代曉華 姚暉 連小麗 李燕妮 王英瑛 劉曉斌 邢路
1.天津市口腔醫(yī)院中心實(shí)驗(yàn)室;2.牙體牙髓病科,天津 300041
·基礎(chǔ)研究·
光學(xué)相干斷層成像檢出早期窩溝齲效能的體外評估
代曉華1姚暉1連小麗1李燕妮1王英瑛2劉曉斌2邢路2
1.天津市口腔醫(yī)院中心實(shí)驗(yàn)室;2.牙體牙髓病科,天津 300041
目的 比較光學(xué)相干斷層成像技術(shù)(OCT)與臨床探視診對人牙窩溝早期釉質(zhì)齲的檢出效能。方法 獲取77顆人離體恒磨牙面的97個可疑早期齲位點(diǎn)OCT二維圖像,由3位臨床醫(yī)師雙盲法分別通過OCT圖像和探視診方法對這些位點(diǎn)進(jìn)行評分,以偏光顯微鏡獲取的組織學(xué)圖像為金標(biāo)準(zhǔn),評估OCT、臨床探視診檢出早期窩溝齲的敏感度(SE)、特異度(SP)、陽性預(yù)測值(PPV)、陰性預(yù)測值(NPV)及其與組織學(xué)評分結(jié)果的相關(guān)性;采用Kappa檢驗(yàn)分析檢測者間評分結(jié)果的一致性,采用非參數(shù)法Z檢驗(yàn)比較受試者工作特征(ROC)曲線下面積(AUC)。結(jié)果 對于脫礦局限于釉質(zhì)表層外1/2的窩溝早期齲,OCT檢出率(14/25)明顯優(yōu)于探視診(3/25)。OCT檢出窩溝早期釉質(zhì)齲的SE、SP、PPV、NPV(0.83、0.64、0.87、0.57)均高于探視診(0.79、0.60、0.85、0.50)。OCT與探視診檢測窩溝早期齲的AUC(95% CI)分別為0.737(0.569~0.822)、0.696(0.614~0.859),二者間差異無統(tǒng)計學(xué)意義。OCT評分與組織學(xué)評分呈正相關(guān)(r=0.559,P<0.05),檢測者間檢測結(jié)果的一致性為中等。結(jié)論 OCT能夠敏感、無創(chuàng)、有效地檢出早期窩溝齲,具有輔助臨床探視診檢出早期窩溝齲的應(yīng)用潛能。
窩溝齲; 早期齲; 光學(xué)相干斷層成像技術(shù); 探視診
早期釉質(zhì)齲的檢出,尤其是發(fā)生在窩溝點(diǎn)隙處的早期釉質(zhì)脫礦的及時發(fā)現(xiàn)仍是臨床齒科面臨的一大難題。臨床迫切需要一種高效、無創(chuàng)、便捷的早期釉質(zhì)齲診斷方法,以期實(shí)現(xiàn)窩溝表層下脫礦的早期發(fā)現(xiàn)和定期監(jiān)測[1]。光學(xué)相干斷層成像技術(shù)(optical coherence tomography,OCT)是一種基于低相干光干涉技術(shù)產(chǎn)生的具有高分辨率(10~20 μm)、非侵入性、無輻射的光學(xué)診斷技術(shù)[2],可對組織微觀結(jié)構(gòu)進(jìn)行快速實(shí)時光學(xué)成像,目前已被廣泛用于醫(yī)學(xué)和生物學(xué)領(lǐng)域。OCT可通過檢測釉質(zhì)對光反射和背向散射的差異,判斷釉質(zhì)脫礦的程度和范圍。目前,已有多項研究[3-5]致力于使用OCT進(jìn)行平滑面釉質(zhì)早期脫礦及再礦化的定性與定量檢測,并取得了較為樂觀的結(jié)果。然而對于OCT檢測自然窩溝釉質(zhì)早期脫礦的研究開展相對較少。本研究通過對77顆人離體恒磨牙上的97個面窩溝點(diǎn)隙可疑早期齲位點(diǎn)進(jìn)行模擬臨床探視診和OCT掃描,以偏光顯微鏡獲得的組織學(xué)改變?yōu)榻饦?biāo)準(zhǔn),評估OCT檢出窩溝早期釉質(zhì)齲的效能,探討未來OCT臨床診斷窩溝早期釉質(zhì)齲的應(yīng)用價值。
1.1 研究對象
