王 楓,張 遐,2
(1.中國(guó)人民解放軍第四軍醫(yī)大學(xué)西京醫(yī)院麻醉科,陜西西安 710032;2.Institute of Mental Health Research,University of Ottawa,Ottawa K1Z7K4,Canada)
內(nèi)源性大麻素(endocannabinoids,eCB)系統(tǒng)廣泛分布于中樞神經(jīng)系統(tǒng),發(fā)揮廣泛而復(fù)雜的調(diào)控作用,包括對(duì)痛覺、運(yùn)動(dòng)功能、情緒情感以及學(xué)習(xí)和記憶的調(diào)控。它可以構(gòu)成復(fù)雜的信號(hào)通路[1],參與多種形式的突觸傳遞的調(diào)控[2-3]。eCB系統(tǒng)由eCB〔包括花生四烯酸乙醇胺(anandamide,AEA)和2-花生?;视停?-arachidonoylglycerol,2-AG)〕、大麻素受體1(cannabinoid receptor 1,CB1R)和CB2R、代謝酶和轉(zhuǎn)運(yùn)體等組成。其中,AEA是一種具有高親和力、低效能的CB1R激動(dòng)劑,也可以激活突觸后瞬時(shí)電壓受體陽(yáng)離子通道Ⅴ亞型1型受體(transient receptor potential cation channel subfamilyⅤmember 1,TRPⅤ1)誘導(dǎo)長(zhǎng)時(shí)程抑制(long-term depression,LTD)的產(chǎn)生。腦內(nèi)2-AG的含量是AEA的200倍[4],與CB1R的親和力較低,但它除了可以激活CB1R外,還可以激活CB2R[5]。與經(jīng)典的神經(jīng)遞質(zhì)不同,eCB不是預(yù)先合成并儲(chǔ)存在突觸前膜的囊泡中,而是在突觸后膜“按需合成”(on-demand)[6],當(dāng)突觸后細(xì)胞內(nèi)Ca2+濃度增加或磷脂酶Cβ活性增強(qiáng)時(shí)刺激合成2-AG,但對(duì)AEA合成機(jī)制目前尚未闡明。eCB合成后,逆行運(yùn)輸?shù)酵挥|前膜與突觸前膜CB1R結(jié)合,誘導(dǎo)去極化誘發(fā)的抑制性抑制(depolarization-induced suppression of inhibition,DSE)/去極化誘發(fā)的興奮性抑制(depolarization-induced suppression of excitation,DSI),通過調(diào)節(jié)突觸的可塑性,從而影響多種神經(jīng)活動(dòng)[6]。
CB1R是eCB系統(tǒng)的主要受體之一,與配體結(jié)合的主要作用是抑制突觸前膜多種神經(jīng)遞質(zhì)的釋放,在焦慮、恐懼和應(yīng)激等相關(guān)腦區(qū)中都有廣泛的表達(dá),包括海馬、前額葉皮質(zhì)、終紋床核、基底外側(cè)杏仁核、中央杏仁核和下丘腦等核團(tuán)[7]。已證實(shí),CB1R在膽囊收縮素(cholecystokinin,CCK)陽(yáng)性的γ氨基丁酸(γ-aminobutynic acid,GABA)能中間神經(jīng)元中高表達(dá),而在其他亞型,如鈣蛋白酶和小清蛋白陽(yáng)性中間神經(jīng)元中基本上不存在[8-9]。CB1R也表達(dá)于膽堿能、5-羥色胺(5-hydroxytryptamine,5-HT)能和去甲腎上腺素能系統(tǒng),而eCB系統(tǒng)參與抑制這些神經(jīng)遞質(zhì)的釋放[10-11];在皮質(zhì)的谷氨酸能神經(jīng)元中,CB1R表達(dá)水平更低[1,8],但已被證明具有包括調(diào)控突觸傳遞和神經(jīng)元興奮性等重要功能[3,12-13]。在神經(jīng)活動(dòng)的調(diào)節(jié)中發(fā)揮非常重要的作用[7]。近年來的研究證明,星形膠質(zhì)細(xì)胞上也存在CB1R,但其含量遠(yuǎn)低于神經(jīng)元[14]。本實(shí)驗(yàn)室前期研究證實(shí),星形膠質(zhì)細(xì)胞上的CB1R在大麻成癮相關(guān)記憶形成[15]以及大麻引起的空間記憶功能損傷[16]中發(fā)揮重要作用。而CB2R僅在小膠質(zhì)細(xì)胞中表達(dá),特別是在活化的小膠質(zhì)細(xì)胞中,但是小膠質(zhì)細(xì)胞中是否有CB1R表達(dá)還有待進(jìn)一步的研究[17]。
