国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

季戊四醇磷酸酯/玻纖復(fù)合改性酚醛泡沫的燃燒行為

2016-12-30 06:21許莉莉黃普林萬(wàn)夢(mèng)秋殷祥吳夢(mèng)邱匡雨
關(guān)鍵詞:玻纖酚醛氧指數(shù)

許莉莉,黃普林,萬(wàn)夢(mèng)秋,殷祥,吳夢(mèng),邱匡雨

綠色化工過(guò)程教育部重點(diǎn)實(shí)驗(yàn)室(武漢工程大學(xué)),湖北武漢430205

季戊四醇磷酸酯/玻纖復(fù)合改性酚醛泡沫的燃燒行為

許莉莉,黃普林,萬(wàn)夢(mèng)秋,殷祥,吳夢(mèng),邱匡雨

綠色化工過(guò)程教育部重點(diǎn)實(shí)驗(yàn)室(武漢工程大學(xué)),湖北武漢430205

以季戊四醇磷酸酯(pentaerythritol phosphate,PEPA)和玻纖為改性劑,制備了季戊四醇磷酸酯/玻纖改性酚醛泡沫.利用熱重分析、極限氧指數(shù)、錐形量熱儀對(duì)泡沫材料燃燒行為進(jìn)行了分析.測(cè)試結(jié)果表明:加入3%的PEPA,改性酚醛泡沫氧指數(shù)值增加了38%;加入3%PEPA和1%的玻纖后,改性酚醛泡沫氧指數(shù)值增加了26%;PEPA的加入能明顯提高改性酚醛泡沫的初始分解溫度和殘?zhí)苛?與未改性酚醛泡沫相比,PEPA改性和復(fù)合改性酚醛泡沫的最初燃燒的熱釋放速率分別下降47%和36%,熱釋放總量降低約50%,能有效降低改性酚醛泡沫引起火災(zāi)的可能性和火災(zāi)危險(xiǎn)中的燃燒程度.同時(shí),PEPA改性和玻纖復(fù)合改性能顯著降低酚醛泡沫質(zhì)量損失速率、有效燃燒熱量和煙釋放速率,從而有效抑制酚醛泡沫燃燒時(shí)煙氣的產(chǎn)生,降低其火災(zāi)危險(xiǎn)性.

季戊四醇磷酸酯;玻纖;酚醛泡沫;改性;燃燒行為

1 引言

傳統(tǒng)的建筑保溫材料如聚氨酯泡沫、聚苯乙烯泡沫等遇火易燃燒,并且會(huì)產(chǎn)生大量的有毒有害氣體,對(duì)環(huán)境和人類造成進(jìn)一步的損害.為避免這些弊端,尋求替代這些傳統(tǒng)的建筑保溫材料,酚醛泡沫材料得到廣泛研究與應(yīng)用.酚醛泡沫是由酚醛樹(shù)脂通過(guò)發(fā)泡而得到的一種泡沫塑料,具有耐熱溫度高、殘?zhí)悸矢?、低煙、低毒的特點(diǎn),是一種保溫材料[1-5].但由于酚醛泡沫脆性大、開(kāi)孔率高、易粉化等缺陷使其應(yīng)用受到很大限制,因此酚醛泡沫的增強(qiáng)增韌改性研究受到廣泛關(guān)注.

酚醛泡沫的增強(qiáng)改性的材料有玻纖、碳納米管、纖維素、聚合物等[6-10].在提高酚醛泡沫機(jī)械強(qiáng)度的同時(shí),研究者更注重對(duì)其增韌改性[11-14].本課題組曾報(bào)道了季戊四醇磷酸酯和尿素增韌改性酚醛泡沫的力學(xué)性能[15],現(xiàn)對(duì)其燃燒過(guò)程中熱釋放速率、質(zhì)量損失速率、有效燃燒熱量和煙釋放速率等進(jìn)行詳細(xì)的探討.

2 實(shí)驗(yàn)部分

2.1 主要原料

苯酚,分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司;甲醛,分析純,西隴化工股份有限公司;尿素,分析純,天津市福晨化學(xué)試劑廠;季戊四醇磷酸酯(PEPA),實(shí)驗(yàn)室自制;短切玻纖,工業(yè)級(jí),重慶國(guó)際復(fù)合材料有限公司;對(duì)甲苯磺酸,分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司.

