葉麗萍 胡靜濤 王春鳳
(吉林農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長(zhǎng)春130118)
樹突狀細(xì)胞與輪狀病毒相互作用機(jī)制研究進(jìn)展①
葉麗萍 胡靜濤 王春鳳
(吉林農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長(zhǎng)春130118)
輪狀病毒(Rotavirus,RV)屬于呼腸孤病毒科輪狀病毒屬成員,是引起嬰幼兒和其他幼齡動(dòng)物腹瀉的主要病原之一,全世界每年約有400 000名兒童因感染此病毒而死亡[1]。RV感染已成為全球性的健康問題,各國(guó)研究人員對(duì)其感染的特點(diǎn)、免疫反應(yīng)及疫苗開發(fā)做了大量的研究[2-4]。RV感染機(jī)體首先入侵腸道,以腸道黏膜免疫為主誘導(dǎo)機(jī)體免疫應(yīng)答[5,6],但其免疫機(jī)理目前尚未完全清楚,研究RV感染的黏膜免疫機(jī)制將對(duì)疫苗的開發(fā)和疾病的防治至關(guān)重要。黏膜免疫是連接固有免疫和獲得性免疫的橋梁,其中樹突狀細(xì)胞(Dendritic cells,DCs)作為重要的抗原遞呈細(xì)胞(Antigen presentation cells,APC)起著銜接固有免疫和獲得性免疫的關(guān)鍵免疫分子作用[7,8]。本文就RV感染對(duì)DCs的影響及相互作用機(jī)制的研究做一綜述。
RV感染機(jī)體主要入侵腸道上皮細(xì)胞而導(dǎo)致腸絨毛損傷,腸道DCs的表型各不相同,但多以CD11chighMHCⅡhighDCs為主[9]。根據(jù)胃腸道淋巴結(jié)、派氏集合淋巴結(jié)(Peyer′s patch,PP)等是否表達(dá)CD11b和CD8α,將DCs分為CD11c+CD11b+CD8α-、CD11c+CD11b-CD8α+、CD11c+CD11b-CD8α-及CD11c+CD11cintCD8α+B220+四個(gè)亞群[10]。腸道中CD103+DCs還可分為CD103+CD11b+和CD103+CD11b-兩個(gè)亞群,CD103+CD11b+DCs具有分泌淋巴細(xì)胞并促進(jìn)T細(xì)胞產(chǎn)生免疫應(yīng)答作用[9];而小腸黏膜固有層(Lamina propria,LP)中的CD103+DCs主要是CD11chiCD11bhiDCs亞群,能特異表達(dá)TLR5和誘導(dǎo)固有B細(xì)胞分化IgA+類漿細(xì)胞[11]。除此,Henri等[12]發(fā)現(xiàn)小鼠腸系膜淋巴結(jié)(Mesenteric lymph nodes,MLN)中存在CD11b+CD4+和CD4-CD8-DEC-205intDCs亞群。
DCs對(duì)腸黏膜部入侵的病原體起到免疫識(shí)別、免疫應(yīng)答和免疫調(diào)節(jié)作用,其數(shù)量和成熟狀態(tài)直接影響腸道免疫應(yīng)答能力。當(dāng)腸道發(fā)生感染,源于多能造血干細(xì)胞的未成熟DCs(Immature DCs,IDCs)通過外周血液循環(huán)進(jìn)入淋巴組織,攝取抗原發(fā)育為成熟DCs(Mature DCs,MDCs)并促進(jìn)T、B淋巴細(xì)胞產(chǎn)生相應(yīng)的免疫應(yīng)答。RV與DCs相互作用是誘導(dǎo)還是抑制DCs成熟,DCs如何在抗RV感染中起著銜接固有免疫和獲得性免疫關(guān)鍵分子作用,學(xué)者們做了大量研究。