病理性焦慮是精神疾病的最常見的類型之一,人群患病率高達(dá)29%[18]。目前一線抗焦慮藥物中,選擇性5-HT/去甲腎上腺素能再攝取抑制劑起效慢且副作用較強(qiáng);而快速起效的抗焦慮藥苯二氮卓艸類藥物則會(huì)產(chǎn)生嚴(yán)重的副作用。多項(xiàng)研究顯示,eCB系統(tǒng)參與焦慮樣行為的調(diào)節(jié):①低劑量大麻通過皮質(zhì)谷氨酸能神經(jīng)元上CB1R產(chǎn)生抗焦慮效應(yīng)[19],而高劑量大麻則通過前腦GABA能神經(jīng)元上CB1R導(dǎo)致焦慮樣行為的產(chǎn)生[20];②全腦敲除CB1R導(dǎo)致焦慮樣行為的增加[21];③敲除2-AG合成酶會(huì)導(dǎo)致焦慮樣行為顯著增多[22];④在海馬谷氨酸能神經(jīng)元中過表達(dá)2-AG水解酶也會(huì)導(dǎo)致焦慮樣行為的增多[23],而藥物抑制其活性則產(chǎn)生抗焦慮作用[24];⑤基因敲除或藥物抑制AEA水解酶〔即脂肪酸酰胺水解酶(fatty acid amidehydrolase,F(xiàn)AAH)〕能產(chǎn)生抗焦慮效應(yīng)[25-27],且無大麻所產(chǎn)生的副作用。
研究發(fā)現(xiàn),無論是強(qiáng)迫游泳造成的急性應(yīng)激誘導(dǎo)的焦慮,還是長(zhǎng)期口服皮質(zhì)激素造成慢性應(yīng)激導(dǎo)致的焦慮,F(xiàn)AAH抑制劑PF3845都表現(xiàn)出快速且長(zhǎng)時(shí)程的抗焦慮效應(yīng)[28]。使用在體電生理技術(shù)記錄小鼠前額葉皮質(zhì)(prefrontal cortex,PFC)-杏仁基底外側(cè)核(basolateral amygdale,BLA)錐體神經(jīng)元的場(chǎng)興奮性突觸后電位(field excitatory postsynaptic potential,fEPSC),腹腔內(nèi)注射 PF3845能減少PFC-BLA突觸fEPSC的振幅,誘導(dǎo)產(chǎn)生長(zhǎng)時(shí)程抑制(long-term depression,LTD)[28]。CB1R拮抗劑AM281能阻斷此LTD的產(chǎn)生,使用N-甲基-D-天門冬氨酸2B型受體(N-methyl-D-aspartic acid 2B,NR2BR)以及α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體(α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor,AMPAR)內(nèi)吞的阻斷劑Ro25-6981和Tat-GluR2能阻斷PF3845誘導(dǎo)的PFC-BLA突觸的LTD。因此,以上結(jié)果說明,PF3845引起的AEA含量上升是通過激活星形膠質(zhì)細(xì)胞上的CB1R,引起神經(jīng)元的NR2BR激活以及AMPAR內(nèi)吞,進(jìn)而誘導(dǎo)產(chǎn)生LTD[28]。在膠質(zhì)纖維酸性蛋白(glial fibrillary acidic portein,GFAP)-CB1RWT,鈣調(diào)素依賴性蛋白激酶Ⅱ(calcium-calmodulin dependent protein kinaseⅡ,CamKⅡ)-CB1R-WT以及CamKⅡ-CB1R-KO小鼠中,腹腔注射PF3845能減少PFC-BLA fEPSC的振幅、誘導(dǎo)產(chǎn)生LTD、發(fā)揮快速抗抑郁作用。然而PF3845在GFAP-CB1RKO小鼠中無法誘導(dǎo)產(chǎn)生LTD,其在急性應(yīng)激中的抗焦慮作用也隨之消失。FAAH抑制劑通過在BLA區(qū)誘導(dǎo)LTD發(fā)揮快速抗焦慮作用,并且此LTD是由星形膠質(zhì)細(xì)胞上的CB1R受體介導(dǎo)產(chǎn)生的[28]。