2.2 儀器與設(shè)備

集熱式恒溫加熱磁力攪拌器DF-101S,鞏義市予華儀器有限責(zé)任公司;電熱鼓風(fēng)干燥箱JC101型,上海精宏實(shí)驗(yàn)設(shè)備有限公司;循環(huán)水式真空泵SHZ-DⅢ,鞏義市予華儀器有限責(zé)任公司;熱重分析儀SDTQ600,美國(guó)TA儀器公司;氧指數(shù)儀HC-2,南京市江寧分析儀器廠;錐形量熱儀FTT0030,英國(guó)FTT公司.

2.3 酚醛泡沫的制備

在三口燒瓶中加入化學(xué)計(jì)量的苯酚和甲醛,控制反應(yīng)溫度,反應(yīng)一段時(shí)間后加入尿素,繼續(xù)反應(yīng),加入PEPA,繼續(xù)反應(yīng)30分鐘,減壓蒸餾后加入短切玻纖、表面活性劑、發(fā)泡劑、固化劑,并快速攪拌均勻,倒入模具中恒溫固化成型.本實(shí)驗(yàn)制備了PF(純酚醛泡沫)、改性PF-1(添加3%PEPA的改性酚醛泡沫)和改性PF-2(添加3%PEPA和1%短切玻纖的復(fù)合改性酚醛泡沫)三種泡沫材料樣品.

2.4 測(cè)試與表征

極限氧指數(shù)是利用氧指數(shù)儀,依據(jù)國(guó)標(biāo)GB/ T2406.2-2009測(cè)定.熱重分析是采用熱重分析儀進(jìn)行測(cè)試.錐形量熱儀的測(cè)試是根據(jù)GB/ T16172-2007的標(biāo)準(zhǔn)進(jìn)行的.本文采用輻照功率為50 kW/m2(約800℃)的錐形量熱儀,測(cè)試了PF、 PF-1、PF-2燃燒性能的各項(xiàng)指標(biāo).

3 結(jié)果與討論

3.1 LOI(Limiting Oxygen Index)

LOI是表征材料燃燒行為的指數(shù),氧指數(shù)越高代表材料越不容易燃燒,規(guī)定LOI值大于27屬于難燃材料.從圖1中可以看出,改性酚醛和純酚醛泡沫都屬于難燃材料,但改性后的酚醛泡沫氧指數(shù)值明顯增大.添加3%的PEPA后,酚醛泡沫PF-1的氧指數(shù)值增加量超過(guò)38%;而再添加1%的玻纖后,PF-2氧指數(shù)值比PF-1略有降低,氧指數(shù)值比PF高26%.這是由于酚醛泡沫在燃燒時(shí),PEPA中的磷元素會(huì)產(chǎn)生磷酸覆蓋在泡沫體表面阻止進(jìn)一步燃燒,因而增加了其阻燃性能.

圖1 酚醛泡沫和改性酚醛泡沫的氧指數(shù)曲線Fig.1LOI curves of PF and modified PFs

3.2 TGA(Thermogravimetric Analyzer)分析

圖2是純酚醛泡沫和改性酚醛泡沫的熱失重曲線圖.從圖2可以看出,純酚醛泡沫和改性酚醛泡沫在80℃以前都有明顯的失重,這主要?dú)w因于水分和揮發(fā)物的影響.在80℃~320℃,由于泡沫中游離的酚和醛、羥甲基脲、尿素小分子等物質(zhì)的脫除而失重;在320℃~480℃,PEPA發(fā)生熱分解,同時(shí)酚醛泡沫也開(kāi)始部分分解,但這并不是主要的分解階段;在600℃左右,PEPA改性酚醛泡沫(PF-1)具有最高殘留量,說(shuō)明材料的阻燃性能較好,與LOI測(cè)試結(jié)果一致.在480℃~900℃,酚醛樹(shù)脂發(fā)生斷鏈,完全分解成小分子.相比于純酚醛泡沫,改性酚醛泡沫的初始分解溫度以及殘?zhí)苛棵黠@提高,PEPA和玻纖復(fù)合改性酚醛泡沫的殘?zhí)苛孔罡?,表明?fù)合改性能有效提高酚醛泡沫其炭化的程度.

