劉永健 姜磊 熊治華
摘要:基于屈服線和沖剪破壞模型,對矩形管管節(jié)點和板管節(jié)點發(fā)生這2種破壞模式的支主管寬度比β適用范圍進(jìn)行理論分析,探討CIDECT規(guī)范中給出的支主管寬度比適用范圍的合理性,并在此基礎(chǔ)上合理考慮沿支管周長剛度變化,對主管可能發(fā)生屈服線和沖剪破壞的區(qū)域進(jìn)行分析,給出屈服線和沖剪綜合破壞的承載力計算方法。將所得公式的計算結(jié)果與試驗結(jié)果進(jìn)行對比,并將其與CIDECT規(guī)范計算公式進(jìn)行對比分析。結(jié)果表明:該建議公式計算值與試驗值吻合較好;β<0.85時,CIDECT規(guī)范公式低估了節(jié)點承載能力,而0.85<β<1-1/γ(2γ為主管寬厚比)時,CIDECT規(guī)范公式高估了節(jié)點承載能力。
關(guān)鍵詞:矩形鋼管節(jié)點;屈服線模型;沖剪模型;破壞模式;支主管寬度比;適用范圍;節(jié)點承載力
中圖分類號:TU392.3文獻(xiàn)標(biāo)志碼:A
Abstract: Based on the yield line and punching shear model, the application scope of the width ratio β of branch member to chord member was theoretically analyzed when the two failure modes of the rectangular tubetube joint and the platetube joint happened. The rationality of application scope of the width ratio of branch member to chord member proposed in CIDECT specification was discussed. On the basis, reasonably considering the change of stiffness along branch perimeter, the regions where yield line and punching shear probably occurred were studied, and the bearing capacity calculation method of the comprehensive failure model of yield line and punching shear was proposed. The calculated results of the proposed formula were compared with the experimental results and the calculation formula of CIDECT specification. The results show that the calculated results are in good agreement with the test results. When β<0.85, the formula of CIDECT underestimates the bearing capacity of joint, and when 0.85<β<1-1/γ (2γ is the width to thickness ratio of chord member ), the formula of CIDECT overestimates the bearing capacity of joint.
Key words: rectangular steel tube joint; yield line model; punching shear model; failure mode; width ratio of branch member to chord member; application scope; bearing capacity of joint
0引言
矩形鋼管節(jié)點主管為矩形鋼管,支管為鋼管或鋼板,主支管采用直接焊接形成節(jié)點。由于其加工制作簡單、經(jīng)濟(jì)性好和造型優(yōu)美,在桁架橋、拱橋和格構(gòu)式橋墩中應(yīng)用廣泛[14]。主管對應(yīng)桁架橋弦桿、拱橋拱肋或橋墩的柱肢,支管則對應(yīng)桁架橋腹桿、拱橋吊桿與拱肋連接板或橋墩綴桿。作為以上結(jié)構(gòu)最薄弱的環(huán)節(jié)之一,矩形鋼管節(jié)點承載力一直是各國學(xué)者研究的重點。