約有30%的女性以及15%的男性在一生中都發(fā)生過抑郁這一情感障礙[29]。而目前針對(duì)抑郁癥的藥物比較局限,傳統(tǒng)的抗抑郁藥總體有效率低、起效慢(大概需要數(shù)周才能起效)。多項(xiàng)證據(jù)顯示,eCB可能具備潛在的抗抑郁效應(yīng)[30-32]:①逆轉(zhuǎn)急性及慢性應(yīng)激反應(yīng);②產(chǎn)生包括神經(jīng)發(fā)生和突觸可塑性改變?cè)趦?nèi)的抗抑郁作用;③抑郁癥患者eCB水平較低;④歐洲及美國(guó)的臨床試驗(yàn)顯示,使用選擇性CB1R受體拮抗劑利莫那班(rimonabant)治療肥胖的副作用之一就是誘發(fā)抑郁。近年研究顯示,上調(diào)AEA能治療急性應(yīng)激引起的抑郁[31,33]。此外,雖然每天在應(yīng)激前注射2-AG水解酶(monoacylglycerol lipase,MAGL)抑制劑JZL184(8 mg·kg-1)能阻止抑郁行為的產(chǎn)生[34-35],但JZL184不能逆轉(zhuǎn)慢性應(yīng)激誘導(dǎo)的抑郁[35],即不同劑量的MAGL抑制劑對(duì)于急慢性應(yīng)激可能產(chǎn)生抗抑郁和促抑郁的雙向效應(yīng)。
研究發(fā)現(xiàn),在急性應(yīng)激狀態(tài)下,即強(qiáng)迫游泳前2 h給予MAGL抑制劑JZL184(5 mg·kg-1)能明顯對(duì)抗急性應(yīng)激所致的絕望行為,減少?gòu)?qiáng)迫游泳的不動(dòng)時(shí)間。然而,該劑量對(duì)處于慢性應(yīng)激狀態(tài)的小鼠并不產(chǎn)生抗抑郁效應(yīng)。腦片電生理和細(xì)胞特異性條件性CB1R敲除小鼠的實(shí)驗(yàn)結(jié)果證實(shí),JZL184上調(diào)突觸間隙2-AG含量,作用于海馬星形膠質(zhì)細(xì)胞CB1R,上調(diào)細(xì)胞間隙谷氨酸含量。谷氨酸作用于突觸后膜NR2B受體,介導(dǎo)AMPA受體內(nèi)吞,誘導(dǎo)產(chǎn)生LTD,對(duì)抗急性應(yīng)激引起的抑郁樣行為,有趣的是,高劑量JZL184(20 mg·kg-1)對(duì)于暴露于急性和慢性應(yīng)激的小鼠分別表現(xiàn)出促進(jìn)抑郁樣行為的產(chǎn)生和抗抑郁效應(yīng)。對(duì)于慢性應(yīng)激的小鼠,其抗抑郁效應(yīng)可能與GABA能神經(jīng)元CB1R被激活引起DSI效應(yīng)導(dǎo)致GABA能突觸去抑制有關(guān)[36]。
研究發(fā)現(xiàn),全麻藥物對(duì)同一神經(jīng)核團(tuán)的不同投射區(qū)域可能發(fā)揮著完全不同的作用,提示全麻藥物對(duì)中樞神經(jīng)系統(tǒng)的調(diào)控很可能是通過復(fù)雜的神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)的。因此,有研究者提出了神經(jīng)環(huán)路的網(wǎng)絡(luò)調(diào)控學(xué)說。但全麻藥物如何實(shí)現(xiàn)對(duì)神經(jīng)網(wǎng)絡(luò)的調(diào)控,依然是一個(gè)完全空白的領(lǐng)域。