国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

產(chǎn)氫產(chǎn)乙酸和產(chǎn)甲烷反應(yīng)對(duì)厭氧消化的限速作用

2017-01-19 08:42王祥錕閔祥發(fā)李建政張玉鵬哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室黑龍江哈爾濱50090哈爾濱辰能工大環(huán)??萍脊煞萦邢薰?/span>黑龍江哈爾濱50078
中國(guó)環(huán)境科學(xué) 2016年10期
關(guān)鍵詞:產(chǎn)甲烷活性污泥丁酸

王祥錕,閔祥發(fā),李建政*,張玉鵬(.哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱50090;.哈爾濱辰能工大環(huán)??萍脊煞萦邢薰?,黑龍江 哈爾濱 50078)

產(chǎn)氫產(chǎn)乙酸和產(chǎn)甲烷反應(yīng)對(duì)厭氧消化的限速作用

王祥錕1,閔祥發(fā)2,李建政1*,張玉鵬1(1.哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱150090;2.哈爾濱辰能工大環(huán)??萍脊煞萦邢薰?,黑龍江 哈爾濱 150078)

為明晰厭氧消化過程的主要限速步驟,分別以丁酸、乙酸、H2/CO2為基質(zhì),在37℃和pH 5.00~9.00條件下對(duì)厭氧活性污泥進(jìn)行培養(yǎng),依據(jù)Shelford耐受定律對(duì)食丁酸產(chǎn)氫產(chǎn)乙酸菌(SBOB)、乙酸營(yíng)養(yǎng)型產(chǎn)甲烷菌(ACM)和氫營(yíng)養(yǎng)型產(chǎn)甲烷菌(HTM)的pH值生態(tài)幅及基質(zhì)轉(zhuǎn)化速率進(jìn)行分析.結(jié)果表明,SBOB、ACM和HTM的pH值生態(tài)幅分別為6.19~8.59、5.50~7.74和4.39~9.23,其代謝最適pH值分別為7.39、6.62和6.81.在最適pH值條件下,厭氧活性污泥對(duì)丁酸、乙酸、H2/CO2的轉(zhuǎn)化速率分別為0.86、1.04和1.09gCODequ/(gMLVSS·d).可見,與產(chǎn)甲烷菌相比,產(chǎn)氫產(chǎn)乙酸菌的pH值生態(tài)幅更窄,基質(zhì)轉(zhuǎn)化速率更慢,對(duì)厭氧消化過程具有更為顯著的限制作用.

厭氧消化;限速步驟;pH值;生態(tài)幅;基質(zhì)轉(zhuǎn)化速率

有機(jī)物的厭氧消化是一個(gè)復(fù)雜的生物轉(zhuǎn)化過程,需要產(chǎn)酸發(fā)酵菌群、產(chǎn)氫產(chǎn)乙酸菌群和產(chǎn)甲烷菌群等多種微生物類群的協(xié)同作用共同完成[1].這些主要微生物類群在生理生態(tài)習(xí)性上差別懸殊,如,產(chǎn)酸發(fā)酵菌群能夠在較為寬廣的pH值生態(tài)幅內(nèi)迅速增殖,而產(chǎn)甲烷菌群則要求近中性的pH值環(huán)境,而且增殖緩慢[2-3].所以,要保證系統(tǒng)的穩(wěn)定運(yùn)行,須維持各類菌群生長(zhǎng)環(huán)境的協(xié)調(diào)和代謝速率的平衡[4].研究表明,產(chǎn)甲烷菌群可利用的基質(zhì)僅有乙酸和一碳化合物,增殖和代謝速率緩慢,且對(duì)環(huán)境變化敏感,其產(chǎn)甲烷反應(yīng)被認(rèn)為是厭氧消化的限速步驟[5-6].有越來越多的研究表明,營(yíng)養(yǎng)生態(tài)位居于產(chǎn)酸發(fā)酵菌群和產(chǎn)甲烷菌群之間的產(chǎn)氫產(chǎn)乙酸菌群,其環(huán)境適應(yīng)能力和增殖能力都比較差,其低水平代謝也有可能成為厭氧消化進(jìn)程的限制因素[7-8].然而,產(chǎn)氫產(chǎn)乙酸作用與產(chǎn)甲烷作用何者對(duì)厭氧消化的限速作用更顯著,至今尚不明確[9-11].

