閆盼盼,曹重光
(黑龍江大學(xué)數(shù)學(xué)科學(xué)學(xué)院,黑龍江哈爾濱150080)
域上兩類矩陣保逆的誘導(dǎo)映射
閆盼盼,曹重光
(黑龍江大學(xué)數(shù)學(xué)科學(xué)學(xué)院,黑龍江哈爾濱150080)
令F是一個域,Sn(F)是F上所有n×n上對稱矩陣的集合.用Tn(F)記F上所有n階上三角陣的集合.首先分別給出誘導(dǎo)映射和保逆性的定義.然后改進了關(guān)于復(fù)對稱陣保逆的主要相關(guān)結(jié)果及其證明,得到了Sn(F)保逆誘導(dǎo)映射的一般形式,最后借助于類序列技術(shù)和初等方法刻畫了Tn(F)保逆誘導(dǎo)映射.它推廣和改進了帶有附加條件(fij(x)=0?x=0)的相關(guān)結(jié)果.
域;對稱矩陣;上三角矩陣;保逆;誘導(dǎo)映射
關(guān)于矩陣保持問題研究,近年來更感興趣于刻畫沒有線性和加法假定的保持映射,例如文獻[1-7].本文研究的誘導(dǎo)映射也屬于這個方向.
設(shè)F是一個域,Mn(F)及Sn(F)分別記F上所有n階矩陣及所有n階上對稱矩陣的集合,用Tn(F)
記F上所有n階上三角陣的集合.設(shè)f是Mn(F)(Sn(F),Tn(F))到自身的映射,fij是F上的函數(shù),其中ij∈{1,2,···n}.如果定義
則稱f是由{fij}誘導(dǎo)的映射.簡稱Mn(F)(Sn(F),Tn(F))的誘導(dǎo)映射.
如果AB=In意味著f(A)f(B)=In,則f被稱為保逆矩陣.關(guān)于方陣的保逆矩陣的誘導(dǎo)映射的刻畫由文獻[1]完成.之后,文獻[5]給出了復(fù)數(shù)域上對稱陣保逆誘導(dǎo)映射的一般形式,文獻[6]在一定條件下給出了上三角矩陣保逆誘導(dǎo)映射的刻畫.本文試圖將文獻[5-6]的結(jié)果推廣到一般域上,同時將去掉文獻[6]的條件(ChF/=2,fij(x)=0?x=0),得到完整的刻畫.
在本文中用F?記F中所有非0元的集合,Eij表示(i,j)位置是1,其余位置是零的矩陣,In記n階單位陣.A⊕B表示矩陣A與B的直和,[1,n]表示集合[1,2,···,n].
定理2.1 設(shè)F是一個域,n為整數(shù)且n≥3,f:Sn(F)→Sn(F),是由{fij}誘導(dǎo)的映射,且f(0)=0.則f是保逆的充分必要條件是;存在對合對角矩陣P及ε=±1,使得對于任意A∈Sn(F),有f(A)=εPAδP,其中δ是域上的單自同態(tài),Aδ=(δ(aij)).
現(xiàn)在對Tn(F)的誘導(dǎo)映射定義中涉及到的函數(shù)f12,f23,···,fn-1,n,定義類集合:
將函數(shù)f12,f23,···,fn-1,n所屬的類集合,從左到右依次寫成一個序列,稱為f的類序列.例如ητρρητ為n=7時f的類序列,它說明f12∈η,f23∈τ,f34∈ρ,f45∈ρ,f56∈η,f67∈τ.
引理3.1 設(shè)n≥3是整數(shù),f(0)=0,其中f是Tn(F)的保逆的誘導(dǎo)映射,則在f的類序列中不會出現(xiàn)相鄰兩類為ρτ,τρ,ττ這三種情況.
定理3.2 設(shè)f為Tn(F)的誘導(dǎo)映射,f(0)=0,n≥3是一個整數(shù),則f保逆當(dāng)且僅當(dāng)
定理3.3 設(shè)F為任意域,n為整數(shù)且n≥3,f1為Tm(F)的誘導(dǎo)映射,f1(0)=0,
[1]Yang L,Ben X Z,Zhang M,et al.Induced Maps on matrices over fields[J].Abstract and Applied Analysis,2014,2014(27):1-5.
[2]Cao C G,Ge Y L,Yao H M.Maps preserving classical adjoint of products of two matrices[J].Linear and Multilinear Algebra,2013,61(12):1593-1604.
[3]Huang LP.Geometry of Matrices over Ring[M].Beijing:Science Press,2006.
[4]You H,Wang Z Y.k-Potence preserving maps without the linearty and surjectivity assumptions[J].Linear Algebra Appl,2007,426:238-254.
[5]吳丹,李賀,曹重光.域上對稱矩陣保逆的導(dǎo)出映射[J].高師理科學(xué)刊,2015,35(8):1-3.
[6]吳丹,李賀.上三角矩陣保逆的誘導(dǎo)映射[J].哈爾濱理工大學(xué)學(xué)報,2015,20(5):116-118.
[7]張雋,付麗,曹重光.保體上上三角冪等矩陣的誘導(dǎo)映射[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2015,31(6):628-635.
Induced maps preserving inveres of two kinds of matrices over fields
Yan Panpan,Cao Chongguang
(School of Mathematical Science,Heilongjiang University,Harbin150080,China)
Supposed that F is a field and n≥3 is an integer.Denote bySn(F)the set of all n×n symmetric matrices over F,Tn(F)the set of all n×n upper triangular matrices over F.First,the paper gives the definition of induced map and preserving inveres,respectively.And then,proof of main result about preserving inveres on symmetric matrices is improved,the general forms of induced maps preserving inverses on Sn(F)is obtained.Finally,induced maps preserving inveres on Tn(F)is characterized by class-sequence technigues and elementary methods,which generalize and improve relevant results with strings attached(fij(x)=0?x=0).
field,symmetric matrix,upper triangular matrix,preserving inveres,induced map
O152.5
A
1008-5513(2016)02-0149-11
10.3969/j.issn.1008-5513.2016.02.006
2016-01-02.
國家自然科學(xué)基金(11371109).
閆盼盼(1990-),碩士生,研究方向:矩陣代數(shù).
2010 MSC:15A04