流速度越小均有利于硝態(tài)氮地去除.
改性納米鐵/炭;可滲透反應(yīng)墻(PRB);硝態(tài)氮;地下水
氮肥的過(guò)量使用,廢水灌溉等原因造成地下水中硝酸鹽污染日益嚴(yán)重[1-2].飲用含有過(guò)高濃度的硝酸鹽飲用水會(huì)在體內(nèi)轉(zhuǎn)換成亞硝酸鹽,進(jìn)而引發(fā)藍(lán)嬰兒病及高鐵血紅蛋白癥[2-4].目前,去除地下水中硝酸鹽主要采用原位修復(fù)法[2],其中PRB(可滲透反應(yīng)墻)憑借成本低廉,對(duì)生態(tài)環(huán)境干擾小,無(wú)需外加動(dòng)力等優(yōu)勢(shì)應(yīng)用最為廣泛[5].當(dāng)污染物流經(jīng)PRB反應(yīng)墻體時(shí)會(huì)與墻體中的活性材料發(fā)生物理,化學(xué),生物等反應(yīng),從而達(dá)到去除污染物或降低污染物濃度目的[6].
由于納米鐵具有反應(yīng)活性強(qiáng),表面積大等優(yōu)點(diǎn)[7],常將其作為還原劑填料投加到反應(yīng)墻體以去除各種污染物[8].通過(guò)模擬實(shí)驗(yàn)研究納米鐵在PRB中對(duì)Cd, Cu, Ni, Pb, Zn等重金屬的去除效果,表明去除效率由高到低依次為Pb>Cu>Zn>Cd>Ni[9].通過(guò)采用包覆型納米鐵去除地下水中有機(jī)氯代烴,模擬柱運(yùn)行120個(gè)孔隙體積時(shí)氯代烴去除率達(dá)85%[10].但是在具體應(yīng)用時(shí),納米鐵在PRB中容易團(tuán)聚造成堵塞[11],并且容易發(fā)生鈍化,腐蝕等,進(jìn)而影響其去除效果.
因此,本文采用鼠李糖脂對(duì)納米鐵進(jìn)行改性,減小團(tuán)聚,并將改性后的納米鐵負(fù)載在比表面積大,孔容大的活性炭上,形成改性納米鐵/炭,進(jìn)一步減小納米鐵團(tuán)聚并增大材料粒徑,其中鼠李糖脂屬于生物型表面活性劑,相比化學(xué)表面活性劑具有低毒性和較強(qiáng)的可生物降解性[18],采用鼠李糖脂對(duì)納米鐵進(jìn)行改性,提高其分散能力的同時(shí)減小對(duì)地下水環(huán)境的影響.采用有機(jī)玻璃柱模擬連續(xù)墻式PRB[5],研究其運(yùn)行中產(chǎn)生的納米鐵填料阻塞及鈍化腐蝕等問(wèn)題,并考察硝態(tài)氮濃度,納米鐵/炭投加量,納米鐵與活性炭配比,遷移速度,pH等因素對(duì)PRB去除硝態(tài)氮的影響,優(yōu)化納米鐵在PRB中的應(yīng)用.
1.1 試劑與儀器
試劑:七水合硫酸亞鐵(FeSO4·7H2O),硝酸鈉(NaNO3)(天津市光復(fù)科技發(fā)展有限公司),硼氫化鈉(NaBH4),氫氧化鈉(NaOH),鹽酸(HCl),無(wú)水乙醇(成都市科龍化工試劑廠),活性炭(C)(重慶茂業(yè)化學(xué)試劑有限公司)均為分析純.鼠李糖脂(45%,沃太斯化工有限公司),氮?dú)猓∟2)(≥99.99%,成都東風(fēng)氣體有限公司),石英砂(利源建材公司).