圖2 酚醛泡沫和改性酚醛泡沫的熱失重曲線Fig.2TGA curves of PF and modified PFs

3.3 燃燒行為分析

1)HRR(Heat Release rate)和THR(Total Heat Release)

HRR是指在預(yù)置的入射熱流強(qiáng)度下,材料被點(diǎn)燃后,單位面積的熱量釋放速率.HRR大小表征了材料燃燒時(shí)的最大熱釋放程度,其值越大,表明燃燒反饋給材料表面的熱量就越多,結(jié)果造成材料熱解速度加快和揮發(fā)性可燃物生成量的增多,從而加速了火焰的傳播.圖3是酚醛泡沫的HRR曲線圖.從圖中分析可得,純酚醛泡沫的HRR的峰值高達(dá)96.33 kW/m2,而加入3%PEPA后,峰值降到50.86 kW/m2;而加入3%PEPA和玻纖后,HRR峰值降為60.71 kW/m2.PEPA改性和復(fù)合改性顯著降低熱釋放速率,提高了復(fù)合改性酚醛泡沫的阻燃性.

圖3 酚醛泡沫和改性酚醛泡沫的熱釋放速率曲線Fig.3HRR curves of PF and modified PFs

THR是指在預(yù)置的入射熱流強(qiáng)度下,材料從點(diǎn)燃到火焰熄滅所釋放熱量的總和.其值越大,表明材料的燃燒越劇烈,發(fā)生火災(zāi)的危險(xiǎn)性也越大.圖4是酚醛泡沫的熱釋放總量曲線.從圖中可以看出,純酚醛泡沫的熱釋放總量較大,而加入PEPA和玻纖后,酚醛泡沫的熱釋放總量顯著降低,主要是因?yàn)镻EPA作為一種阻燃劑,擁有良好的成炭效果,燃燒過(guò)程中形成的炭化層阻礙著熱量的釋放.因此,PEPA與玻纖復(fù)合改性酚醛泡沫顯著降低其火災(zāi)危險(xiǎn)性,從而提高了復(fù)合改性酚醛泡沫的阻燃性能.

圖4 酚醛泡沫和改性酚醛泡沫的熱釋放總量曲線Fig.4THR curves of PF and modified PFs

2)有效燃燒熱(英文全稱Effective Heat of Combustion,EHC)

EHC是單位質(zhì)量的材料熱分解產(chǎn)生的揮發(fā)性可燃物燃燒所釋放的熱量,可以用來(lái)評(píng)估材料中揮發(fā)性可燃物的含量.其值越大,表明揮發(fā)性可燃物燃燒的越徹底.圖5是酚醛泡沫的有效燃燒熱量曲線.從圖中可以看出,相比于純酚醛泡沫,加入阻燃劑的酚醛泡沫的有效燃燒熱量顯著降低,說(shuō)明改性酚醛泡沫中的揮發(fā)性可燃物燃燒不充分,這樣也降低了引起火災(zāi)的可能性.

圖5 酚醛泡沫和改性酚醛泡沫的有效燃燒熱量曲線Fig.5EHC curves of PF and modified PFs

3)質(zhì)量損失速率(英文全稱,Mass Loss Rate,MLR)

酚醛泡沫的質(zhì)量損失速率曲線如圖6所示.從圖中可以看出,燃燒時(shí)間在300 s之前純酚醛泡沫的質(zhì)量損失比改性酚醛泡沫大,而300 s之后三者的質(zhì)量損失速率相近,并且都趨于平緩,表明PEPA改性和復(fù)合改性酚醛泡沫能降低其火災(zāi)危險(xiǎn)中的燃燒程度,從而提高了復(fù)合改性酚醛泡沫的阻燃性能.

圖6 酚醛泡沫和改性酚醛泡沫的質(zhì)量損失速率曲線Fig.6MLR curves of PF and modified PFs

4)比消光面積(英文全稱Specific Extinction Area,SEA)

材料的不完全燃燒產(chǎn)生的煙氣是火災(zāi)中造成人員傷亡的主要原因.SEA是單位質(zhì)量的試樣燃燒所產(chǎn)生的煙氣量.圖7是酚醛泡沫的比消光面積曲線.從圖中可以看出,純酚醛泡沫的SEA的峰值達(dá)600多,要明顯高于PEPA改性和復(fù)合改性酚醛泡沫的SEA,表明PEPA改性和復(fù)合改性能有效抑制酚醛泡沫燃燒時(shí)煙氣的產(chǎn)生.

