劉洋,劉文德
(哈爾濱師范大學(xué)數(shù)學(xué)系,黑龍江哈爾濱150025)
交換環(huán)上特殊線性李代數(shù)的極大子代數(shù)
劉洋,劉文德
(哈爾濱師范大學(xué)數(shù)學(xué)系,黑龍江哈爾濱150025)
文章利用有單位元且2,3是單位的交換環(huán)的極大理想刻畫了其上特殊線性李代數(shù)包含典范環(huán)面的極大子代數(shù).確定了特殊線性李代數(shù)極大子代數(shù)的個數(shù),并證明了每個極大子代數(shù)均可通過置換矩陣共軛于標(biāo)準(zhǔn)的極大子代數(shù).
特殊線性李代數(shù);極大子代數(shù);交換環(huán)
對代數(shù)系統(tǒng)如抽象群,李群和李(超)代數(shù)等的極大子系統(tǒng)進(jìn)行刻畫是深入研究該代數(shù)系統(tǒng)的重要手段.1952年,文獻(xiàn)[1]給出了某些典型群的極大子群結(jié)構(gòu),文獻(xiàn)[2]對復(fù)數(shù)域C上有限維單李代數(shù)的極大子代數(shù)進(jìn)行了分類.該結(jié)果在表示理論中被廣泛應(yīng)用.1997年,文獻(xiàn)[3]將文獻(xiàn)[1]的結(jié)論推廣到了復(fù)數(shù)域C上矩陣?yán)畛鷶?shù)中.2004年,文獻(xiàn)[4]中得出了一些單模李代數(shù)的極大子代數(shù)的結(jié)果.2012年,在文獻(xiàn)[5]中刻畫了交換環(huán)上一般線性李代數(shù)的包含標(biāo)準(zhǔn)Cartan子代數(shù)的極大子代數(shù).2014至2015年,文獻(xiàn)[6-7]又確定了Cartan型李超代數(shù)的極大Z-階化子代數(shù).2015年,文獻(xiàn)[8]中刻畫了超交換環(huán)上一般線性李超代數(shù)的極大階化子代數(shù).同年,文獻(xiàn)[9]刻畫了奇Cartan型模李超代數(shù)的極大階化子代數(shù).
本文約定R是有單位元且2,3是單位的交換(結(jié)合)環(huán).令Mm×n(R)為R上m×n階矩陣構(gòu)成的集合,記Mn×n(R)為Mn(R).令sln(R)為Mn(R)中所有跡為零的矩陣構(gòu)成的集合,即sln(R)={A∈Mn(R)|trA=0}.顯然它是R-模.可以驗證sln(R)關(guān)于換位子運算[x,y]=xy-yx作成R-李代數(shù),稱為特殊線性李代數(shù).令eij為第(i,j)位置元素是1,其余位置元素為0的n階R-矩陣.由eijekl=δjkeil,可知[eij,ekl]=δjkeil-δliekj.令tn(R)為sln(R)中全體對角陣關(guān)于換位子運算構(gòu)成的Abel李子代數(shù),稱之為sln(R)的典范環(huán)面.
參考文獻(xiàn)
[1]Dykin E.Maximal subgroups of classical groups[J].Trudy Moskov.Mat.Obsc.,1952,30:39-166.
[2]Dykin E.Semisimple subalgebras of semisimple Lie algebras[J].Mat.Sb.(N.S.),1952,30(72):349-462;transl:Amer.Math.Soc.Transl.Ser.,1957,2(6):111-244.
[3]Shchepochkina I.Maximal subalgebras of matrix Lie superalgebras[J].In:Leites D.(ed.)it Seminar on Supermanifolds.Reports of Stockholm University.1992,32:1-43.
[4]Melikyan H.Maximal subalgebra of simple modular Lie algebra[J].J.Algebra,2005,284:824-856.
[5]Wang D Y,Ge H,Liu X W Maximal subalgebra of the general linear Lie algebra containing Cartan subalgebras[J].Sci.China Math.,2012,55:1381-1386.
[6]Bai W,Liu W D,Melikyan H.Maximal subalgebras of Lie superalgebras of Cartan type over fields of characteristic zero[J].J.Algebra,2014,404:176-199.
[7]Bai W,Liu W D,Melikyan H.Maximal subalgebras for Lie superalgebras of Cartan type[J].J.Algebra App.,2015,14(02):1550013(38pages).
[8]Li Y,Liu W D Maximal graded subalgebras of the general linear Lie superalgebras over superring[J].J. Math.Res.App.,2015,35(2):149-156.
[9]Liu W D,Wang Q Maximal subalgebras for modular graded Lie superalgebras of odd Cartan type[J]. Transform.Groups,2015,20:1075-1106.
Maximal subalgebras of the special linear Lie algebras over commutative ring
Liu Yang,Liu Wende
(Department of Mathematics,Harbin Normal University,Heilongjiang 150025,China)
In this paper,we determine all maximal subalgebras of the special linear Lie algebra containing the canonical torus using maximal ideas over a unital commutative ring with 2,3 be the unit.We also determine the number of maximal subslgebras and prove that each maximal subslgebra is conjugate under a permutation matrix to a standard one.
special linear Lie algebras,maximal subalgebras,commutative ring
O152.5
A
1008-5513(2016)02-0141-08
10.3969/j.issn.1008-5513.2016.02.005
2015-12-01.
國家自然科學(xué)基金(11171055,11471090,11501151);黑龍江省自然科學(xué)基金(A2015003);哈爾濱師范大學(xué)研究生創(chuàng)新基金(HSDSSCX2015-29).
劉洋(1992-),碩士生,研究方向:李超代數(shù).
劉文德(1965-),博士,教授研究方向:李超代數(shù).
2010 MSC:17B05