選取2011年6月—8月于天津市口腔醫(yī)院口腔頜面外科門診新鮮拔除的恒磨牙77顆,樣本收集均獲得患者知情同意。納入標(biāo)準(zhǔn):牙齒咬合面完整,窩溝釉質(zhì)健康或僅有輕度白堊色變,溝裂處可有少量色素沉著但不可探進(jìn)。排除標(biāo)準(zhǔn):牙齒有明顯齲壞,進(jìn)行過充填修復(fù)治療,牙齒肉眼觀有裂痕,有可探進(jìn)的溝裂,氟斑牙等不在選用的樣本之列。另外,排除實(shí)驗(yàn)評分過程中3位醫(yī)師診斷均不一致的位點(diǎn)。使用刮牙器去除樣本牙上殘存組織及牙結(jié)石,并進(jìn)行徹底清洗。選取可疑早期齲位點(diǎn)97個,進(jìn)行標(biāo)記,將牙齒樣本存于4 ℃去離子水中。
1.2 主要儀器設(shè)備
高速OCT信號采集系統(tǒng)(天津大學(xué)與天津市口腔醫(yī)院合作研發(fā),性能參數(shù):中心波長1 310 nm,帶寬50 nm,相干長度15 μm,牙樣本內(nèi)分辨率為10 μm,牙齒成像深度2.2 mm);偏振光顯微鏡(尼康公司,日本)及其成像系統(tǒng);體視顯微鏡(Global有限公司,美國)。
1.3 檢測及診斷評分
由經(jīng)驗(yàn)豐富的3位口腔臨床醫(yī)師對可疑齲位點(diǎn)進(jìn)行探視診評分。由實(shí)驗(yàn)人員獲取OCT圖像及偏光顯微鏡圖像,再由前述3位口腔臨床醫(yī)師分別對偏光圖像和OCT圖像進(jìn)行獨(dú)立、盲法診斷評分。同一位點(diǎn),3位醫(yī)師診斷不完全一致時,以其中2位的一致診斷為準(zhǔn);3位醫(yī)師診斷均不一致的位點(diǎn)則進(jìn)行排除。探視診、OCT及組織學(xué)評分標(biāo)準(zhǔn)見表1,其中組織學(xué)及探視診評分標(biāo)準(zhǔn)參照Ekstrand等[6]提出的相應(yīng)評分標(biāo)準(zhǔn)。
表1 組織學(xué)、探視診及OCT檢測評分標(biāo)準(zhǔn)Tab 1 Scoring criteria used for histological examination, visual inspection and OCT
1.3.1 OCT掃描 將待測牙齒樣本固定于樣本槽中,保持咬合面水平,使OCT探測光束垂直于咬合面,沿標(biāo)記路徑進(jìn)行掃描,獲取二維圖像與數(shù)據(jù)。OCT掃描過程中,咬合面與探頭間距離為3~4 mm,電壓維持于1.0 V,步進(jìn)電機(jī)前進(jìn)300~500步。
1.3.2 探視診 由上述3位臨床醫(yī)師模擬臨床探視診,使用光學(xué)放大鏡及吹干器等對離體恒磨牙樣本咬合面上每一檢測位點(diǎn)進(jìn)行探視診檢測。
1.3.3 偏光顯微鏡檢測 檢測后的牙樣本,沿OCT掃描路徑制成厚度為150~200 μm的牙磨片,置于偏光顯微鏡下觀察并拍攝組織學(xué)圖像。
1.4 統(tǒng)計學(xué)分析
以偏光顯微鏡測得的組織學(xué)結(jié)果為金標(biāo)準(zhǔn),采用SPSS 22.0統(tǒng)計軟件按臨床試驗(yàn)診斷方法,分析比較探視診、OCT檢測窩溝早期釉質(zhì)齲的敏感度(sensitivity,SE)、特異度(specificity,SP)、陽性預(yù)測值(positive predictive value,PPV)及陰性預(yù)測值(negative predictive value,NPV);受試者工作特征(receiver operating characteristic,ROC)曲線分析采用非參數(shù)法,利用Z檢驗(yàn)配對比較ROC曲線下面積(area under ROC curve,AUC);通過Spearman檢驗(yàn)分析探視診與OCT檢測結(jié)果與組織學(xué)評分的相關(guān)性(檢驗(yàn)水準(zhǔn)為雙側(cè)α=0.05)。分別比較3位臨床醫(yī)師使用探視診及OCT方法檢測結(jié)果的一致性,即Kappa分析。Kappa值≤0.40時,認(rèn)為可靠度不合格;0.40
