国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

有限偏差函數(shù)與調(diào)和函數(shù)

2016-12-21 08:24馮小高
關(guān)鍵詞:西華極值師范大學(xué)

馮小高

(西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川南充637002)

有限偏差函數(shù)與調(diào)和函數(shù)

馮小高

(西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川南充637002)

分別借助解析函數(shù)與調(diào)和函數(shù)兩類函數(shù)的Dirichlet積分,利用相關(guān)文獻(xiàn)給定邊界值的擬共形映射極值伸縮商的估計(jì)方法,通過(guò)有限偏差函數(shù)和擬共形映射的關(guān)系估計(jì)了具有給定邊界值的有限偏差函數(shù)的極值伸縮商.得到了解析函數(shù)的Dirichlet積分在有限偏差函數(shù)下具有擬不變性,同時(shí)給出有限偏差函數(shù)極值伸縮商的下界估計(jì).

有限偏差函數(shù);調(diào)和函數(shù);Dirichlet積分;極值伸縮商;擬共形映射

1 引言

注1.2由定理1.1可知,解析函數(shù)的Dirichlet積分在有限偏差函數(shù)下具有擬不變性,而對(duì)應(yīng)于定理B中調(diào)和函數(shù)的Dirichlet積分在擬共形映射下具有擬不變性.

2 定理1.1的證明

3 定理1.2的證明

[1]Beurling A,Ahlfors L.The boundary correspondence under quasicongformal mappings[J].Acta.Math.,1956,96:125-142.

[2]Astala K,Iwaniec,Martin G J.Elliptic Partial Diffenrential Equations and Quasiconformal Mappings in the Plane[M].Princeton:Princeton Mathematical Series,Princeton University Press,2009.

[3]Iwaniec T,Martin G J.Geometric Function Theory and Non-linear Analysis[M].Oxford:Oxford Mathematical Monographs,Oxford University Press.

[4]Astala K,Iwaniec T,Martin G J,et al.Extremal mappings of finite distortion[J].Proc.Lond.Math.Soc.,2005,91:655-702.

[5]Feng X G,Tang S A,Wu C,et al.A unified approach to weighted Grotzsch and Nitsche problems for mappings of finite distortion[J].Sci.China.Math.,2016,59,(4):673-686.

[6]Reich E.On the variational principle of Gerstenhaber and Rauch[J].Ann.Acad.Sci.Fenn.A I Math.,1985,10:469-475.

[7]Reich E.Harmonic mappings and quasiconformal mappings[J].J.d′Analyse Math.,1986,46:239-245.

[8]Shen Y L.Quasiconformal mappings and Harmonic mappings[J].Advance in Math.(China),1999,28(4):347-357.

[9]Strebel K.Zur frage der eindentigkeit extremaler quasikonformer abbildungen des einheitskreises II[J]. Comment.Math.Helv.,1964,39:77-89.

Mappings of finite distortion and harmonic functions

Feng Xiaogao
(College of Mathmatics and Information,China West Normal University,Nangchong637002,China)

On the basis of Dirichlet integral of holomorphic functions and harmonic functions,rspectively,We shall estimate the extremal maximal dilatation of mappings of finite ditortion with given boundary values by the methods of estimating the extremal maximal dilatation of quasiconformal mappings given boundary values and by using the relation between mappings of finite distortion and quasiconformal mappings.we obtain the quasi-invariance property of the Dirichlet integral under mappings of finite distortion and give the concrete estimates on the extremal dilatation from below.

mapping of finite distortion,harmonic function,holomorphic function,Dirichlet integral,extremal maximal dilatation,quasiconformal mapping

O174

A

1008-5513(2016)02-0119-08

10.3969/j.issn.1008-5513.2016.02.002

2015-10-07.

國(guó)家自然科學(xué)基金(10871211);西華師范大學(xué)青年教師資助項(xiàng)目(13D017);西華師范大學(xué)科研基金(08B032).

馮小高(1982-),博士,講師,研究方向:復(fù)分析.

2010 MSC:30C70,30C62

猜你喜歡
西華極值師范大學(xué)
西華大學(xué)成果展示
極值點(diǎn)帶你去“漂移”
極值點(diǎn)偏移攔路,三法可取
西華大學(xué)油畫(huà)作品選登
子路、曾皙、冉有、公西華侍坐
一類“極值點(diǎn)偏移”問(wèn)題的解法與反思
Study on the harmony between human and nature in Walden
Balance of Trade Between China and India
西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版)
Courses on National Pakistan culture in Honder College