儀器:X射線衍射儀(DX-700,中國(guó)),紫外分光光度計(jì)(TU-1901,中國(guó)),酸度計(jì)(PHS-3C+,中國(guó)),簡(jiǎn)易蠕動(dòng)泵(AB08,中國(guó)),掃描電鏡(JSM-7500F,日本),循環(huán)水式真空泵(SHZ-D(ⅠⅠⅠ),中國(guó)).
1.2 納米鐵及改性納米鐵/炭復(fù)合材料的制備
納米鐵采用液相還原法制備[12],在裝有攪拌器的三口燒瓶中加入比例為1:2的醇水體系200mL,攪拌速度調(diào)至500rpm.投加七水合硫酸亞鐵,待溶解完全后用加料器以2mL/min的速度加入硼氫化鈉溶液,繼續(xù)攪拌,整個(gè)過(guò)程用時(shí)30min且用氮?dú)獯得摮?反應(yīng)方程:
將制備好的納米鐵進(jìn)行多次醇洗,水洗并最終保存在無(wú)水乙醇中待用.
改性納米鐵/炭的制備方法與納米鐵類似,在投加七水合硫酸亞鐵之前先加入鼠李糖脂并溶解.當(dāng)加入硼氫化鈉溶液后,在整個(gè)制備過(guò)程用10min時(shí),加入活性炭與納米鐵混合,利用活性炭比表面積大,孔容大,吸附能力強(qiáng)等特點(diǎn)對(duì)改性納米鐵進(jìn)行物理負(fù)載.繼續(xù)攪拌20min后將制備好的改性納米鐵/炭進(jìn)行多次醇洗,水洗并最終保存在無(wú)水乙醇中待用,其中活性炭屬于煤質(zhì)炭,且預(yù)先研磨過(guò)篩使其粒徑為75μm,用去離子水多次清洗后置于真空烘箱,在110℃下烘干至恒重,儲(chǔ)存于具塞玻璃瓶中[13].
1.3 沉降試驗(yàn)
圖1 PRB模擬裝置Fig.1 PRB simulator
采用紫外分光光度法測(cè)定改性納米鐵/炭的懸浮穩(wěn)定性.在波長(zhǎng)為508nm條件下每隔2min測(cè)定一次改性納米鐵/炭懸浮液的吸光度,并分析所測(cè)吸光度與初始吸光度比值隨時(shí)間地變化,比值越大懸浮性越好,懸浮穩(wěn)定性能從側(cè)面反應(yīng)改性納米鐵/炭在PRB中對(duì)污染物的去除能力以及阻塞程度等.選擇1、2、4、6、8g/L的改性納米鐵/炭來(lái)考查濃度對(duì)懸浮穩(wěn)定性的影響;選擇濃度均為1g/L的改性納米鐵/炭,納米鐵/炭,改性納米鐵,納米鐵,活性炭來(lái)考查不同材料的懸浮穩(wěn)定性.
1.4 納米鐵/炭柱試驗(yàn)
實(shí)驗(yàn)采用圖1所示的裝置模擬納米鐵/炭去除硝態(tài)氮,有機(jī)玻璃柱高為30cm,內(nèi)徑為3cm.
將采用硝酸鈉配制的硝態(tài)氮(20,40,60mg/L)模擬水樣從進(jìn)樣口按照一定速度(0.5,1,2mL/min)注入,記錄從開(kāi)始運(yùn)行到出樣口開(kāi)始出樣時(shí)的時(shí)間間隔,并從出樣時(shí)每隔20min取一次樣,用醫(yī)用注射器取4mL樣液,經(jīng)0.22μm濾膜過(guò)濾后采用紫外分光光度法測(cè)定硝態(tài)氮在220nm與275nm處波長(zhǎng)吸光度并計(jì)算其濃度,繪制出水后100min內(nèi)硝態(tài)氮去除率變化曲線.分別考慮改性納米鐵/炭投加量,硝態(tài)氮污染液的濃度,pH,流速等因素對(duì)硝態(tài)氮去除影響,同時(shí)對(duì)比改性納米鐵/炭,納米鐵,活性炭,粒徑為0.1~0.2mm的石英砂等不同填充物以及不同活性炭與納米鐵配比對(duì)硝態(tài)氮去除影響.