eCB作為一種逆行作用突觸的神經(jīng)遞質(zhì),對(duì)興奮性突觸和抑制性突觸均有調(diào)節(jié)作用;而全麻藥物,尤其是吸入性麻醉藥,能夠引起興奮/抑制作用的雙向性改變。一項(xiàng)結(jié)合行為學(xué)、腦片電生理、化學(xué)遺傳學(xué)(designer receptor exclusively activated by designer drugs,DREADD)、免疫電鏡和腦電監(jiān)測(cè)等技術(shù),基于6種模式動(dòng)物的研究證實(shí),下丘腦背內(nèi)側(cè)核(dorsomedial hypothalamic nucleus,DMH)在eCB調(diào)節(jié)全麻后意識(shí)恢復(fù)中發(fā)揮著核心作用[37]。細(xì)胞特異性條件性CB1R敲除小鼠以及基于環(huán)化重組酶/loxP位點(diǎn)(cyclization recombination enzyme/lox sequences,Cre-loxp)技術(shù)的核團(tuán)特異性細(xì)胞特異性CB1R敲除小鼠進(jìn)一步證實(shí),DMH興奮性突觸上的CB1R被激活后,可以同時(shí)興奮核團(tuán)內(nèi)的2種主要神經(jīng)元,即谷氨酸能和GABA能神經(jīng)元,并產(chǎn)生雙向投射路徑。其中,谷氨酸能神經(jīng)元主要投射到促覺醒的穹窿周圍區(qū)(perifornical area,Pef);而GABA能神經(jīng)元?jiǎng)t投射至促睡眠的腹外側(cè)視前區(qū)(ventrolateral preoptic area,VLPO)。應(yīng)用DREADD技術(shù)選擇性阻斷其中任一投射,都能逆轉(zhuǎn)CB1R拮抗劑AM281所產(chǎn)生的促進(jìn)全麻后意識(shí)恢復(fù)的作用;而支配DMH的興奮性突觸則主要來自PFC內(nèi)的谷氨酸能神經(jīng)元,而非視交叉上核。由此繪制出的PFC-DMH-Pef/VLPO環(huán)路是調(diào)控麻醉后意識(shí)恢復(fù)的關(guān)鍵神經(jīng)環(huán)路,而eCB系統(tǒng)對(duì)這一環(huán)路具有極為關(guān)鍵的調(diào)控作用[37]。
上述研究的科學(xué)意義是:①首次從神經(jīng)環(huán)路水平解析了麻醉覺醒的機(jī)制,對(duì)于未來利用同樣的方法來闡述麻醉藥物作用機(jī)制的神經(jīng)環(huán)路基礎(chǔ),具有極為重要的意義;②部分地解答了睡眠-覺醒轉(zhuǎn)化的過程中,興奮/抑制雙重神經(jīng)調(diào)控的平衡問題;③該項(xiàng)研究繪制出eCB調(diào)控麻醉覺醒的關(guān)鍵神經(jīng)環(huán)路,即PFCDMH-Pef/VLPO環(huán)路,對(duì)于人們揭示全麻藥物的作用機(jī)制,甚至于睡眠的機(jī)制都有非常重要的意義。
eCB系統(tǒng)在進(jìn)化上高度保守,尤其是其Ⅰ型受體CB1R。CB1R是果蠅、斑馬魚、嚙齒類動(dòng)物、非人靈長(zhǎng)類動(dòng)物以及人類腦內(nèi)表達(dá)最為豐富的G蛋白偶聯(lián)受體,研究已證實(shí),其在多種腦生理功能以及神經(jīng)精神疾病中都扮演著極為重要的角色。但由于其表達(dá)的細(xì)胞特異性、分布的核團(tuán)特異性以及可能存在的雌雄差異,eCB系統(tǒng)在大腦生理病理狀態(tài)下如何通過作用于不同神經(jīng)細(xì)胞中的CB1R、調(diào)控不同的神經(jīng)環(huán)路是一個(gè)亟待深入研究的問題。
[1 ]Katona I,F(xiàn)reund TF.Multiple functions of endocannabinoid signaling in the brain[J].Annu Rev Neurosci,2012,35:529-558.