2.1RV感染誘導(dǎo)/抑制DCs活化成熟 正常情況下絕大多數(shù)組織和器官內(nèi)的DCs屬于IDCs,起到免疫監(jiān)視作用,低表達(dá)共刺激分子CD80、CD86、CD40和MHCⅡ。當(dāng)病原體侵入機(jī)體,DCs被活化為MDCs抗原遞呈能力增強(qiáng),能夠有效的將處理的抗原遞呈給初始T細(xì)胞使之活化,從而啟動(dòng)免疫應(yīng)答[13,14]。DCs成熟主要表現(xiàn)為共刺激分子的表達(dá)上調(diào),趨化因子受體和細(xì)胞因子產(chǎn)生的變化,涉及到的信號(hào)通路包括NF-κB/IκBα、PI3K/Akt、MAPK/Erk/p38和MyD88/IRFs[14,15]。作者研究表明豬輪狀病毒DN30209株能誘導(dǎo)小鼠BMDCs的成熟與活化,上調(diào)表達(dá)MHCⅡ和共刺激分子CD40、CD80、CD86,DCs的抗原遞呈能力增強(qiáng),通過TLR3/TRIF/NF-κB信號(hào)和TLR2/MyD88/NF-κB信號(hào)通路參與免疫應(yīng)答。
RV感染促進(jìn)DCs活化成熟還是導(dǎo)致細(xì)胞凋亡仍無定論。Narvaez等[16]研究認(rèn)為RRV不誘導(dǎo)IDCs和MDCs凋亡,能誘導(dǎo)大約20%的IDCs成熟但不會(huì)改變MDCs的表型變化;互作用24 h后MDCs較IDCs表達(dá)更多的CD83和NSP4,表明RRV易感染MDCs。Istrate等[17]認(rèn)為活的牛輪狀病毒RF-81株(RFV)、RF 2/6-GFP-VLP和RF 8*2/6/7-VLP中RFV能上調(diào)共刺激分子CD86的表達(dá),刺激骨髓樹突細(xì)胞(Bone marrow-derived dendritic cells ,BMDCs)活化成熟,而且RFV能在BMDCs中表達(dá)病毒蛋白。Rodriguez等[18]的研究發(fā)現(xiàn),RRV感染Caco-2細(xì)胞上清液刺激IDC 與單純用RRV刺激IDC HLA-DR和CD86表達(dá)明顯增加;單純用RRV刺激IDCs可以提高CD83、HLA-DR、CD86的表達(dá)。Rosales-Martinez等[19]的研究則認(rèn)為恒河猴輪狀病毒(Rhesus monkey rotavirus,RRV)能活化新生兒臍帶血(Umbilical cord blood,UCB)DCs,上調(diào)表達(dá)CD40、CD86和MHCⅡ,流式細(xì)胞術(shù)檢測(cè)發(fā)現(xiàn)2% UCB DCs和28% PB DCs感染RRV。Mesa等[20]的研究認(rèn)為mDC和pDC與RRV作用的初期即被感染,pDC能產(chǎn)生RV特異性記憶性T細(xì)胞參與免疫反應(yīng)。
2.2RV感染的Toll樣受體信號(hào)通路 Toll樣受體(Toll-like receptors,TLRs)作為重要的病原體相關(guān)分子模式(Pathogen-associated molecular patterns, PAMP),其信號(hào)通路在誘導(dǎo)DCs成熟及激活固有免疫應(yīng)答過程中起著重要作用[21,22]。RV感染時(shí)單核細(xì)胞表達(dá)的TLRs可通過識(shí)別dsRNA激活NF-κB和干擾素途徑,導(dǎo)致細(xì)胞因子及輔助刺激分子的釋放,調(diào)節(jié)機(jī)體非特異性免疫應(yīng)答[22]。Pott等[23]的研究認(rèn)為RV感染后TLR3的表達(dá)量明顯高于TLR2、TLR4、TLR6-9,且成年鼠Tlr3誘導(dǎo)的免疫反應(yīng)能更有效地抑制RV復(fù)制。Rosales-Martinez等[19]研究認(rèn)為RRV能上調(diào)表達(dá)UCB DCs中TLR3、TLR4,產(chǎn)生大量的下游細(xì)胞因子IL-6、IL-12/23p40、IL-10、TGF-β、TNF-α和IFN-β,誘導(dǎo)Th1類細(xì)胞反應(yīng)參與免疫應(yīng)答。除此RV感染還可能與TLR2、TLR7、TLR8和TLR9參與并誘導(dǎo)致病后的免疫應(yīng)答有關(guān)[24,25]。