2.1 改性納米鐵/炭表征
圖2 材料表征Fig.2 Materials characterization
圖2(a)為未改性納米鐵的SEM(掃描電鏡)圖,納米鐵顆粒團(tuán)聚嚴(yán)重且大小不一,圖2(b)為改性納米鐵/炭的SEM圖,可以看到片狀活性炭上負(fù)載有納米鐵顆粒,納米鐵粒徑在60~100nm范圍內(nèi)且大部分成鏈條狀,團(tuán)聚不明顯.圖2(c)為經(jīng)過(guò)鼠李糖脂改性的納米鐵/炭與未改性納米鐵/炭的XRD(X射線衍射)對(duì)比圖,兩者2θ在44.8°,26.8°處均存在Fe0和C的衍射峰.相比未改性納米鐵/炭,改性納米鐵/炭的XRD圖中Fe0的特征峰較弱,可能原因?yàn)槭罄钐侵瑢?duì)納米鐵進(jìn)行包覆,檢測(cè)不出明顯Fe0的特征峰.
2.2 PRB填充材料沉降特性
圖3為不同濃度改性納米鐵/炭懸浮穩(wěn)定性曲線,隨著改性納米鐵/炭濃度增加,懸浮穩(wěn)定性越差,表明增大改性納米鐵/炭濃度會(huì)加劇改性納米鐵/炭之間地團(tuán)聚.靜置50min時(shí),1,2,4g/L改性納米鐵/炭吸光度與初始吸光度的比值分別為0.387,0.204,0.113,懸浮穩(wěn)定性變化幅度較大,而6,8g/L改性納米鐵/炭吸光度與初始吸光度的比值分別為0.081,0.100,變化不明顯,說(shuō)明在此實(shí)驗(yàn)條件下,當(dāng)改性納米鐵/炭濃度大于6g/L時(shí),其團(tuán)聚現(xiàn)象達(dá)到極限,不再發(fā)生明顯變化.
圖3 不同濃度改性納米鐵/炭的沉降實(shí)驗(yàn)Fig.3 Settlement test of different concentrations of SM-Nano Iron /Carbon
圖4 不同材料沉降試驗(yàn)Fig.4 Settlement test of the different kinds of materials
圖4為不同PRB填充材料的沉降試驗(yàn),改性納米鐵,改性納米鐵/炭的懸浮穩(wěn)定性依次降低,納米鐵,未改性納米鐵/炭,活性炭懸浮穩(wěn)定性相當(dāng)且均較差;經(jīng)過(guò)改性的納米鐵/炭,納米鐵懸浮穩(wěn)定性均比未改性的高,結(jié)合改性納米鐵/炭XRD圖及鼠李糖脂的性質(zhì)分析可知,鼠李糖脂包覆在納米鐵和納米鐵/炭表面,形成雙分子層結(jié)構(gòu),材料顆粒之間因靜電斥力而遠(yuǎn)離[14],進(jìn)而減小團(tuán)聚,提高材料的分散能力;由于活性炭的懸浮穩(wěn)定性較差,改性納米鐵/炭受到活性炭的影響,懸浮穩(wěn)定性有所降低.
2.3 PRB去除硝態(tài)氮的影響因素
圖5為在污染液硝態(tài)氮濃度為40mg/mL,流速為1mL/min,pH=7,納米鐵與活性炭比值為5:2的條件下,改性納米鐵/炭填充量對(duì)PRB去除硝態(tài)氮的影響,當(dāng)填充量為0.05、0.1、0.2g時(shí),硝態(tài)氮的去除率不到20%,沒(méi)有明顯梯度變化.但填充量增至0.5g以上時(shí),穩(wěn)定后硝態(tài)氮的去除率均達(dá)到50%以上,且隨著改性納米鐵/炭填充量增加,硝態(tài)氮去除效率逐漸提高,在出樣80min時(shí),填充0.5,1,1.5g改性納米鐵/炭的PRB對(duì)硝態(tài)氮的去除率分別達(dá)到為53.37%,78.12%,99.87%.