[2 ]Castillo PE,Younts TJ,Chávez AE,Hashimotodani Y.Endocannabinoid signaling and synaptic function[J].Neuron,2012,76(1):70-81.
[3]Soltesz I,Alger BE,Kano M,Lee SH,Lovinger DM,Ohno-Shosaku T,et al.Weeding out bad waves:towards selective cannabinoid circuit control in epilepsy[J].Nat Rev Neurosci,2015,16(5):264-277.
[4]Shohami E,Cohen-Yeshurun A,Magid L,Algali M,Mechoulam R.Endocannabinoids and traumatic brain injury[J].Br J Pharmacol,2011,163(7):1402-1410.
[5]Gonsiorek W,Lunn C,F(xiàn)an X,Narula S,Lundell D,Hipkin RW.Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide[J].Mol Pharmacol,2000,57(5):1045-1050.
[6 ]Ohno-Shosaku T, Kano M. Endocannabinoidmediated retrograde modulation of synaptic transmission[J].Curr Opin Neurobiol,2014,29:1-8.
[7 ]Lutz B,Marsicano G,Maldonado R,Hillard CJ.The endocannabinoid system in guarding against fear,anxiety and stress[J].Nat Rev Neurosci,2015,16(12):705-718.
[8 ]Marsicano G,Lutz B.Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain[J].Eur J Neurosci,1999,11(12):4213-4225.
[9 ]Katona I,Sperlágh B,Sík A,K?falvi A,Vizi ES,Mackie K,et al.Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons[J].J Neurosci,1999,19(11):4544-4558.
[10 ]H?ring M,Marsicano G,Lutz B,Monory K.Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice[J].Neuroscience,2007,146(3):1212-1219.
[11 ]Nyíri G,Szabadits E,Cserép C,Mackie K,Shigemoto R,F(xiàn)reund TF.GABAB and CB1 cannabinoid receptor expression identifies two types of septal cholinergic neurons[J].Eur J Neurosci,2005,21(11):3034-3042.
[12 ]Marsicano G, Goodenough S, Monory K,Hermann H,Eder M,Cannich A,et al.CB1 cannabinoid receptors and on-demand defense against excitotoxicity[J].Science,2003,302(5642):84-88.
[13 ]Marinelli S,Pacioni S,Cannich A,Marsicano G,Bacci A.Self-modulation of neocortical pyramidal neurons by endocannabinoids[J].Nat Neurosci,2009,12(12):1488-1490.
[14 ]Massi P,Valenti M,Bolognini D,Parolaro D.Expression and function of the endocannabinoid system in glial cells[J].Curr Pharm Des,2008,14(23):2289-2298.
[15 ]Liu Z,Han J,Jia L,Maillet JC,Bai G,Xu L,et al.Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning[J].PLoS One,2010,5(12):e15634(2010-12-20).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004941/
[16]Han J,Kesner P,Metna-Laurent M,Duan T,Xu L,Georges F,et al.Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD[J].Cell,2012,148(5):1039-1050.
[17 ]Stella N.Endocannabinoid signaling in microglial cells[J].Neuropharmacology,2009,56(Suppl 1):244-253.
[18 ]Kessler RC,Berglund P,Demler O,Jin R,Merikangas KR,Walters EE.Lifetime prevalence and age-of-onset distributions of DSM-Ⅳdisorders in the National Comorbidity Survey Replication[J].Arch Gen Psychiatry,2005,62(6):593-602.
[19 ]Ruehle S,Rey AA,Remmers F,Lutz B.The endocannabinoid system in anxiety,fear memory and habituation[J].J Psychopharmacol,2012,26(1):23-39.