各國學(xué)者對不同類型矩形鋼管節(jié)點進(jìn)行了系統(tǒng)的試驗研究[512],結(jié)果表明,各類節(jié)點主管表面均可能發(fā)生塑性破壞或沿支管四周沖剪破壞,并且與支主管寬度比β密切相關(guān)。Wardenier等[1315]對矩形鋼管節(jié)點試驗現(xiàn)象和承載力進(jìn)行了分析,當(dāng)β較小時,發(fā)生主管表面塑性破壞,建議按屈服線模型計算節(jié)點承載力;當(dāng)β較大時,發(fā)生沿支管四周主管表面沖剪破壞,建議按沖剪模型計算節(jié)點承載力;當(dāng)β接近于1時,支管荷載將直接傳遞到主管側(cè)壁,發(fā)生主管側(cè)壁壓壞或局部屈曲,建議按等效柱模型計算節(jié)點承載力,在此基礎(chǔ)上,對各破壞模式對應(yīng)的β適用范圍進(jìn)行了探討。國際管結(jié)構(gòu)協(xié)會和焊接協(xié)會在總結(jié)各學(xué)者研究成果的基礎(chǔ)上,分別形成了CIDECT規(guī)范[16]和IIW規(guī)范[17],給出了矩形鋼管節(jié)點屈服線、沖剪和等效柱模型計算公式,并對各公式的β適用范圍進(jìn)行了規(guī)定。實際上,在支管軸心受拉或受壓荷載作用下主管表面首先發(fā)生外凸或內(nèi)凹變形,并且沿支管四周主管表面應(yīng)力分布不均勻,在支管角隅處主管表面應(yīng)力水平高,支管中間部位主管表面應(yīng)力水平低,隨著荷載增大,主管表面應(yīng)力水平高的位置首先產(chǎn)生裂紋,隨后裂紋不斷擴(kuò)展,發(fā)生沖剪破壞[1819]。由此可見,矩形鋼管節(jié)點主管表面破壞應(yīng)為屈服線和沖剪2種破壞模式的綜合,而現(xiàn)行規(guī)范根據(jù)β取值的不同僅采用屈服線或沖剪單一破壞模型計算節(jié)點承載力并不能準(zhǔn)確反映節(jié)點真實的破壞情況。
為準(zhǔn)確反映矩形鋼管節(jié)點主管表面破壞模式,完善現(xiàn)行規(guī)范承載力計算方法的不足,本文基于屈服線和沖剪破壞模型,從理論上分析矩形管管節(jié)點和板管節(jié)點發(fā)生以上2種破壞模式的β適用范圍,并探討CIDECT規(guī)范給出的β適用范圍的合理性;在此基礎(chǔ)上,合理考慮沿支管周長剛度變化,對主管可能發(fā)生屈服線和沖剪破壞的區(qū)域進(jìn)行分析,給出屈服線和沖剪綜合破壞的承載力計算方法。
1主管破壞模型
1.1基本假定
CIDECT規(guī)范認(rèn)為,矩形鋼管節(jié)點主管可能發(fā)生的破壞模式為屈服線破壞、沖剪破壞和主管側(cè)壁鼓曲破壞。本文僅分析主管表面破壞模式,即不考慮主管側(cè)壁鼓曲破壞,同時計算時作如下假設(shè):
(1)不考慮焊縫尺寸的影響。
(2)不考慮鋼板的薄膜效應(yīng)和鋼材的強(qiáng)化。
(3)為分析簡便,b0-2t0(其中,b0為主管寬度,t0為主管厚度)近似取為b0。
(4)沿支管周長主管鋼板單位長度的抗剪強(qiáng)度取為fy0t0/3(其中,fy0為主管管壁屈服應(yīng)力)。
1.2屈服線模型
當(dāng)矩形鋼管節(jié)點支主管寬度比較小時,其承載力可按屈服線模型計算,如圖1所示,其中,PY為矩形鋼管節(jié)點屈服線破壞承載力,h0,h1分別為主管和支管高度,b1為支管寬度,t1為支管厚度,δ為虛位移,φ為轉(zhuǎn)角,α為屈服線3和5間的夾角。
2.1矩形管管節(jié)點破壞模式適用范圍
CIDECT規(guī)范中規(guī)定:對于矩形管管節(jié)點,當(dāng)β≤0.85時,節(jié)點承載力按屈服線模型計算,當(dāng)0.85≤β≤1-1/γ時,按沖剪模型計算。在計算沖剪承載力時,沿支管高度方向應(yīng)力分布均勻,同時達(dá)到抗剪強(qiáng)度,而沿支管寬度方向在支管角部剛度大,應(yīng)力水平高,支管中部剛度小,應(yīng)力水平低,因此在計算時取支管寬度方向有效寬度進(jìn)行計算。CIDECT規(guī)范給出了沖剪線長度計算方法,即
圖5可知:當(dāng)β取0.35~0.82時,屈服線承載力較小,起控制作用;當(dāng)β>0.82時,沖剪承載力起控制作用,此時CIDECT規(guī)范中規(guī)定的屈服線破壞(0.4≤β≤0.85)和沖剪破壞(β≥0.85)的適用范圍基本合理。然而,CIDECT規(guī)范中規(guī)定屈服線承載力按式(18)計算,將此公式計算結(jié)果與沖剪模型計算結(jié)果進(jìn)行對比,可得屈服線破壞β的適用范圍為0.12~0.94,因此,對應(yīng)CIDECT規(guī)范中矩形板管節(jié)點承載力計算方法,β的適用范圍應(yīng)為:當(dāng)0.12≤β≤0.94時,按屈服線模型計算;當(dāng)0.94≤β≤1-1/γ時,按沖剪模型計算。
2.3CIDECT規(guī)范中2類節(jié)點主管破壞承載力