圖5 改性納米鐵/炭投加量對(duì)PRB去除硝態(tài)氮的影響Fig.5 Effect of different dosages of SM-Nano Iron/ Carbon on the removal of nitrate-nitrogen with PRB
實(shí)驗(yàn)同時(shí)記錄在此條件下,從開(kāi)始運(yùn)行到出樣口開(kāi)始出樣的時(shí)間間隔,并對(duì)3組平行實(shí)驗(yàn)的平均值進(jìn)行匯總,見(jiàn)表1.當(dāng)流速一定時(shí),時(shí)間間隔能定性的反應(yīng)PRB受阻塞程度.隨著改性納米鐵/炭投加量的增加,時(shí)間間隔越長(zhǎng),表明改性納米鐵/炭在PRB中發(fā)生一定程度的阻塞,并且投加量越多,阻塞越嚴(yán)重.結(jié)合圖3中不同濃度改性納米鐵/炭沉降試驗(yàn)可知,當(dāng)反應(yīng)墻體積相同時(shí),隨著改性納米鐵/炭投加量增加,即濃度增加,沉降程度加劇,進(jìn)而造成PRB堵塞加劇.
表1 不同納米鐵/炭投加量對(duì)出樣時(shí)間的影響Table 1 Effect of different dosages of Nano Iron /Carbon on initial sample interval
圖6為在改性納米鐵/炭投加量為1g,流速為1mL/min,pH=7,納米鐵與活性炭質(zhì)量比為5:2的條件下,濃度為20,40,60mg/L的硝態(tài)氮污染液對(duì)PRB去除硝態(tài)氮效率的影響.在出流液逐漸趨于穩(wěn)定時(shí),硝態(tài)氮濃度越高的污染液,PRB對(duì)其去除效率反而越低.在出樣口出樣100min時(shí),污染液硝態(tài)氮的濃度為20,40,60mg/L的PRB裝置,硝態(tài)氮的去除率分別為85.6,81.3,41.2%,此條件下裝置從開(kāi)始運(yùn)行到出樣口開(kāi)始出樣的時(shí)間間隔平均值相差不到1min,均為75min.表明填充材料種類及用量相同時(shí),整個(gè)裝置的透水性幾乎相同.仍有微小差別的可能原因是,硝態(tài)氮的濃度不同,造成與改性納米鐵/炭的反應(yīng)速度不一,改性納米鐵/炭的氧化程度不同,進(jìn)而材料結(jié)構(gòu)變化不同,造成透水性發(fā)生變化.
圖7為在污染液硝態(tài)氮濃度為40mg/L,改性納米鐵/炭投加量為1g,流速為1mL/min,納米鐵與活性炭質(zhì)量比為5:2的條件下,不同pH值對(duì)PRB去除硝態(tài)氮的影響,在出樣100min時(shí),pH值為5,7,9的硝態(tài)氮污染液中硝態(tài)氮的去除率分別為91.4,81.3,33.0%,由于酸能溶解納米鐵表面的氧化物,使納米鐵保持還原活性[16],所以酸性條件有利于對(duì)硝態(tài)氮的去除.而pH值過(guò)高不但會(huì)加劇納米鐵次生礦物的生成,降低還原活性[17],同時(shí)還會(huì)引起活性炭表面羧基與羥基離子化[17-18],降低其吸附能力,所以堿性條件下PRB處理硝態(tài)氮的效果較差.記錄污染液pH值為5,7,9的PRB裝置從開(kāi)始運(yùn)行到出樣口開(kāi)始出樣的時(shí)間間隔平均值分別為72,75,76min,相差不明顯.仍有微小差別的可能原因是,pH值影響納米鐵氧化物的形成,進(jìn)而材料結(jié)構(gòu)變化不同,造成透水性發(fā)生變化.