圖7 酚醛泡沫和改性酚醛泡沫的比消光面積曲線Fig.7SEA curves of PF and modified PFs

5)煙釋放速率(英文全稱Smoke Release Rate,RSR)

圖8是酚醛泡沫在燃燒過(guò)程中的煙釋放速率和煙釋放總量的曲線.從圖8可以看出,純酚醛泡沫的RSR的峰值明顯高于改性的酚醛泡沫,表明純酚醛泡沫在前期燃燒更為迅速.100s之后三者的RSR都趨于平緩,這是酚醛泡沫燃燒時(shí)低煙的特性所決定的.

圖8 酚醛泡沫和改性酚醛泡沫的煙釋放速率曲線Fig.8RSR curves of PF and modified PFs

4 結(jié)語(yǔ)

LOI、熱重分析和錐形量熱儀測(cè)試結(jié)果表明PEPA改性酚醛泡沫,以及玻纖和PEPA復(fù)合改性酚醛泡沫的阻燃性能得到顯著提高.加入質(zhì)量分?jǐn)?shù)3%PEPA改性酚醛泡沫的氧指數(shù)值增加了38%;加入質(zhì)量分?jǐn)?shù)3%PEPA和質(zhì)量分?jǐn)?shù)1%玻纖后,其氧指數(shù)值增加了26%.PEPA的加入能明顯提高改性酚醛泡沫的初始分解溫度和殘?zhí)苛?錐形量熱儀測(cè)試結(jié)果表明,PEPA改性和復(fù)合改性能顯著降低酚醛泡沫熱釋放速率、質(zhì)量損失速率,有效降低了引起火災(zāi)的可能性和火災(zāi)危險(xiǎn)中的燃燒程度;能明顯降低其有效燃燒熱量和煙釋放速率,從而有效抑制酚醛泡沫燃燒時(shí)煙氣的產(chǎn)生,降低其火災(zāi)危險(xiǎn)性.

[1]YANG H Y,WANG X,YUAN H X,et al.Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers[J].Journal of polymer research,2012,19(3):140-149.

[2]徐金瀟,袁樹(shù)杰.新型礦用酚醛泡沫材料研究[J].安徽理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,35(3):63-66. XU J X,YUAN S J.Research on a new mine phenolic foammaterial[J].Journal of Anhui university of science and technology(natural science),2015,35(3):63-66.

[3]MA Y F,WANG J F,XU Y Z,et al.Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant[J].Journal of thermal analysis and calorimetry,2013,114(3):1143-1151.

[4]GAO M,WU W H,WANG Y H,et al.Phenolic foam modified with dicyandiamide as toughening agent[J]. Journal of thermal analysis and calorimetry,2016,124(1):189-195.

[5]LIANG B C,LI X Y,HU L H,et al.Foaming resol resin modified with polyhydroxylated cardanol and its application to phenolic foams[J].Industrial crops and products,2016,80:194-196.

[6]袁莉莉,顧軼卓,李敏,等.羧基碳納米管增強(qiáng)酚醛泡沫的壓縮性能及熱性能[J].復(fù)合材料學(xué)報(bào),2013,30(5):14-20.

YUAN L L,GU Y Z,LI M,et al.Compressive property and thermal performances of phenolic foam reinforced with carboxyl carbon nanotubes[J].Acta materiae compositae sinica,2013,30(5):14-20.

[7]張英杰,李曉峰,安燕,等.聚酰亞胺改性酚醛泡沫[J].高分子學(xué)報(bào),2013(8):1072-1079

ZHANG Y J,LI X F,AN Y,et al.Polyimide modified phenolic foam[J].Acta polymerica sinica,2013(8):1072-1079.

[8]ZHOUJT,YAOZJ,CHENYX,etal. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat[J].Materials and design.2013,51(5):131-135.

[9]Song S A,Chung Y S,Kim S S.The mechanical and thermal characteristics of phenolic foams reinforced with carbonnanoparticles[J].Compositesscienceand technology,2014,103:85-93.