在有機(jī)廢水厭氧生物處理系統(tǒng)中,產(chǎn)酸發(fā)酵菌群代謝產(chǎn)生的揮發(fā)性脂肪酸(VFAs)主要有乙酸、丙酸和丁酸等[12].其中,丙酸和丁酸均須由產(chǎn)氫產(chǎn)乙酸菌群將其轉(zhuǎn)化為乙酸和H2/CO2后才能為產(chǎn)甲烷菌群利用.本文采用厭氧顆粒污泥的間歇培養(yǎng)方法,分別以丁酸、乙酸和H2/CO2為惟一碳源,研究了食丁酸產(chǎn)氫產(chǎn)乙酸菌(SBOB)、乙酸營(yíng)養(yǎng)型產(chǎn)甲烷菌(ACM)和氫營(yíng)養(yǎng)型產(chǎn)甲烷菌(HTM)的pH值生態(tài)幅及其基質(zhì)轉(zhuǎn)化速率,并通過對(duì)比分析闡述了它們對(duì)厭氧消化的限速作用.

1 材料與方法

1.1 接種物

實(shí)驗(yàn)所用厭氧顆粒污泥,取自哈爾濱市某大豆蛋白生產(chǎn)企業(yè)污水處理站的升流式厭氧污泥床(UASB)反應(yīng)器.其混合液懸浮固體濃度(MLSS)和揮發(fā)性懸浮固體濃度(MLVSS)分別為63.98和36.79g/L,污泥顆粒直徑為1.0~1.2mm,發(fā)酵葡萄糖的比產(chǎn)甲烷速率為83.76mL/(gMLVSS·d).

將原顆粒污泥用無氧水稀釋,加玻璃珠震蕩破碎,清洗3次后形成的泥水混合物即為接種物,其MLSS、MLVSS、污泥沉降比(SV)、污泥體積指數(shù)(SVⅠ)和pH值分別為3.44g/L、2.89g/L、10%、29.10mL/g和7.83.

1.2 靜態(tài)搖瓶實(shí)驗(yàn)

不同基質(zhì)的甲烷發(fā)酵實(shí)驗(yàn),均在容積為180mL的厭氧瓶中進(jìn)行.每個(gè)發(fā)酵體系均包含68mL營(yíng)養(yǎng)液和7mL種泥.其中,以丁酸、乙酸為碳源的發(fā)酵體系,分別加有1.2g/L的丁酸和2.4g/L的乙酸,連續(xù)充氮5min后封瓶.以H2/CO2為惟一碳源的發(fā)酵體系,在營(yíng)養(yǎng)液分裝和污泥接種完成后,連續(xù)充入H2/CO2(v:v=80:20)5min,封瓶.營(yíng)養(yǎng)液的配制參照文獻(xiàn)進(jìn)行[13].由于培養(yǎng)液中含有KH2PO4和Na2HPO4等酸堿緩沖劑,可保證培養(yǎng)體系在發(fā)酵過程中的pH值相對(duì)穩(wěn)定.對(duì)丁酸、乙酸和H2/CO2的甲烷發(fā)酵測(cè)試,均設(shè)置5個(gè)pH值梯度,分別為5.00、6.00、7.00、8.00和9.00,每個(gè)pH值下設(shè)置3個(gè)平行發(fā)酵體系.所有發(fā)酵體系構(gòu)建完成后,置于37℃、140rpm恒溫?fù)u床中培養(yǎng).對(duì)于以H2/CO2為惟一碳源的發(fā)酵體系,每12h測(cè)定發(fā)酵氣成分一次;對(duì)于以丁酸或乙酸為碳源的發(fā)酵體系,每48h測(cè)定發(fā)酵液中的VFAs及發(fā)酵氣成分一次.