圖6 初始硝態(tài)氮濃度對(duì)PRB去除硝態(tài)氮的影響Fig.6 Effect of initial concentration of nitrate nitrogen on the removal of nitrate-nitrogen with PRB
圖7 pH值對(duì)PRB去除硝態(tài)氮的影響Fig.7 Effect of pH on the removal of nitrate-nitrogen with PRB
圖8 不同流速對(duì)PRB去除硝態(tài)氮的影響Fig.8 Effect of different velocities of water on the removal of nitrate-nitrogen with PRB
圖8為在改性納米鐵/炭投加量為1g,污染液硝態(tài)氮濃度為40mg/L,pH=7,納米鐵與活性炭質(zhì)量比為5:2的條件下,不同流速對(duì)PRB去除硝態(tài)氮的影響.隨著流速減小,PRB對(duì)硝態(tài)氮的去除率逐漸增大.在出樣100min時(shí),流速為0.5,1,2mL/ min的樣液中硝態(tài)氮的去除率分別為
96.7 ,81.3,44.2%,可見(jiàn),流速對(duì)PRB去除硝態(tài)氮影響較大,同時(shí)記錄裝置從開(kāi)始運(yùn)行到出樣口初始出樣的時(shí)間間隔分別為143,75,30min,污染液流速越低,在PRB中停留時(shí)間越長(zhǎng),改性納米鐵/炭能夠與硝態(tài)氮充分接觸反應(yīng)進(jìn)而提高其硝態(tài)氮的去除率.
圖9為在污染液硝態(tài)氮濃度為40mg/L,流速為1mL/min,pH=7,納米鐵與活性炭質(zhì)量比為5:2的條件下,不同填充材料對(duì)PRB去除硝態(tài)氮的影響.石英砂基本對(duì)硝態(tài)氮沒(méi)有吸附作用;活性炭對(duì)硝態(tài)氮有一定吸附作用,但當(dāng)吸附飽和后去除效率逐漸降低,在出樣100min時(shí),硝態(tài)氮的去除率降低為8.74%,而此時(shí)填充納米鐵和改性納米鐵/炭對(duì)硝態(tài)氮的去除率分別達(dá)到65.00,81.25%.相比PRB中填充活性炭,填充納米鐵和改性納米鐵/炭對(duì)硝態(tài)氮的去除較高,且填充改性納米鐵/炭的去除效果最好.記錄填充活性炭,石英砂,納米鐵,改性納米鐵/炭的PRB裝置從開(kāi)始運(yùn)行到出樣口開(kāi)始出樣的時(shí)間間隔平均值分別為70,78,93,75min.分析可能原因,納米鐵在PRB中發(fā)生團(tuán)聚并引起一定程度堵塞,同時(shí)團(tuán)聚減小了納米鐵與硝態(tài)氮的接觸面積,導(dǎo)致硝態(tài)氮去除率降低.經(jīng)過(guò)鼠李糖脂改性的納米鐵團(tuán)聚情況得到改善,再將改性納米鐵負(fù)載在活性炭上,進(jìn)一步減小團(tuán)聚.同時(shí)活性炭不僅能吸附硝態(tài)氮,而且還與納米鐵一定程度上構(gòu)成微電解結(jié)構(gòu)[18].進(jìn)而提高了處理效率.此外改性納米鐵/炭填充PRB的平均時(shí)間間隔低于納米鐵,表明PRB堵塞問(wèn)題得到緩解.