將現(xiàn)行CIDECT規(guī)范中矩形管管節(jié)點和板管節(jié)點承載力計算值繪于圖6中。由圖6可知,以β=0.85為分界線,分別按屈服線模型和沖剪模型計算,在分界線左右兩側(cè)計算結(jié)果存在明顯突變,且對應(yīng)β=0.85的參數(shù)值會得到2個不同的計算結(jié)果,可見現(xiàn)行CIDECT規(guī)范方法計算結(jié)果對應(yīng)的β參數(shù)取值并不連續(xù),實際上承載力計算結(jié)果不應(yīng)存在斷點。因此,本文將在屈服線模型和沖剪模型基礎(chǔ)上給出一種屈服線和沖剪綜合破壞模型,以實現(xiàn)承載力結(jié)果在β范圍內(nèi)的連續(xù)化,同時從力學(xué)上可以更合理揭示矩形鋼管節(jié)點的破壞機(jī)理。
3屈服線和沖剪綜合破壞模型
節(jié)點在受力初期,主管表面產(chǎn)生變形并達(dá)到屈服應(yīng)力,隨后沿支管應(yīng)力水平高(剛度大)的點產(chǎn)生沖剪裂紋。根據(jù)矩形鋼管節(jié)點支管應(yīng)力分布規(guī)律,認(rèn)為沿支管高度方向全長范圍內(nèi)和支管寬度方向有效寬度范圍內(nèi)發(fā)生沖剪破壞,其余位置發(fā)生屈服線破壞,屈服線和沖剪綜合破壞模型如圖7所示,其中PYQ為屈服線和沖剪綜合破壞承載力。此模型充分考慮了支管剛度的變化以及主管屈服和剪切性能。
4.1公式驗證
以矩形管管節(jié)點為例,對屈服線和沖剪綜合破壞模型計算公式進(jìn)行驗證。選取β范圍為0.19~0.91的42個矩形管管節(jié)點支管單軸受力試驗數(shù)據(jù),見表1。分別采用式(25)和CIDECT規(guī)范中節(jié)點承載力計算方法進(jìn)行計算,并與試驗值對比,見圖8,其中,Nc為節(jié)點承載力計算值,Ne為節(jié)點承載力試驗值。
由圖8可知:屈服線和沖剪綜合破壞模型計算值和試驗值比值的均值μ=1.085,均方差σ=0.209,變異系數(shù)為0.192;CIDECT規(guī)范計算值與試驗值比值的均值μ=0.817,均方差σ=0.215,變異系數(shù)為0.264。通過均值對比可見,CIDECT規(guī)范計算結(jié)果偏保守,而本文方法與試驗結(jié)果基本相近,但計算結(jié)果略大,同時通過變異系數(shù)對比可知,
4.2建議公式與CIDECT計算方法對比
以矩形管管節(jié)點為例,將本文建議公式與CIDECT規(guī)范公式得到的承載力繪于圖9中,進(jìn)行對比分析。
由圖9可知:對于β<0.85范圍內(nèi),本文建議公式計算結(jié)果基本大于CIDECT規(guī)范中屈服線模型計算結(jié)果,可見CIDECT規(guī)范僅考慮主管屈服變形,過低估計了節(jié)點承載力;對于0.85<β<1-1/γ范圍內(nèi),本文建議公式計算結(jié)果基本小于CIDECT規(guī)范中沖剪模型計算結(jié)果,可見CIDECT規(guī)范僅考慮主管抗剪破壞,過高估計了節(jié)點承載力。同時,本文建議公式計算結(jié)果在β參數(shù)范圍內(nèi)連續(xù),在節(jié)點承載力驗算時簡化了β的判定,易于工程人員使用,并且更好揭示了矩形鋼管節(jié)點主管破壞機(jī)理。5結(jié)語
(1)基于屈服線模型和沖剪模型對CIDECT規(guī)范中矩形管管節(jié)點和板管節(jié)點主管破壞模式的適用范圍進(jìn)行理論分析,矩形管管節(jié)點計算方法對應(yīng)的β適用范圍基本合理,而對于板管節(jié)點,該規(guī)范中計算方法對應(yīng)的β適用范圍應(yīng)為:當(dāng)0.12≤β≤0.94時,按屈服線模型計算;當(dāng)0.94≤β≤1-1/γ時,按沖剪模型計算。
(2)充分考慮支管剛度的變化以及主管屈服和剪切性能,給出屈服線和沖剪綜合破壞的承載力計算公式。通過對比分析可知,CIDECT規(guī)范計算結(jié)果偏保守,而本文計算結(jié)果與試驗結(jié)果吻合良好。
(3)將本文計算公式與CIDECT規(guī)范公式進(jìn)行對比可知,對于β<0.85范圍內(nèi),CIDECT規(guī)范僅考慮主管屈服變形,過低估計了節(jié)點承載力,而對于0.85<β<1-1/γ范圍內(nèi),CIDECT規(guī)范僅考慮主管抗剪破壞,過高估計了節(jié)點承載力。本文建議公式使用時簡化了破壞模式的判定,易于工程人員使用,并且更好揭示了矩形鋼管節(jié)點主管破壞機(jī)理。
參考文獻(xiàn):
References:[1]WARDENIER J,PACKER J A,ZHAO X L,et al.Hollow Sections in Structural Applications[M].Zoetermeer:Bouwen Met Staal,2010.