1.3 分析項(xiàng)目及方法

發(fā)酵液中的VFAs利用SP6800A型氣相色譜儀(山東魯南虹化工儀器有限公司)檢測(cè),毛細(xì)管柱30m×Φ0.32mm,填充物為FFAP,柱室溫度160℃,氣化室和檢測(cè)器溫度均為210℃[14].發(fā)酵氣組分(H2、CO2和CH4)利用SP6890型氣相色譜儀(山東魯南虹化工儀器有限公司)測(cè)定,不銹鋼填充柱2m×Φ3mm,填充物為Porapak.Q,進(jìn)樣室、TCD檢測(cè)器和柱室溫度均為80℃[14].

發(fā)酵液的pH值由pH計(jì)(DELTA320, Mettler Toledo)測(cè)量,MLSS、MLVSS和SV采用標(biāo)準(zhǔn)方法測(cè)定[15].發(fā)酵體系的產(chǎn)氣量通過排氣法測(cè)量,累積產(chǎn)甲烷量按Owen法進(jìn)行計(jì)算[16].

1.4 數(shù)據(jù)分析

1.4.1 污泥對(duì)基質(zhì)的轉(zhuǎn)化速率 為比較活性污泥對(duì)不同基質(zhì)的轉(zhuǎn)化速率,將基質(zhì)丁酸、乙酸和H2換算成當(dāng)量化學(xué)需氧量(CODequ,g/L)[17]. CODequ在線性反應(yīng)階段的基質(zhì)轉(zhuǎn)化速率[qCOD,gCODequ/(gMLVSS·d)]由式(1)計(jì)算.

式中:V為發(fā)酵體系的體積,L;Δt為線性反應(yīng)所需時(shí)間,d;X為反應(yīng)體系的生物量MLVSS,g.

1.4.2 活性污泥功能菌群pH生態(tài)幅的定量表達(dá) 根據(jù)Shelford耐受定律,對(duì)活性污泥功能菌群的最大基質(zhì)轉(zhuǎn)化速率與pH值之間的關(guān)系進(jìn)行Gauss Amp非線性擬合[18].Gauss Amp方程的表達(dá)為:

式中:y為最大基質(zhì)轉(zhuǎn)化速率;x為發(fā)酵體系的pH值;xc為功能菌群代謝的最適pH值;w為功能菌群對(duì)pH值的耐受度;A和B為常數(shù).xc和w可通過實(shí)驗(yàn)數(shù)據(jù)的擬合獲得,菌群的pH值生態(tài)幅參數(shù):適宜pH值為[xc-w,xc+w],耐受pH值為[xc-2w,xc+ 2w].

1.4.3 平行樣品的數(shù)據(jù)處理 氣體體積、發(fā)酵氣成分和揮發(fā)酸組分等數(shù)據(jù),均取3個(gè)平行測(cè)試的平均值.

2 結(jié)果與討論

2.1 SBOB的基質(zhì)轉(zhuǎn)化與產(chǎn)甲烷特性

在不同初始pH值條件下,厭氧活性污泥對(duì)丁酸的轉(zhuǎn)化和產(chǎn)甲烷特征如圖1所示.結(jié)果表明,當(dāng)發(fā)酵體系初始pH值為7.00時(shí),SBOB的活性較強(qiáng),發(fā)酵體系中的丁酸在18d內(nèi)有96%左右得到轉(zhuǎn)化,在降解曲線的線性階段(第8~12d),污泥的丁酸轉(zhuǎn)化速率達(dá)到了0.40g/(gMLVSS·d).隨著丁酸的降解,發(fā)酵體系的累積產(chǎn)甲烷量不斷增加,在第18d培養(yǎng)結(jié)束時(shí)達(dá)到了44.34mL.

圖1 不同pH值條件下厭氧活性污泥的丁酸轉(zhuǎn)化和產(chǎn)甲烷特征Fig.1 Performance of the anaerobic activated sludge in butyric acid conversion and methane production with initial pHs

如圖1所示,過高或過低的pH值對(duì)活性污泥的丁酸轉(zhuǎn)化均有顯著影響.初始pH值分別為5.00、6.00、8.00和9.00的發(fā)酵體系,在第18d培養(yǎng)結(jié)束時(shí),其丁酸轉(zhuǎn)化率分別為15.02%、27.49%、 85.02%和50.08%,污泥的最大丁酸轉(zhuǎn)化速率分別為0.04、0.07、0.30和0.13g/(gMLVSS·d),累積產(chǎn)甲烷量分別為0.22、2.15、39.84和21.84mL,均顯著低于初始pH值為7.00的發(fā)酵體系.