圖10為在污染液硝態(tài)氮濃度為40mg/L,流速為1mL/min,pH=7,改性納米鐵/炭投加量為1g的條件下,納米鐵與活性炭質(zhì)量比對(duì)PRB去除硝態(tài)氮的影響.當(dāng)納米鐵與活性炭質(zhì)量比為5:2時(shí),出流液硝態(tài)氮變化規(guī)律與填充納米鐵時(shí)的規(guī)律類似,說(shuō)明此條件下起主要作用的為納米鐵.而當(dāng)納米鐵與活性炭質(zhì)量比為1:1,1:2時(shí),在出樣口剛開(kāi)始出樣時(shí)的去除率分別為84.22,92.18%.在此條件下,活性炭除了負(fù)載納米鐵,還有較大的吸附能力吸附硝態(tài)氮.
圖9 不同種填充材料對(duì)PRB去除硝態(tài)氮的影響Fig.9 Effect of different filling materials on the removal of nitrate-nitrogen with PRB
圖10 活性炭投加量對(duì)去除效率的影響Fig.10 Effect of different dosages of the activated carbon on the removal of nitrate-nitrogen with PRB
記錄納米鐵與活性炭質(zhì)量比為1:0,5:2,1:1,1:2的情況下PRB裝置從開(kāi)始運(yùn)行到出樣口開(kāi)始出樣的時(shí)間間隔平均值分別為93,75,62,60min.活性炭比例越高,開(kāi)始出樣的時(shí)間越短,說(shuō)明添加活性炭可以增加PRB透水性,避免堵塞.但是在制備過(guò)程中發(fā)現(xiàn),能夠負(fù)載納米鐵的活性炭量是有限的,投加過(guò)多的活性炭會(huì)在水洗或醇洗改性納米鐵/炭時(shí)造成浪費(fèi),同時(shí)過(guò)高比例的活性炭會(huì)降低對(duì)硝態(tài)氮的去除率.綜合比較,當(dāng)活性炭粒徑為75μm時(shí),納米鐵與活性炭質(zhì)量比為5:2時(shí)最為合適.
3.1 采用改性納米鐵/炭作為PRB填料可以有效避免采用納米鐵造成PRB堵塞以及采用活性炭對(duì)硝態(tài)氮去除率低等問(wèn)題.
3.2 當(dāng)納米鐵與活性炭質(zhì)量比為5:2時(shí),PRB運(yùn)行效果最佳.同時(shí)pH值越小,污染液硝態(tài)氮濃度越低,水流速度越小均有利于PRB去除硝態(tài)氮.
3.3 活性炭的種類,粒徑等對(duì)納米鐵負(fù)載以及PRB運(yùn)行同樣起著重要作用,可深入研究.
[1] Huang T,Pang Z,Yuan L.Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: baseline and factors controlling its transport and fate [J]. Environmental Earth Sciences, 2013,70(1):145-156.
[2] Della Rocca C, Belgiorno V, Meri? S. Overview of in-situ applicable nitrate removal processes [J]. Desalination, 2007,204(1-3):46-62.
[3] Li X, Li J, Xi B, et al. Effects of groundwater level variations on the nitrate content of groundwater: a case study in Luoyang area,China [J]. Environmental Earth Sciences, 2015,74(5):3969-3983.
[4] 唐超群,何 珊,王慧峰,等.化學(xué)/生物聯(lián)合PRB技術(shù)去除地下水中的硝酸鹽 [J]. 中國(guó)給水排水, 2014,3(30):48-51.
[5] 鄧紅衛(wèi),賀 威,胡建華,等. Fe0-PRB修復(fù)地下水硝酸鹽污染數(shù)值模擬 [J]. 中國(guó)環(huán)境科學(xué), 2015,35(8):2375-2381.
[6] Zhou D, Li Y, Zhang Y. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates [J]. Journal of Contaminant Hydrology, 2014(168):1-16.