2.1 不同組織學(xué)評分窩溝點(diǎn)隙OCT圖像
圖1 不同程度早期窩溝齲及其相應(yīng)的組織學(xué)和OCT圖像Fig 1 Different progressive stages of occlusal caries and its corresponding histological and OCT images
不同程度早期窩溝齲及其相應(yīng)的組織學(xué)和OCT圖像見圖1。組織學(xué)評分為0的牙齒樣本,偏光顯微鏡下可見檢測部位窩溝釉質(zhì)較為健康,無明顯脫礦,窩溝底可見釉板結(jié)構(gòu),窩溝側(cè)壁可見施格雷線。OCT圖像為典型的健康牙齒圖像。組織學(xué)評分為1的牙齒樣本,偏光顯微鏡圖像可見左右兩個窩溝處均有脫礦,脫礦深度小于釉質(zhì)厚度1/2,左側(cè)窩溝脫礦程度較右側(cè)窩溝輕。OCT圖像中亦可見左側(cè)窩溝表面下光背向散射帶強(qiáng)度及厚度低于右側(cè)窩溝。組織學(xué)評分為2的牙齒樣本,偏光顯微鏡下可見釉質(zhì)表面的再礦化帶和表層下明顯的病損體部,齲損貫穿窩溝釉質(zhì)層,深達(dá)釉牙本質(zhì)界,牙本質(zhì)有所累及。因齲損釉質(zhì)質(zhì)地疏松,在制備牙磨片過程中,窩溝左側(cè)壁有損耗,釉質(zhì)表面的再礦化帶脫落。相應(yīng)的OCT圖像可見表面下背向散射明顯增強(qiáng)。
2.2 檢出窩溝早期釉質(zhì)齲結(jié)果分析
OCT與探視診檢測結(jié)果見表2。由表2可見,在組織學(xué)評分為1的位點(diǎn),即脫礦局限于釉質(zhì)表層外1/2的位點(diǎn),評分與組織學(xué)評分結(jié)果一致者:探視診3例,OCT14例。選擇評分1為截斷點(diǎn),即視組織學(xué)評分為0的樣本為健康樣本,評分為1和2的樣本均為早期齲樣本,探視診與OCT檢測窩溝早期釉質(zhì)齲的SE、SP、PPV、NPV及AUC見表3。OCT檢測早期齲樣本的SE、SP、PPV、NPV及AUC均優(yōu)于探視診。Z檢驗(yàn)結(jié)果顯示,AUC間差異無統(tǒng)計學(xué)意義。Spearman相關(guān)性分析表明,OCT和探視診檢測結(jié)果均與組織學(xué)結(jié)果成正相關(guān),兩種檢測方法的Kappa值均在0.4~0.6之間,即OCT和探視診的檢測者間一致性均為中度(表4)。
表2 探視診與OCT診斷窩溝釉質(zhì)早期齲結(jié)果 Tab 2 The results of visual inspection and OCT for the detection of occlusal caries lesions
表3 探視診與OCT檢出窩溝早期釉質(zhì)齲效能(截斷點(diǎn)為1)Tab 3 The efficiency of visual inspection and OCT for the detection of occlusal caries lesions (1 cut-off point)
表4 探視診與OCT的相關(guān)性和重復(fù)性分析 Tab 4 Spearman’s correlation coefficients and inter-examiner reliability of visual inspection and OCT