2.2 ACM的基質(zhì)轉(zhuǎn)化與產(chǎn)甲烷特性

圖2 不同pH值條件下厭氧活性污泥的乙酸轉(zhuǎn)化和產(chǎn)甲烷特征Fig.2 Performance of the anaerobic activated sludge in acetic acid conversion and methane production with initial pHs

以乙酸為惟一碳源的測(cè)試結(jié)果表明,pH值對(duì)ACM的代謝活性也有顯著影響.如圖2所示,在初始pH值為7.00的發(fā)酵體系中,ACM的活性最強(qiáng),在12d內(nèi)可將95%左右的乙酸轉(zhuǎn)化.在降解曲線的線性階段(第4~7d),污泥的乙酸轉(zhuǎn)化速率高達(dá)0.82g/(gMLVSS·d).發(fā)酵體系的累積產(chǎn)甲烷量隨著乙酸的不斷轉(zhuǎn)化而增加,在第12d培養(yǎng)結(jié)束時(shí)累計(jì)48.49mL.過高或過低的pH值對(duì)活性污泥的乙酸轉(zhuǎn)化和產(chǎn)甲烷能力也有顯著影響.初始pH值分別為5.00、6.00、8.00和9.00的發(fā)酵體系,在培養(yǎng)結(jié)束時(shí)(第12d),污泥的乙酸轉(zhuǎn)化率分別為27.66%、68.96%、41.61%和21.54%,最大乙酸轉(zhuǎn)化速率分別為0.25、0.64、0.29和0.26g/(gMLVSS·d),累積產(chǎn)甲烷量分別為14.37、36.40、21.22和10.89mL,均顯著低于初始pH值為7.00的發(fā)酵體系.

2.3 HTM的基質(zhì)轉(zhuǎn)化與產(chǎn)甲烷特性

厭氧活性污泥對(duì)H2/CO2的轉(zhuǎn)化和產(chǎn)甲烷特征(圖3)表明,HTM具有很強(qiáng)的代謝活性,在初始pH值為7.00的發(fā)酵體系中,發(fā)酵體系中的H2在4d內(nèi)幾乎全部得到轉(zhuǎn)化.在線性反應(yīng)階段(第1~2d),污泥對(duì)H2的轉(zhuǎn)化速率達(dá)到0.13g/(gMLVSS·d).發(fā)酵體系的累積產(chǎn)甲烷量隨著H2的不斷轉(zhuǎn)化而增加,在培養(yǎng)結(jié)束時(shí)(第4d)達(dá)到了19.38mL.初始pH值的改變,H2轉(zhuǎn)化速率和累積產(chǎn)甲烷量均受到顯著影響.初始pH值分別為5.00、6.00、8.00和9.00的發(fā)酵體系,在4d的發(fā)酵過程中,其H2轉(zhuǎn)化率分別為61.04%、88.36%、95.38%和30.71%,污泥的最大H2轉(zhuǎn)化速率分別為0.05、0.12、0.09和0.04g/(gMLVSS·d),累積產(chǎn)甲烷量分別為11.55、17.05、17.78和5.91mL,也都顯著低于初始pH值為7.00的發(fā)酵體系.

圖3 不同pH值條件下厭氧活性污泥的氫氣轉(zhuǎn)化和產(chǎn)甲烷特征Fig.3 Performance of the anaerobic activated sludge in hydrogen conversion and methane production with initial pHs

2.4 活性污泥功能菌群的pH值生態(tài)幅解析

根據(jù)式(1)計(jì)算不同pH值下的最大基質(zhì)轉(zhuǎn)化速率qCOD,結(jié)果如圖4所示.當(dāng)發(fā)酵體系初始pH值為7.00時(shí),活性污泥中的SBOB、ACM和HTM 3種功能菌群均表現(xiàn)出了最大代謝活性,其qCOD分別為0.72、0.88和1.05gCODequ/(gMLVSS·d).當(dāng)發(fā)酵體系初始pH值降低至6.00時(shí),3種功能菌群的qCOD分別比初始pH值為7.00時(shí)降低了0.33、0.18、0.01gCODequ/(gMLVSS·d).而當(dāng)初始pH值升高至8.00時(shí),它們的qCOD分別降低了0.10、0.53、0.04gCODequ/(gMLVSS·d).可見,3種功能菌群的pH生態(tài)幅存在顯著差異,其中,SBOB的代謝在中性偏堿的條件下最好,而中性偏酸的環(huán)境更適合ACM和HTM的代謝.