[7] Zhang W. Nanoscale iron particles for environmental remediation: An overview [J]. Journal of Nanoparticle Research, 2003:323-332.
[8] Vodyanitskii Y N, Mineev V G. Degradation of Nitrates with the Participation of Fe(ⅠⅠ) and Fe(0) in Groundwater: A Review[J]. Eurasian Soil Science, 2015,2(48):156-165.
[9] Pawluk K, Fronczyk J, Garbulewski K. Reactivity of nano zero-valent iron in permeable reactive barriers [J]. Polish Journal of Chemical Technology, 2015,17(1):1195-1203.
[10] 王 薇.包覆型納米鐵的制備及用于地下水污染修復(fù)的實(shí)驗(yàn)研究 [D]. 天津:南開(kāi)大學(xué), 2008.
[11] 唐次來(lái),張?jiān)鰪?qiáng),王 珍.基于Fe0的PRB去除地下水中硝酸鹽的模擬研究 [J]. 環(huán)境工程學(xué)報(bào), 2010,4(11):2429-2436.
[12] Wang W, Jin Z, Li T, et al. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal [J]. Chemosphere, 2006,65(8):1396-1404.
[13] Echeandia S, Arias P L, Barrio V L, et al. Synergy effect in the HDO of phenol over Ni-W catalysts supported on active carbon: Effect of tungsten precursors [J]. Applied Catalysis B: Environmental, 2010,101(1/2):1-12.
[14] 李俊國(guó).腐殖酸基水煤漿分散劑的合成、性能及其作用機(jī)理研究 [D]. 西安:陜西科技大學(xué), 2014.
[15] S M.H, B A-A, M K. Bench-Scaled Nano-Fe0Permeable Reactive Barrier for Nitrate Removal [J]. Ground Water Monitoring & Remediation, 2011,4(31):82-94.
[16] Carniato L, Schoups G, Seuntjens P, et al. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models [J]. Journal of Contaminant Hydrology, 2012,142-143: 93-108.
[17] Peng X, Li Y, Luan Z, et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes [J]. Chemical Physics Letters,2003,376(1/2):154-158.
[18] Kakavandi B, Kalantary R R, Farzadkia M, et al. Enhanced chromium (VⅠ) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles [J]. J Environ Health Sci Eng, 2014,12(1):115.
SM-nano iron/carbon filling in PRB for nitrate nitrogen removal in groundwater.
GAO Yang-yang, LIU Guo*,CHEN Chun-mei, XU Xiong-kun, CHEN Zheng-yang (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Sichuan Provincial Environmental Protection key Laboratory of Groundwater Pollution Prevention and Resource Security, College of Environment and Civil Engineering, Chengdu University of Technology,Chengdu 610059, China). China Environmental Science, 2016,36(10):3019~3025
In this study rhamnolipid was selected to modify Nano Iron, attaching to activated carbon to constitute SM-nano iron/carbon, and took it as PRB filling material. The organic glass column was used to simulate the continuous wall PRB to study on removal of nitrate nitrogen in the water. Experimental results showed that the modifying Nano Iron could effectively load on the activated carbon, and its suspension stability were greatly improved; the particle size of SM-nano iron/carbon was much larger than Nano iron, it can effectively alleviate the PRB pore spacing blocking; When nano iron and activated carbon quality ratio was 5:2, the running effect of PRB was the best; Lower pH, initial nitrate nitrogen concentration and the velocity of water were favorable of removal of nitrate nitrogen in water.
SM-nano iron/carbon;PRB;nitrate nitrogen;groundwater
X523
A
1000-6923(2016)10-3019-07
高陽(yáng)陽(yáng)(1992-),男,山西運(yùn)城人,成都理工大學(xué)碩士研究生,主要從事地下水污染治理研究.發(fā)表論文1篇.
2016-02-06
國(guó)家自然科學(xué)基金(41272266)
* 責(zé)任作者, 教授, liuguo@cdut.edu.cn