恒磨牙窩溝點(diǎn)隙往往釉質(zhì)菲薄,且常伴發(fā)育不良,易于食物滯留及菌斑附著,不利于徹底清潔,是臨床最常見的患齲部位。初起時窩溝釉質(zhì)脫礦常沿釉柱呈倒三角形擴(kuò)展,臨床探視診不易發(fā)現(xiàn)。一旦突破釉牙本質(zhì)界,由于牙本質(zhì)富于小管,礦化程度較低,病損進(jìn)展將更加迅速,對牙體造成較大的破壞。窩溝釉質(zhì)早期脫礦可通過改善口腔環(huán)境、改變飲食結(jié)構(gòu)及局部應(yīng)用再礦化藥物等干預(yù)手段進(jìn)行保守性治療,最大限度地保存牙齒和減少患者接受侵入性治療的恐懼和痛苦。臨床一般常用的X線牙片,對鄰面齲損檢查效果比較好,但是用以檢查咬合面點(diǎn)隙齲則效果較差,特別是早期齲損[7]。X線片顯示出的齲病多已累及釉牙本質(zhì)界和牙本質(zhì),形成組織缺損,只能采用外科手段進(jìn)行治療。
近年來涌現(xiàn)出了多項用于窩溝齲齒早期檢測的新技術(shù),如光纖透照技術(shù)、電阻抗技術(shù)和定量光導(dǎo)熒光技術(shù)等,但因口腔環(huán)境因素復(fù)雜,使這些技術(shù)的敏感性和特異性均受到一定的影響[8-10]。OCT技術(shù)集激光光學(xué)技術(shù)、超靈敏探測技術(shù)、精密自動控制和計算機(jī)圖像處理等技術(shù)于一體,分辨率高、掃描速度快且無輻射,利于無創(chuàng)性獲取表層組織結(jié)構(gòu)的形態(tài)學(xué)信息[11]。Mansour等[12]對DIAGNOdent和OCT診斷冠齲的性能進(jìn)行了臨床比較研究,發(fā)現(xiàn)兩者對原發(fā)性齲損診斷的敏感性/特異性分別為73.7%/ 94.1%、74.1%/95.7%;對于進(jìn)行了修復(fù)治療或窩溝封閉的冠齲診斷的敏感性/特異性分別為19.2%/ 95.8%、74.1%/95.7%。因此認(rèn)為OCT既適于齲齒的早期檢測,又可監(jiān)測修復(fù)體和封閉劑下的繼發(fā)齲。OCT的檢測原理及操作與超聲成像技術(shù)相似,需要使用入射波和測定反射與背向散射信號[13]。但OCT入射波為光波而非聲波,其圖像解析程度遠(yuǎn)遠(yuǎn)超過超聲圖像[14]。釉質(zhì)齲發(fā)生過程中,釉質(zhì)礦質(zhì)含量損失,晶體有序排列破壞,孔隙度增加,對光反射及背向散射均發(fā)生改變,OCT可依此檢測釉質(zhì)齲的范圍[15-17]。研究[18]顯示,牙齒釉質(zhì)鈣化不全及著色等因素基本不影響OCT對牙齒白堊色變的檢測。在近紅外區(qū)域,尤其波長接近1 310 nm處時,釉質(zhì)透明度最高,衰減系數(shù)比可見光區(qū)低20~30倍,齲損成像對比度較高[19]。本實(shí)驗(yàn)中使用的OCT系統(tǒng)亦采用1 310 nm波長入射光源,以期獲得最佳的軸向成像深度。
已有多項研究[20-23]先后將OCT應(yīng)用于齒科平滑面早期齲、根齲及繼發(fā)齲檢測的研究中,而用于窩溝早期釉質(zhì)齲檢測的研究開展較少。本課題組先前探討了OCT檢測離體前磨牙窩溝釉質(zhì)早期人工齲深度的準(zhǔn)確性,結(jié)果顯示OCT可對窩溝釉質(zhì)早期人工齲清晰成像,可行早期齲病變程度的量化分析[24]。本研究采用偏光顯微鏡獲得的組織學(xué)圖像為金標(biāo)準(zhǔn),探討OCT作為體外窩溝早期釉質(zhì)齲檢出方法的效能。為保證組織學(xué)圖像與OCT掃描路徑盡可能重合,在OCT掃描時使用了紅光定位。