圖4 不同pH值條件下厭氧活性污泥的最大基質(zhì)轉(zhuǎn)化速率Fig.4 Maximum substrate conversion rates of the anaerobic activated sludge under different pH

依據(jù)Shelford耐受定律,利用origin8.5軟件進(jìn)行Gauss Amp非線性擬合(圖5),得到3種功能菌群qCOD與pH值之間的關(guān)系方程及相關(guān)參數(shù)(表1).利用表1中的參數(shù),由式(2)得到SBOB、ACM和HTM的pH生態(tài)幅分別為6.19~8.59、5.50~7.74和4.39~9.23,pH值適宜范圍分別為6.79~7.99、6.06~7.18和5.60~8.02,最適代謝pH值分別為7.39、6.62和6.81.在最適代謝pH值條件下,活性污泥對(duì)丁酸、乙酸和H2的最大轉(zhuǎn)化速率分別為0.86、1.04和1.09gCODequ/(gMLVSS·d).可見,在厭氧顆粒污泥中,SBOB的代謝水平顯著低于ACM和HTM.

圖5 厭氧活性污泥中SBOB(A)、ACM(B)和HTM(C)的pH值生態(tài)幅Fig.5 pH ecological amplitude of SBOB (A), ACM (B)and HTM (C) in the anaerobic activated sludge

2.5 產(chǎn)氫產(chǎn)乙酸菌群和產(chǎn)甲烷菌群對(duì)厭氧消化的限速作用分析

由于產(chǎn)甲烷菌的特殊生理生態(tài)習(xí)性,其產(chǎn)甲烷作用一直被認(rèn)為是厭氧消化的限速步驟[6].也有研究表明,產(chǎn)氫產(chǎn)乙酸菌對(duì)環(huán)境變化同樣敏感,增殖代謝速度同樣緩慢,其產(chǎn)氫產(chǎn)乙酸作用具備成為厭氧消化過程限速步驟的條件[19].

如圖1~圖3所示的實(shí)驗(yàn)結(jié)果表明,厭氧活性污泥中的SBOB、ACM和HTM代謝活性,均會(huì)受到pH值改變的顯著影響.而且,3類功能菌群在pH值生態(tài)幅和基質(zhì)轉(zhuǎn)化速率方面都存在明顯差異(表1,圖4和圖5).如圖5所示,SBOB、ACM和HTM的pH值生態(tài)幅分別為6.19~8.59、5.50~7.74和4.39~9.23,其中以SBOB的最為狹窄.而表1所示的結(jié)果表明,SBOB在最適代謝pH 7.39下的qCOD為0.86gCODequ/(gMLVSS·d),顯著低于最適代謝pH值下ACM的1.04gCODequ/(gMLVSS·d) (pH 6.62)和HTM的1.09gCODequ/(gMLVSS·d) (pH 6.81).可見,與ACM和HTM相比,SBOB具有更狹窄的pH值生態(tài)幅和更慢的基質(zhì)轉(zhuǎn)化速率,對(duì)厭氧消化過程的限速作用更加顯著.

表1 厭氧活性污泥功能菌群在不同pH值條件下的基質(zhì)轉(zhuǎn)化速率擬合方程及相關(guān)參數(shù)Table 1 Substrate conversion rate fitting equations of functional flora in the activated sludge with pHs and the relevant parameters

3 結(jié)論

3.1 SBOB的pH值生態(tài)幅較ACM和HTM的更為狹窄.在37℃條件下,SBOB、ACM和HTM代謝的pH值生態(tài)幅分別為6.19~8.59、5.50~7.74和4.39~9.23.

3.2 最適代謝pH值條件下,SBOB的最大基質(zhì)轉(zhuǎn)化速率明顯低于ACM和HTM.SBOB、ACM和HTM的最大基質(zhì)轉(zhuǎn)化速率分別為0.86、1.04和1.09gCODequ/(gMLVSS·d).