TLRs通過激活下游核轉(zhuǎn)錄因子(NF-κB)和干擾素調(diào)節(jié)因子3(IFR3)等誘導(dǎo)DCs分泌細(xì)胞因子和Ⅰ型干擾素,激活固有免疫應(yīng)答[22,26]。NF-κB的活化可以誘導(dǎo)多種抗炎細(xì)胞因子的分泌,刺激初始型CD4+T和CD8+T淋巴細(xì)胞,所以RV通過改變策略抑制NF-κB活化以保證病毒的復(fù)制[22,26]。Casola等[27]認(rèn)為RV感染能誘導(dǎo)IκB激酶β(IKK-β)大量活化從而減少NF-κB基因轉(zhuǎn)錄利于RV的復(fù)制[28]。在感染初期RV可短暫地阻斷STAT1、STAT2和NF-κB的活化逃避宿主固有免疫反應(yīng),但一些細(xì)胞因子可啟動(dòng)Jak-STAT信號(hào)途徑增強(qiáng)機(jī)體的抗RV能力[29]。與TLR2、TLR4、TLR7、TLR8屬于MyD88依賴型信號(hào)途徑不同,TLR3進(jìn)行MyD88非依賴型/TRIF依賴型的TLRs/NF-κB信號(hào)轉(zhuǎn)導(dǎo),誘導(dǎo)NF-κB晚期活化[26]。
2.3RV感染的干擾素途徑 病毒感染可通過AMP與模式識(shí)別受體(Pattern recognition receptors,PRRs)結(jié)合,通過TLRs和RLR通路而啟動(dòng)干擾素調(diào)控因子(Interferon regulatory factor, IRF),進(jìn)一步表達(dá)Ⅰ型IFNs(IFN-α和IFN-β)或Ⅱ型IFN(IFN-γ)參與抗病毒感染反應(yīng)[29]。IFN信號(hào)轉(zhuǎn)導(dǎo)通路主要通過啟動(dòng)JAK-STAT或PI3K、PKC、MAP激酶途徑分泌大量細(xì)胞因子產(chǎn)生抗病毒作用。NSP1與磷脂酰肌醇激酶-3(PI3K)亞基P85相互作用進(jìn)而活化抗細(xì)胞凋亡 PI3K/Akt通路,這一通路的活化有利于RV的復(fù)制[30,31]。Douagi等[32]的研究則認(rèn)為RRV和UV-treated RV均能促進(jìn)mDCs 活化和產(chǎn)生Ⅰ型IFN,RRV刺激mDCs上調(diào)表達(dá)CD40也依賴于Ⅰ型IFN信號(hào)途徑,且Ⅰ型IFN的產(chǎn)生不經(jīng)過TLR依賴信號(hào)途徑。此外RV感染后NSP1通過蛋白激酶降解IRF3、IRF5和IRF7阻斷Ⅰ型IFN轉(zhuǎn)錄,逃避宿主固有免疫反應(yīng)[33,34]。恒河猴輪狀病毒RRV和人輪狀病毒W(wǎng)a株通過抑制STAT1和STAT2的核聚集對(duì)抗天然免疫過程中Ⅰ型和Ⅱ型IFN作用[29]。Sen等[35]認(rèn)為RV通過蛋白激酶R(PKP)依賴途徑分泌IFN-β,細(xì)胞缺乏PKR會(huì)導(dǎo)致IFN-β分泌量減少,機(jī)體抗RV反應(yīng)依賴線粒體抗病毒信號(hào)蛋白(MAVS/IPS-1)、維甲酸誘導(dǎo)基因IRIG-Ⅰ、黑色素瘤分化相關(guān)基因5(MDA-5)和IRF3的參與。
最近的研究表明包括IFN-λ1(IL-29),IFN-λ2(IL-28A)和IFN-λ3(IL-28B)的Ⅲ型IFNs也在固有免疫反應(yīng)中起著重要作用[36]。與IFN-αβ-R-/-型和野生型小鼠比較IFN-λ缺陷小鼠更易受到RV感染驗(yàn)證了上述觀點(diǎn),成年小鼠IFN-λ表達(dá)需要完整的Tlr3/Trif信號(hào)[34]??傊甊V感染機(jī)體Ⅰ型IFNs(IFNα/β)和Ⅲ型IFN(IFN-λ)都起著重要的抗病毒作用,它們的作用大小取決于病毒株的自然狀態(tài)、病毒復(fù)制部位、IFN-λ的協(xié)同效應(yīng)、病毒復(fù)制持續(xù)的時(shí)間及宿主的年齡等因素[37]。