本研究發(fā)現(xiàn)對于脫礦局限于釉質(zhì)表層外1/2的窩溝早期齲位點(diǎn),OCT檢出率(14/25)較高,恰好可彌補(bǔ)臨床探視診此方面的不足,對于實(shí)現(xiàn)窩溝臨床早期齲的診斷具有積極意義。本實(shí)驗(yàn)數(shù)據(jù)分析顯示,以1分為截斷點(diǎn),OCT對窩溝早期釉質(zhì)齲檢測的SE、SP、PPV、NPV及AUC均略優(yōu)于探視診,說明OCT檢出早期窩溝齲的效能與準(zhǔn)確性較好。OCT增加了完整釉質(zhì)表層下早期窩溝齲檢出的準(zhǔn)確性,利于在齲病初起階段采取預(yù)防干預(yù)措施,更有效地控制齲病的進(jìn)一步發(fā)展。
本研究中,OCT與組織學(xué)評分的Spearman相關(guān)系數(shù)為0.559,呈正相關(guān),相關(guān)度較好。在進(jìn)行OCT及探視診不同檢測者間一致性分析時,為避免檢測中存在研究者主觀傾向性的干擾,采取了實(shí)驗(yàn)檢測者與診斷評分者分開、盲法診斷等措施,進(jìn)行了不同評分窩溝早期齲的OCT圖像與偏光圖像特點(diǎn)的培訓(xùn)后,再由各臨床醫(yī)師獨(dú)立對每一檢測位點(diǎn)進(jìn)行組織學(xué)、探視診及OCT評分。結(jié)果顯示,OCT的檢測者間的一致性為中等,Kappa值較探視診低。究其原因可能為探視診是臨床常用的窩溝齲檢測方法,各臨床齒科醫(yī)師運(yùn)用熟練,對診斷標(biāo)準(zhǔn)十分熟悉。而對于OCT這一新型檢測方法,臨床醫(yī)師則較為陌生,雖經(jīng)過短暫培訓(xùn),但掌握程度與探視診尚無法比擬。相信隨著臨床實(shí)踐增多和OCT早期齲齒診斷標(biāo)準(zhǔn)的日臻完善,OCT的檢測者間檢測結(jié)果一致性應(yīng)可進(jìn)一步提高。
與平滑面相比,窩溝固有的形貌特征復(fù)雜性,窩溝底的開放程度各異,與OCT入射光束往往非正交投照,使入射光相對損耗,表層下透射深度降低。當(dāng)齲損加重,表面下釉質(zhì)內(nèi)孔隙度增加,釉質(zhì)內(nèi)光漫散射增強(qiáng),入射光迅速衰減,深層釉質(zhì)返回OCT探測器的背向散射光信號減少,導(dǎo)致掃描深度進(jìn)一步減低。正是由于上述原因,造成OCT檢測脫礦在釉質(zhì)表層內(nèi)1/2至牙本質(zhì)外1/3的窩溝齲受限。OCT檢測面齲損時,利用高折光率液體作為檢測介質(zhì)可顯著提高光反射信號[25]。在后續(xù)在體窩溝早期釉質(zhì)齲診斷的實(shí)驗(yàn)中,可考慮使用安全無毒折光率較高的液體作為介質(zhì),并適當(dāng)參照窩溝側(cè)壁的探視診及其OCT圖像比較進(jìn)行,尤其是針對窩溝底不能充分開放的牙齒,以利于增加齲損OCT圖像對比度和成像深度,提高OCT診斷的準(zhǔn)確性。
本研究結(jié)果表明,OCT能夠在窩溝齲初期階段靈敏、準(zhǔn)確、無創(chuàng)、有效地發(fā)現(xiàn)窩溝早期釉質(zhì)脫礦,尤其是OCT能夠檢出探視診等臨床常用方法難以發(fā)現(xiàn)的窩溝早期脫礦,有望發(fā)展成為一種新型的窩溝早期齲診斷方法,用于輔助臨床齒科醫(yī)生早期、快速、安全、準(zhǔn)確地診斷窩溝釉質(zhì)齲,從而有效實(shí)現(xiàn)窩溝齲的早期干預(yù)和早期控制,最大限度地保護(hù)牙齒組織,提高人體健康水平。
[1] Liu X, Jones RS. Evaluating a novel fissure caries model using swept source optical coherence tomography[J]. Dent Mater J, 2013, 32(6):906-912.