3.3 對(duì)于厭氧顆粒污泥系統(tǒng),產(chǎn)氫產(chǎn)乙酸作用對(duì)厭氧消化過程的限速作用顯著高于產(chǎn)甲烷作用.

參考文獻(xiàn):

[1] Kwietniewska E, Tys J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation [J]. Renewable and Sustainable Energy Reviews, 2014,34:491-500.

[2] 任南琪,王愛杰,馬 放.產(chǎn)酸發(fā)酵微生物生理生態(tài)學(xué) [M]. 北京:科學(xué)出版社, 2005.

[3] Whitman W B, Bowen T L, Boone D R. The Methanogenic Bacteria [M]//The Prokaryotes. Springer Berlin Heidelberg,2014:123-163.

[4] Kato S, Yoshida R, Yamaguchi T, et al. The effects of elevated CO2concentration on competitive interaction between aceticlastic and syntrophic methanogenesis in a model microbial consortium[J]. Frontiers in Microbiology, 2014,5:Article 575.

[5] Ueno Y, Yamada K, Yoshida N, et al. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era[J]. Nature, 2006,440(7083):516-519.

[6] Liu Y, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Annals of the New York Academy of Sciences, 2008,1125(1):171-189.

[7] Worm P, Müller N, Plugge C M, et al. Syntrophy in methanogenic degradation [M]. (Endo) symbiotic Methanogenic Archaea. Springer. 2010:143-173.

[8] Li J, Ban Q, Zhang L, et al. Syntrophic Propionate Degradation in Anaerobic Digestion: A Review [J]. Ⅰnternational Journal of Agriculture & Biology, 2012,14(5):668-673.

[9] Kato S, Watanabe K. Ecological and evolutionary interactions in syntrophic methanogenic consortia [J]. Microbes and Environments, 2010,25(3):145-151.

[10] Tang Y Q, Shigematsu T, Morimura S, et al. Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors [J]. Journal of Bioscience and Bioengineering, 2015,119(4):375-383.

[11] Plugge C M, van Lier J B, Stams A J M. Syntrophic communities in methane formation from high strength wastewaters[M]//Microbes at Work. Springer Berlin Heidelberg, 2010:59-77.

[12] 昌 盛,劉 楓.對(duì)比分析進(jìn)水基質(zhì)濃度對(duì)乙醇型和丁酸型發(fā)酵制氫系統(tǒng)的影響 [J]. 化工學(xué)報(bào), 2015,66(12):5111-5118.

[13] Angelidaki Ⅰ, Sanders W. Assessment of the anaerobic biodegradability of macropollutants [J]. Reviews in Environmental Science & Bio/Technology, 2004,3(2):117-129.

[14] Ai B, Li J, Chi X, et al. Effect of pH and buffer on butyric acid production and microbial community characteristics in bioconversion of rice straw with undefined mixed culture [J]. Biotechnology and Bioprocess Engineering, 2014,19(4):676-686.

[15] American Public Health Association. Water Environment Federation [M]. Standard Methods for the Examination of Water and Wastewater, 1995,19.

[16] Owen W F, Stuckey D C, Healy J B, et al. Bioassay for monitoring biochemical methane potential and anaerobic toxicity[J]. Water Research, 1979,13(6):485-492.

[17] 施 恩,李建政,馬天楠.基于VFAs抑制系數(shù)的ABR基質(zhì)降解與產(chǎn)甲烷預(yù)測(cè)模型 [J]. 化工學(xué)報(bào), 2016,67(7):2979-2986.

[18] ter Braak C J F, Looman C W N. Weighted averaging, logistic regression and the Gaussian response model [J]. Vegetatio, 1986,65(1):3-11.

[19] Ban Q, Li J, Zhang L, et al. Quantitative analysis of previously identified propionate-oxidizing bacteria and methanogens at different temperatures in an UASB reactor containing propionate as a sole carbon source [J]. Applied Biochemistry and Biotechnology, 2013,171(8):2129-2141.