2.4RV感染介導(dǎo)T細(xì)胞、B細(xì)胞免疫反應(yīng) DCs根據(jù)來源不同分為主要表達(dá)CD11c+的髓細(xì)胞來源DCs(DC1)和CD123+的漿細(xì)胞來源DCs(DC2)。DC1成熟活化后分泌大量IL-12、IL-β、IL-2α、IL-6、IL-10等促炎性細(xì)胞因子,促使CD4+T細(xì)胞向Th1分化;而DC2活化后主要分泌IL-8促使CD4+T細(xì)胞向Th2分化[38,39],CD4+T細(xì)胞及其分泌的相關(guān)細(xì)胞因子能有效防止RV的再次感染。Jiang等[39]檢測(cè)嬰幼兒急性RV感染IL-1β、IL-2、IL-4、IL-6、IL-10、IL-12、IFN-γ、TNF-α的變化情況,結(jié)果IL-6、IL-10和IFN-γ表達(dá)量明顯增高,暗示RV自然感染時(shí)Th1和Th2類細(xì)胞因子都發(fā)揮作用且急性感染后期以IL-12和IFN-γ為主的Th1 類細(xì)胞反應(yīng)為主[40]。Wang等[41]研究認(rèn)為,Wa株RV感染細(xì)胞能誘導(dǎo)TLR4、TLR5、TLR7和TLR9基因活化并刺激下游IFN-α、IFN-β、TNF-α、IL-6、IL-8和IL-17細(xì)胞因子的表達(dá),參與細(xì)胞免疫應(yīng)答。Narvaez等[16]的研究認(rèn)為RV感染DCs不誘導(dǎo)IDC和MDC死亡,促進(jìn)IDC分泌IL-6,但I(xiàn)L-1β、 IL-8、 IL-10、 IL-12、TNF-α、IFN-β分泌較少;MDC分泌IL-6和少量的IL-10和IL-12p70。
B細(xì)胞在抗RV感染中也起著重要作用,RV感染小鼠的脾臟和骨髓中IgG和IgA表達(dá)B細(xì)胞利于RV的清除,急性感染期黏膜B細(xì)胞也參與免疫反應(yīng)[42]。Fenaux等[40]研究發(fā)現(xiàn),RRV感染小鼠MLN中可檢測(cè)到大量感染的B細(xì)胞和DCs,且NSP4陽性細(xì)胞能表達(dá)pDCs 標(biāo)志分子B220、mDCs 標(biāo)志分子CD11c以及CD11b。Deal等[43]的研究認(rèn)B細(xì)胞識(shí)別的Ⅰ型IFN對(duì)RV調(diào)節(jié)的B細(xì)胞活化至關(guān)重要,RV感染鼠小腸中pDCs和IFN-α/β參與B細(xì)胞活化,RV刺激的pDCs與αIFN-α共培養(yǎng)能明顯增加CD69+B細(xì)胞的表達(dá)。Pane等[44]的研究則認(rèn)為RRV感染后B細(xì)胞的活化需要CD11c+DC的參與,Ⅰ型IFN能直接增加DCs和B細(xì)胞向T細(xì)胞遞呈抗原的能力。
綜上所述,DC通過攝取、處理、遞呈病毒粒子并產(chǎn)生相應(yīng)的免疫應(yīng)答,參與機(jī)體的抗RV感染作用。但是,病原體會(huì)通過抑制DC成熟、改變體內(nèi)DC數(shù)量、促進(jìn)DC凋亡、阻止DC遷移等多種方式逃避機(jī)體的免疫識(shí)別。隨著對(duì)RV感染免疫機(jī)制的不斷深入研究,細(xì)胞免疫和體液免疫的研究取得了巨大進(jìn)展,但對(duì)RV感染的天然免疫和腸道黏膜免疫研究相對(duì)較少。更加深入地研究RV感染與宿主細(xì)胞互作機(jī)制、RV感染對(duì)DC的影響將更全面的了解RV感染致腸炎的發(fā)病機(jī)理及抗RV感染天然免疫機(jī)制,對(duì)有效預(yù)防RV感染,促進(jìn)抗RV疫苗的研發(fā)具有重要意義。
[1] Cherian T,Wang S,Mantel C.Rotavirus vaccines in developing countries:the potential impact,implementation challenges,and remaining questions[J].Vaccine,2012,30(Suppl 1):A3-A6.