[2] Otis LL, Colston BW Jr, Everett MJ, et al. Dental optical coherence tomography: a comparison of two in vitro systems[J]. Dentomaxillofac Radiol, 2000, 29(2):85-89.
[3] Le MH, Darling CL, Fried D. Automated analysis of lesion depth and integrated reflectivity in PS-OCT scans of tooth demineralization[J]. Lasers Surg Med, 2010, 42(1):62-68.
[4] 李燕妮, 姚暉, 連小麗, 等. 釉質(zhì)早期齲的光學(xué)相干斷層成像與定量研究[J]. 華西口腔醫(yī)學(xué)雜志, 2015, 33(2):121-124.
Li YN, Yao H, Lian XL, et al. Imaging and quantitative of early caries using optical coherence tomography[J]. West Chin J Stomatol, 2015, 33(2):121-124.
[5] Lee RC, Kang H, Darling CL, et al. Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography[J]. Biomed Opt Express, 2014, 5(9):2950-2962.
[6] Ekstrand KR, Ricketts DN, Kidd EA. Reproducibility and accuracy of three methods for assessment of demineralization depth of the occlusal surface: an in vitro examination [J]. Caries Res, 1997, 31(3):224-231.
[7] Barbería E, Maroto M, Arenas M, et al. A clinical study of caries diagnosis with a laser fluorescence system[J]. J Am Dent Assoc, 2008, 139(5):572-579.
[8] Schneiderman A, Elbaum M, Shultz T, et al. Assessment of dental caries with Digital Imaging Fiber-Optic TransIllumination (DIFOTI): in vitro study[J]. Caries Res, 1997, 31(2): 103-110.
[9] Murdoch-Kinch CA. Oral medicine: advances in diagnostic procedures[J]. J Calif Dent Assoc, 1999, 27(10):773-780, 782-784.
[10] 馮巖, 尹偉, 胡德渝, 等. 定量光導(dǎo)熒光技術(shù)評價含氟牙膏抑制早期齲損效果的臨床研究[J]. 華西口腔醫(yī)學(xué)雜志, 2008, 26(6):607-610.
Feng Y, Yin W, Hu DY, et al. Detection and prevention of early caries after fluoride dentifrice application using quantitative light-induced fluorescence in vivo[J]. West Chin J Stomatol, 2008, 26(6):607-610.
[11] Staninec M, Douglas SM, Darling CL, et al. Non-destructive clinical assessment of occlusal caries lesions using near-IR imaging methods[J]. Lasers Surg Med, 2011, 43(10):951-959.
[12] Mansour S, Ajdaharian J, Nabelsi T. Comparison of caries diagnostic modalities: a clinical study in 40 subjects[J]. Lasers Surg Med, 2016, doi:10.1002/ism.22460.
[13] Van Hilsen Z, Jones RS. Comparing potential early caries assessment methods for teledentistry[J]. BMC Oral Health, 2013, 13:16.
[14] Ko AC, Choo-Smith LP, Hewko M, et al. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy[J]. J Biomed Opt, 2005, 10(3):031118.
[15] Nakajima Y, Shimada Y, Sadr A, et al. Detection of occlusal caries in primary teeth using swept source optical coherence tomography[J]. J Biomed Opt, 2014, 19(1):16020.
[16] Simon JC, Chan KH, Darling CL, et al. Multispectral near-IR reflectance imaging of simulated early occlusal lesions: variation of lesion contrast with lesion depth and severity [J]. Lasers Surg Med, 2014, 46(3):203-215.
[17] Azevedo CS, Trung LC, Simionato MR, et al. Evaluation of caries-affected dentin with optical coherence tomography [J]. Braz Oral Res, 2011, 25(5):407-413.