[20] Müller N, Worm P, Schink B, et al. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms [J]. Environmental Microbiology Reports, 2010,2(4): 489-499.

Rate-limiting of hydrogen-producing acetogenesis to anaerobic digestion compared with methanogenesis.

WANG Xiang-kun1, MIN Xiang-fa2, LI Jian-zheng1*, ZHANG Yu-peng1(1.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;2.Harbin Chenergy Hit Environmental Technology Co, LTD, Harbin 150078, China). China Environmental Science, 2016,36(10):2997~3002

To identify the rate-limiting degree of hydrogen-producing acetogenesis and methanogenesis in anaerobic digestion, anaerobic activated sludge sampled from an UASB was cultivated at 37℃ with a series of initial pH ranged from 5.00 to 9.00. With butyric acid, acetic acid and H2/CO2as substrate, respectively, the ecological amplitude of pH and the substrate conversion rate of syntrophic butyrate-oxidizing bacteria (SBOB), aceticlastic methanogens (ACM) and hydrogenotrophic methanogens (HTM) were evaluated according to the Shelford's tolerance law. The results showed that the ecological amplitudes of pH for SBOB, ACM and HTM were 6.19~8.59、5.50~7.74 and 4.39~9.23, with an optimal pH of 7.39, 6.62 and 6.81 for their metabolism, respectively. With the optimal metabolic pH, the specific conversion rate of butyric acid, acetic acid and H2/CO2by the sludge was 0.86, 1.04 and 1.09gCODequ/(gMLVSS·d), respectively. Obviously, the hydrogen-producing acetogens had narrower pH ecological amplitude and lower substrate conversion rate than the methanogens, indicating that hydrogen-producing acetogenesis in the anaerobic activated sludge had a stronger limitation on the anaerobic digestion.

anaerobic digestion;rate-limiting;pH;ecological amplitude;substrate convertion rate

X172,X703

A

1000-6923(2016)10-2997-06

王祥錕(1989-),男,黑龍江穆棱人,哈爾濱工業(yè)大學(xué)碩士研究生,主要研究方向?yàn)閰捬跷⑸锷砩鷳B(tài)學(xué).

2016-02-25

國(guó)家自然科學(xué)基金資助項(xiàng)目(51478141);城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室(哈爾濱工業(yè)大學(xué))自主課題 (2016DX06)

* 責(zé)任作者, 教授, ljz6677@163.com

猜你喜歡
產(chǎn)甲烷活性污泥丁酸
丁酸梭菌的生物學(xué)功能及在水產(chǎn)養(yǎng)殖中的應(yīng)用
復(fù)合丁酸梭菌發(fā)酵飼料及其在水產(chǎn)養(yǎng)殖中的應(yīng)用前景
活性污泥法及其在環(huán)境工程中的應(yīng)用
丁酸梭菌的篩選、鑒定及生物學(xué)功能分析
納米半導(dǎo)體材料促進(jìn)厭氧產(chǎn)甲烷過程的研究進(jìn)展
硫酸新霉素廢水活性污泥的微生物群落結(jié)構(gòu)解析
泥炭發(fā)酵產(chǎn)甲烷過程中古菌群落結(jié)構(gòu)演替
復(fù)合丁酸梭菌制劑在水產(chǎn)養(yǎng)殖中的應(yīng)用
垃圾滲濾液厭氧系統(tǒng)重啟前后污泥產(chǎn)甲烷活性研究
零價(jià)鐵對(duì)城市污泥和餐廚垃圾聯(lián)合厭氧消化產(chǎn)甲烷的影響
什邡市| 漯河市| 耒阳市| 增城市| 梁山县| 佳木斯市| 玉屏| 湖口县| 深水埗区| 开封市| 龙陵县| 鄂托克前旗| 西城区| 平顺县| 大田县| 海阳市| 吴川市| 金阳县| 华阴市| 乌鲁木齐市| 洮南市| 调兵山市| 阿巴嘎旗| 辛集市| 称多县| 万山特区| 攀枝花市| 商丘市| 临朐县| 巴楚县| 射阳县| 甘肃省| 永康市| 汕尾市| 福海县| 常山县| 嵊州市| 吉安市| 黑龙江省| 永吉县| 东光县|