[2] Cevallos PD,Lopez S,Arias CF,etal.Polarized rotavirus entry and release from differentiated small intestinal cells[J].Virology,2016,499:65-71.
[3] Gruber JF,Hille DA,Liu GF,etal.Heterogeneity of rotavirus vaccine efficacy among infants in developing countries[J].Pediatric Infect Dis J,2016,36(1):72-78.
[4] Glass RI,Parashar UD,Bresee JS,etal.Rotavirus vaccines:current prospects and future challenges[J].Lancet,2006,368(9532):323-332.
[5] Wang J,Hu G,Gao W,etal.Immortalized porcine intestinal epithelial cell cultures susceptible to porcine rotavirus infection[J].J Virol Methods,2014,202:87-94.
[6] Li M,Monaco MH,Wang M,etal.Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota[J].ISME J,2014,8(8):1609-1620.
[7] Lee HK,Iwasaki A.Innate control of adaptive immunity:dendritic cells and beyond[J].Semin Immunol,2007,19(1):48-55.
[8] Ke N,Su A,Huang W,etal.Regulating the expression of CD80/CD86 on dendritic cells to induce immune tolerance after xeno-islet transplantation[J].Immunobiology,2016,221(7):803-812.
[9] Denning TL,Norris BA,Medina-Contreras O,etal.Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio,source of mouse strain,and regional localization[J].J Immunol,2011,187(2):733-747.
[10] Bilsborough J,Viney JL.Gastrointestinal dendritic cells play a role in immunity,tolerance,and disease[J].Gastroenterology,2004,127(1):300-309.
[11] Fujimoto K,Karuppuchamy T,Takemura N,etal.A new subset of CD103+CD8alpha+dendritic cells in the small intestine expresses TLR3,TLR7,and TLR9 and induces Th1 response and CTL activity[J].J Immunol,2011,186(11):6287-6295.
[12] Henri S,Vremec D,Kamath A,etal.The dendritic cell populations of mouse lymph nodes[J].J Immunol,2001,167(2):741-748.
[13] Liu K,Nussenzweig MC.Origin and development of dendritic cells[J].Immunol Rev,2010,234(1):45-54.