[18] Huminicki A, Dong C, Cleghorn B, et al. Determining the effect of calculus, hypocalcification, and stain on using optical coherence tomography and polarized Raman spectroscopy for detecting white spot lesions[J]. Int J Dent, 2010, 2010:879252.
[19] Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ=1 310-nm[J]. Lasers Surg Med, 2009, 41(3):208-213.
[20] Sowa MG, Popescu DP, Werner J, et al. Precision of Raman depolarization and optical attenuation measurements of sound tooth enamel[J]. Anal Bioanal Chem, 2007, 387(5):1613-1619.
[21] Lee C, Darling CL, Fried D. Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots[J]. Dent Mater, 2009, 25(6):721-728.
[22] Lenton P, Rudney J, Chen R, et al. Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography[J]. Dent Mater, 2012, 28(7):792-800.
[23] Tom H, Simon JC, Chan KH, et al. Near-infrared imaging of demineralization under sealants[J]. J Biomed Opt, 2014, 19(7):77003.
[24] 靳淑鳳, 代曉華, 姚暉, 等. 光學(xué)相干斷層成像術(shù)對人牙窩溝釉質(zhì)早期齲變深度的測量[J]. 國際口腔醫(yī)學(xué)雜志, 2010, 37(6):637-640.
Jin SF, Dai XH, Yao H, et al. Measurement of the depth of initial caries on the occlusal surface by optical coherence tomography[J]. Int J Stomatol, 2010, 37(6):637-640.
[25] Kang H, Darling CL, Fried D. Enhancing the detection of hidden occlusal caries lesions with OCT using high index liquids[J]. Proc SPIE Int Soc Opt Eng, 2014, 8929:892900.
(本文編輯 杜冰)
Ex vivo assessment of the potency of optical coherence tomography for the detection of early occlusal caries
Dai Xiaohua1, Yao Hui1, Lian Xiaoli1, Li Yanni1, Wang Yingying2, Liu Xiaobin2, Xing Lu2. (1. Experimental Research Center, Tianjin Stomatology Hospital, Tianjin 300041, China; 2. Dept. of Conservative Dentistry and Endodontics, Tianjin Stomatology Hospital, Tianjin 300041, China)
Supported by: The National Nature Science Foundation of China(30770597). Correspondence: Yao Hui, E-mail: yaoh2k@ 163.com.
Objective This study aimed to evaluate the potency of optical coherence tomography (OCT) to detect early occlusal caries compared with clinical visual examination. Methods Approximately 97 sites of occlusal fissures on 77 extracted accessional human teeth were scored by three examiners using conventional visual examination and OCT. Results of histological examination on these sites obtained by polarimicroscope served as a gold standard to analyze the sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV). Results of the area under receiver operating characteristic (ROC) curve (AUC) by visual examination and OCT were also analyzed. The Spearman’s rank correlation coefficient with histology and the inter-examiner reliability were compared. Results For sites of enamel demineralization limited to the outer 1/2 of the enamel layer, the detection rate of OCT (14/25) was obviously higher than that of the clinical and visual examination (3/25). SE, SP, PPV and NPV of OCT during diagnosis of the early occlusal caries (0.83, 0.64, 0.87 and 0.57) were higher than that of the visual examination (0.79, 0.60, 0.85 and 0.50). AUC (95%CI) of OCT and the visual examination were 0.737 (0.569-0.822) and 0.696 (0.614-0.859), respectively. No statistically significant difference was observed between the results. Results of OCT correlated well with histology (r=0.559, P<0.05). The inter-examiner reliability of OCT was medium. Conclusion OCT can accurately detect early occlusal lesions atraumatically with high sensitivity and effectiveness. OCT exhibits the potential of auxiliary clinical diagnosis enhancing detection rate and finally implementing early diagnosis and early intervention of early occlusal lesions in clinical practice.
occlusal caries; early caries; optical coherence tomography; visual examination
R 781.1
A
10.7518/hxkq.2016.06.003
2016-02-22;
2016-09-15
國家自然科學(xué)基金(30770597)
代曉華,副研究員,碩士,E-mail:jstonehome@163.com
姚暉,主任醫(yī)師,學(xué)士,E-mail:yaoh2k@163.com