[2]劉永健.矩形鋼管混凝土桁架節(jié)點極限承載力試驗與設(shè)計方法研究[D].長沙:湖南大學(xué),2003.
LIU Yongjian.Experiments on Ultimate Bearing Capacity and Research on Design Method of Joints of Concretefilled Rectangular Steel Tube Truss[D].Changsha:Hunan University,2003.
[3]BAUER D,REDWOOD R G.Triangular Truss Joints Using Rectangular Tubes[J].Journal of Structural Engineering,1988,114(2):408424.
[4]HAN L H,LI W,BJORHOVDE R.Developments and Advanced Applications of Concretefilled Steel Tubular (CFST) Structures:Members[J].Journal of Constructional Steel Research,2014,100:211228.
[5]ZHAO X L.Deformation Limit and Ultimate Strength of Welded Tjoints in Coldformed RHS Sections[J].Journal of Constructional Steel Research,2000,53(2):149165.
[6]TIMO B,GARY M.A New Yield Line Theory Based Design Approach for Ultimate Capacity of Welded RHS Xjoints[C]//JARMAL K,F(xiàn)ARKAS J.Design,F(xiàn)abrication and Economy of Welded Structures.Amsterdam:Elsevier,2008:271278.
[7]ZHAO X L,HANCOCK G J.Tjoints in Rectangular Hollow Sections Subject to Combined Actions[J].Journal of Structural Engineering,1991,117(8):22582277.
[8]YU Y.The Static Strength of Uniplanar and Multiplanar Tubular Connections in Rectangular Hollow Sections[D].Delft:Delft University of Technology,1997.
[9]ZHAO X L,HANCOCK G J.Square and Rectangular Hollow Sections Subject to Combined Actions[J].Journal of Structural Engineering,1992,118(3):648667.
[10]武振宇,張耀春.直接焊接T型鋼管節(jié)點性能的試驗研究[J].鋼結(jié)構(gòu),1999,14(2):3640.
WU Zhenyu,ZHANG Yaochun.Experimental Study of Directly Welded Ttype Steel Tubular Joints[J].Steel Construction,1999,14(2):3640.
[11]趙鵬飛,趙志雄,錢基宏,等.復(fù)合受力狀態(tài)下矩形鋼管相貫節(jié)點的試驗研究[J].建筑結(jié)構(gòu)學(xué)報,2005,26(6):7185.
ZHAO Pengfei,ZHAO Zhixiong,QIAN Jihong,et al.Experimental Research on the RHS Joints with Combined Load Cases[J].Journal of Building Structures,2005,26(6):7185.
[12]趙鵬飛,錢基宏,趙基達(dá),等.單項受力狀態(tài)下矩形鋼管相貫節(jié)點的承載力研究[J].建筑結(jié)構(gòu)學(xué)報,2005,26(6):5463.
ZHAO Pengfei,QIAN Jihong,ZHAO Jida,et al.Research on the Loadcarrying Capacity of RHS Joints with Individual Load Case[J].Journal of Building Structures,2005,26(6):5463.
[13]WARDENIER J,CHOO Y S.Recent Developments in Welded Hollow Section Joint Recommendations[J].Advanced Steel Construction,2006,2(2):109127.
[14]ZHAO X L,WARDENIER J,PACKER J A,et al.Current Static Design Guidance for Hollowsection Joints[J].Structures and Buildings,2010,163(6):361373.
[15]DAVIES G,CROCKETT P.The Strength of Welded TDT Joints in Rectangular and Circular Hollow Section Under Variable Axial Loads[J].Journal of Constructional Steel Research,1996,37(1):131.
[16]PACKER J A,WARDENIER J,ZHAO X L,et al.Design Guide for Rectangular Hollow Section(RHS) Joints Under Predominantly Static Loading[M].2nd ed.Cologne:Verlag Tuvrheinland Press,2009.
[17]ISO/FDIS 14346:2012(E),Static Design Procedure for Welded Hollowsection Joints — Recommendations[S].
[18]CAO J J,PACKER J A,YANG G J.Yield Line Analysis of RHS Connections with Axial Loads[J].Journal of Constructional Steel Research,1998,48(1):125.
[19]DAVIES G,PACKER J A.Predicting the Strength of Branch Plate — RHS Connections for Punching Shear[J].Canadian Journal of Civil Engineering,1982,9(3):458467.
[20]WARDENIER J.Hollow Section Joints[M].Delft:Delft University Press,1982.