[14] Xu WD,Wang J,Yuan TL,etal.Interactions between canonical Wnt signaling pathway and MAPK pathway regulate differentiation,maturation and function of dendritic cells[J].Cell Immunol,2016,310:170-177.
[15] Hu Y,Parkmin KH,Yarilina A,etal.Regulation of STAT pathways and IRF1 during human dendritic cell maturation by TNF-alpha and PGE2[J].J Leukoc Biol,2008,84(5):1353-1360.
[16] Narvaez CF,Angel J,Franco MA.Interaction of rotavirus with human myeloid dendritic cells[J].J Virol,2005,79(23):14526-14535.
[17] Istrate C,Douagi I,Charpilienne A,etal.Bone marrow dendritic cells internalize live RF-81 bovine rotavirus and rotavirus-like particles(RF 2/6-GFP-VLP and RF 8*2/6/7-VLP)but are only activated by live bovine rotavirus[J].Scand J Immunol,2007,65(6):494-502.
[18] Rodriguez LS,Narvaez CF,Rojas OL,etal.Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response[J].Cell Immunol,2012,272(2):154-161.
[19] Rosales-Martinez D,Gutierrez-Xicotencatl L,Badillo-Godinez O,etal.Rotavirus activates dendritic cells derived from umbilical cord blood monocytes[J].Micro Pathog,2016,99:162-172.
[20] Mesa MC,Rodriguez LS,Franco MA,etal.Interaction of rotavirus with human peripheral blood mononuclear cells:plasmacytoid dendritic cells play a role in stimulating memory rotavirus specific T cells in vitro[J].Virology,2007,366(1):174-184.
[21] Liang J,Fu J,Kang H,etal.The stimulatory effect of TLRs ligands on maturation of chicken bone marrow-derived dendritic cells[J].Vet Immunol Immunopathol,2013,155(3):205-210.
[22] Lopez S,Sanchez-Tacuba L,Moreno J,etal.Rotavirus strategies against the innate antiviral system[J].Annu Rev Virol,2016,3(1):591-609.
[23] Pott J,Stockinger S,Torow N,etal.Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility[J].PLoS Pathog,2012,8(5):e1002670.
[24] Xu J,Yang Y,Sun J,etal.Expression of Toll-like receptors and their association with cytokine responses in peripheral blood mononuclear cells of children with acute rotavirus diarrhoea[J].Clin Exp Immunol,2006,144(3):376-381.
[25] Lopez-Guerrero DV,Meza-Perez S,Ramirez-Pliego O,etal.Rotavirus infection activates dendritic cells from Peyer′s patches in adult mice[J].J Virol,2010,84(4):1856-1866.
[26] Liu K,Yang X,Wu Y,etal.Rotavirus strategies to evade host antiviral innate immunity[J].Immunol Lett,2009,127(1):13-18.
[27] Casola A,Garofalo RP,Crawford SE,etal.Interleukin-8 gene regulation in intestinal epithelial cells infected with rotavirus:role of viral-induced IkappaB kinase activation[J].Virology,2002,298(1):8-19.
[28] Alaniz RC,Sandall S,Thomas EK,etal.Increased dendritic cell numbers impair protective immunity to intracellular bacteria despite augmenting antigen-specific CD8+T lymphocyte responses[J].J Immunol,2004,172(6):3725-3735.
[29] Holloway G,Truong TT,Coulson BS.Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1,STAT2,and NF-kappaB[J].J Virol,2009,83(10):4942-4951.
[30] Bagchi P,Bhowmick R,Nandi S,etal.Rotavirus NSP1 inhibits interferon induced non-canonical NFkappaB activation by interacting with TNF receptor associated factor 2[J].Virology,2013,444(1-2):41-44.
[31] Bagchi P,Dutta D,Chattopadhyay S,etal.Rotavirus nonstructural protein 1 suppresses virus-induced cellular apoptosis to facilitate viral growth by activating the cell survival pathways during early stages of infection[J].J Virol,2010,84(13):6834-6845.