[20 ]Marinelli S,Pacioni S,Bisogno T,Di Marzo V,Prince DA,Huguenard JR,et al.The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons[J].J Neurosci,2008,28(50):13532-13541.
[21 ]Jacob W,Yassouridis A,Marsicano G,Monory K,Lutz B,Wotjak CT.Endocannabinoids render exploratory behaviour largely independent of the test aversiveness:role of glutamatergic transmission[J].Genes Brain Behav,2009,8(7):685-698.
[22 ]Shonesy BC,Bluett RJ,Ramikie TS,Báldi R,Hermanson DJ,Kingsley PJ,et al.Genetic disruption of 2-arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation[J].Cell Rep,2014,9(5):1644-1653.
[23]Guggenhuber S,Romo-Parra H,Bindila L,Leschik J,Lomazzo E,Remmers F,et al.Impaired 2-AG signaling in hippocampal glutamatergic neurons:aggravation of anxiety-like behavior and unaltered seizure susceptibility[J].Int J Neuropsychopharmacol,2016,19(2):pyv091(2015-08-01).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772822/
[24]Lomazzo E,Bindila L,Remmers F,Lerner R,Schwitter C,Hoheisel U,et al.Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain[J].Neuropsychopharmacology,2015,40(2):488-501.
[25 ]Patel S,Hillard CJ.Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety:further evidence for an anxiolytic role for endogenous cannabinoid signaling[J].J Pharmacol Exp Ther,2006,318(1):304-311.
[26 ]Moreira FA, KaiserN, MonoryK, LutzB.Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase(FAAH)is mediated by CB1 receptors[J].Neuropharmacology,2008,54(1):141-150.
[27 ]Kathuria S, Gaetani S,F(xiàn)egley D,Vali?o F,Duranti A,Tontini A,et al.Modulation of anxiety through blockade of anandamide hydrolysis[J].Nat Med,2003,9(1):76-81.
[28 ]Duan T,Gu N,Wang Y,Wang F,Zhu J,F(xiàn)ang Y,et al.Fatty acid amide hydrolase inhibitors produce rapid anti-anxiety responses through amygdala long-term depression in male rodents[J].J Psychiatry Neurosci,2017,42(4):230-241.
[29 ]Briley M,Moret C.Present and future anxiolytics[J].IDrugs,2000,3(7):695-699.
[30 ]Hill MN,Patel S.Translational evidence for the involvement of the endocannabinoid system in stress-related psychiatric illnesses[J].Biol Mood Anxiety Disord,2013,3(1):19.
[31 ]Hillard CJ,Liu QS.Endocannabinoid signaling in the etiology and treatment of major depressive illness[J].Curr Pharm Des,2014,20(23):3795-3811.
[32 ]Leite CE,Mocelin CA,Petersen GO,Leal MB,Thiesen FV.Rimonabant:an antagonist drug of the endocannabinoid system for the treatment of obesity[J].Pharmacol Rep,2009,61(2):217-224.
[33 ]Hill MN,Hillard CJ,Bambico FR,Patel S,Gorzalka BB,Gobbi G.The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants[J].Trends Pharmacol Sci,2009,30(9):484-493.
[34 ]Zhong P,Wang W,Pan B,Liu X,Zhang Z,Long JZ,et al.Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling[J].Neuropsychopharmacology,2014,39(7):1763-1776.
[35]Zhang Z,Wang W,Zhong P,Liu SJ,Long JZ,Zhao L,et al.Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity[J].Hippocampus,2015,25(1):16-26.
[36]Wang Y,Gu N,Duan T,Kesner P,Blaskovits F,Liu J,et al.Monoacylglycerol lipase inhibitors produce pro-or antidepressant responses via hippocampal CA1 GABAergic synapses[J].Mol Psychiatry,2017,22(2):215-226.
[37]Zhong H,Tong L,Gu N,Gao F,Lu Y,Xie RG,et al.Endocannabinoid signaling in hypothalamic circuits regulates arousal from general anesthesia in mice[J].J Clin Invest,2017,127(6):2295-2309.