[10]SAZ-OROZCO B D,ALONSO M V,OLIET M. Mechanical,thermal and morphological characterization ofcellulosefiber-reinforcedphenolicfoams[J]. Composites part B engineering,2015,75:367-372.

[11]SUI X Y,WANG Z Z.Flame-retardant and mechanical propertiesofphenolicfoamstoughenedwith polyethyleneglycolphosphates[J].Polymersfor advanced technologies,2013,24(6):593-599.

[12]YANG H Y,WANG X,YU B,et al.A novel polyurethaneprepolymerastougheningagent:preparation,characterization,and its influence on mechanical and flame retardant properties of phenolic foam[J].Journal of applied polymer science,2013,128(5):2720-2728.

[13]DING H Y,WANG J F,LIU J,et al.Preparation and properties of a novel flame retardant polyurethane quasi-prepolymer for toughening phenolic foam[J]. Journal of applied polymer science,2015,132(35):42424.

[14]LIU L,F(xiàn)U M T,Synthesis and characterization of a flame-retardant toughening agent containing boron for phenolic foams[J].Journal of building materials,2016,19(3):510-515.

[15]黃普林,吳夢(mèng),張鵬,等.季戊四醇磷酸酯/尿素改性酚醛泡沫的性能研究[J].武漢工程大學(xué)學(xué)報(bào),2016,38(2):120-124.

HUANG P L,WU M,ZHANG P,et al.Properties of phenolic foam modified by pentaerythritol phosphate/ urea[J].Journal of Wuhan institute of technology,2016,38(2):120-124.

本文編輯:張瑞

Combustion Behavior of Phenolic Foam Modified by PEPA/Glass Fiber

XU Lili,HUANG Pulin,WAN Mengqiu,YIN Xiang,WU Meng,QIU Kuangyu
Key Laboratory of Green Chemical Process(Wuhan Institute of Technology),Ministry of Education,Wuhan 430205,China

Flame-retarded phenolic foams(PF)were prepared by adding pentaerythritol phosphate(PEPA)and glass fiber as modifiers.The combustion behaviors of the phenolic foams were investigated by thermogravimetric analyzer(TGA),limiting oxygen index(LOI),and cone calorimeter.The results of LOI and TGA showed that flame retardancy of the phenolic foams significantly increased.The LOI of modified phenolic foams increased by 38%after adding mass fraction of 3%PEPA,while that increased by 26%after adding mass fraction of 3%PEPA and 1%glass fiber.The initial decomposition temperature and carbon residue quantity of modified phenolic foams also increased.The heat release rate of modified with PEPA and PEPA-glass fiber composites foams significantly reduced by 47%and 36%,and the total heat release reduced by 50%.The mass loss rate,degree of combustion,effective heat of combustion,smoke release rate and possibility of fire risk of PEPA modified phenolic foams and PEPA-glass fiber composite modified phenolic foams significantly reduced.At the same time,PEPA and glass fiber modification can significantly reduce the mass loss rate of the phenolic foams.Moreover,the decrease of effective combustion heat and the smoke release rate can effectively suppress the generation of flue gas,and reduce the risk of fire.

pentaerythritol phosphate;glass fiber;phenolic resin composite foams;modification;combustion behavior

TQ328

A

10.3969/j.issn.1674-2869.2016.06.006

1674-2869(2016)06-0544-05

2016-11-06

許莉莉,碩士,副教授.E-mail:xulily00@163.com

猜你喜歡
玻纖酚醛氧指數(shù)
長(zhǎng)玻纖增強(qiáng)聚丙烯制品的性能影響因素分析
試述玻纖在絕緣行業(yè)中的應(yīng)用前景與展望
燃燒筒溫度對(duì)塑料氧指數(shù)的影響
塑料、橡膠氧指數(shù)試驗(yàn)方法的比較
柔性橡塑保溫板材燃燒性能快速測(cè)試的影響因素*
改性淀粉及其用于玻纖成膜劑的研究進(jìn)展
EPS板氧指數(shù)測(cè)量不確定度
增強(qiáng)增韌尼龍6擠出工藝及纖維分散研究
腰果酚醛胺固化環(huán)氧樹(shù)脂泡沫塑料性能研究
碳納米管-聚酰胺纖維改性鄰甲酚醛環(huán)氧樹(shù)脂