[32] Douagi I,McInerney GM,Hidmark AS,etal.Role of interferon regulatory factor 3 in type I interferon responses in rotavirus-infected dendritic cells and fibroblasts[J].J Virol,2007,81(6):2758-2768.
[33] Sen A,Feng N,Ettayebi K,etal.IRF3 inhibition by rotavirus NSP1 is host cell and virus strain dependent but independent of NSP1 proteasomal degradation[J].J Virol,2009,83(20):10322-10335.
[34] Pott J,Mahlakoiv T,Mordstein M,etal.IFN-lambda deter mines the intestinal epithelial antiviral host defense[J].Proc Natl Acad Sci U S A,2011,108(19):7944-7949.
[35] Sen A,Pruijssers AJ,Dermody TS,etal.The early interferon response to rotavirus is regulated by PKR and depends on MAVS/IPS-1,RIG-I,MDA-5,and IRF3[J].J Virol,2011,85(8):3717-3732.
[36] Donnelly RP,Kotenko SV.Interferon-lambda:a new addition to an old family[J].J Interferon Cytokine Res,2010,30(8):555-564.
[37] Sen A,Rothenberg ME,Mukherjee G,etal.Innate immune response to homologous rotavirus infection in the small intestinal villous epithelium at single-cell resolution[J].Proc Natl Acad Sci U S A,2012,109(50):20667-20672.
[38] Ma X,Yan W,Zheng H,etal.Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells[J].F1000Res,2015,4:F1000.
[39] Jiang B,Snipes-Magaldi L,Dennehy P,etal.Cytokines as mediators for or effectors against rotavirus disease in children[J].Clin Diagn Lab Immunol,2003,10(6):995-1001.
[40] Fenaux M,Cuadras MA,Feng N,etal.Extraintestinal spread and replication of a homologous EC rotavirus strain and a heterologous rhesus rotavirus in BALB/c mice[J].J Virol,2006,80(11):5219-5232.
[41] Wang H,Moon S,Wang Y,etal.Multiple virus infection alters rotavirus replication and expression of cytokines and Toll-like receptors in intestinal epithelial cells[J].Virus Res,2012,167(1):48-55.
[42] Wen K,Bui T,Weiss M,etal.B-cell-deficient and CD8 T-cell-depleted gnotobiotic pigs for the study of human rotavirus vaccine-induced protective immune responses[J].Viral Immunol,2016,29(2):112-127.
[43] Deal EM,Lahl K,Narvaez CF,etal.Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses[J].J Clin Invest,2013,123(6):2464-2474.
[44] Pane JA,Webster NL,Zufferey C,etal.Rotavirus acceleration of murine type 1 diabetes is associated with increased MHC class I-restricted antigen presentation by B cells and elevated proinflammatory cytokine expression by T cells[J].Virus Res,2014,179:73-84.
[收稿2016-09-03 修回2016-11-05]
(編輯 許四平)
10.3969/j.issn.1000-484X.2017.06.030
①本文受國(guó)家“863”計(jì)劃項(xiàng)目(2013AA102806)、國(guó)家自然科學(xué)基金項(xiàng)目(31272541, 31272552)和吉林省科技發(fā)展計(jì)劃項(xiàng)目(20160519011)資助。
葉麗萍(1975年-),女,碩士,高級(jí)實(shí)驗(yàn)師,主要從事動(dòng)物微生態(tài)學(xué)與動(dòng)物黏膜免疫方面的研究,E-mail: yeliping1114@163.com。
及指導(dǎo)教師:王春鳳(1972年-),女,博士,教授,主要從事動(dòng)物微生態(tài)學(xué)與動(dòng)物黏膜免疫方面的研究, E-mail: wangchunfeng@jlau.edu.cn。
S852.65+9.4
A
1000-484X(2017)06-0947-04