譚建波,趙鵬鵬
(1.河北科技大學(xué)材料科學(xué)與工程學(xué)院,河北石家莊 050018,2.河北省材料近凈成形技術(shù)重點(diǎn)實(shí)驗(yàn)室,河北石家莊 050018)
?
成形速度對(duì)7075半固態(tài)模鍛組織均勻性的影響
譚建波1,2,趙鵬鵬1,2
(1.河北科技大學(xué)材料科學(xué)與工程學(xué)院,河北石家莊 050018,2.河北省材料近凈成形技術(shù)重點(diǎn)實(shí)驗(yàn)室,河北石家莊 050018)
在半固態(tài)模鍛過程中,經(jīng)常會(huì)出現(xiàn)液相偏析現(xiàn)象,使零件出現(xiàn)“弱點(diǎn)”或“弱區(qū)”,這些“弱點(diǎn)”或“弱區(qū)”通常又是潛在的裂紋源和服役條件下失效的起因。為了分析研究半固態(tài)模鍛液相偏析的影響因素,應(yīng)用DEFORM-3D軟件對(duì)7075鋁合金半固態(tài)模鍛充型過程進(jìn)行了模擬,研究了成形速度對(duì)7075鋁合金杯形件充型過程的影響規(guī)律。在模擬的基礎(chǔ)上,利用壓力機(jī)及杯形實(shí)驗(yàn)?zāi)>?,進(jìn)行了半固態(tài)7075鋁合金流變模鍛成形,研究了成形速度對(duì)7075鋁合金杯形件半固態(tài)模鍛組織均勻性的影響。模擬和實(shí)驗(yàn)結(jié)果表明:成形速度越高,充型越不平穩(wěn);在壓頭溫度400 ℃、成形比壓50 MPa、合金溫度628 ℃的條件下,隨著成形速度的增加,杯形件的液相偏析度增加,組織越不均勻,當(dāng)成形速度為5 mm/s時(shí),杯形件的液相偏析度高達(dá)18.2%。
鑄造工藝與設(shè)備;半固態(tài);流變模鍛;7075鋁合金;組織均勻性;液相偏析度
隨著中國(guó)交通運(yùn)輸業(yè)及武器裝備業(yè)的現(xiàn)代化、高速化,零件輕量化要求的日趨強(qiáng)烈,特別是飛機(jī)、航天器、高速列車、貨運(yùn)車、汽車、火炮、坦克以及機(jī)械設(shè)備等重要受力部件和結(jié)構(gòu)件等,大量使用鋁合金鍛件和模鍛件來代替原來的鋼結(jié)構(gòu)件。普通的鋁合金生產(chǎn)方法以及傳統(tǒng)的模鍛技術(shù)難以滿足關(guān)鍵零部件的制造需求和使用性能,由于這種需求的客觀存在,使得半固態(tài)模鍛技術(shù)得到人們廣泛關(guān)注[1-7]。然而,半固態(tài)合金是含有非枝晶固相的固液混合物,在外力作用下成形時(shí),液相比固相更容易流動(dòng)因而造成液相偏析。研究表明,許多合金在半固態(tài)鍛造中出現(xiàn)固液分離導(dǎo)致液相偏析,如A356,A357,2024,6061,6082,7050,7075,2A50,A201,AM60,ADC12等[8-21]。但到目前為止,這個(gè)問題還沒有徹底解決。本文采用計(jì)算機(jī)模擬和實(shí)驗(yàn)相結(jié)合的方法,研究了成形速度對(duì)7075鋁合金杯形件半固態(tài)模鍛組織均勻性的影響,定量描述了成形速度與液相偏析之間的關(guān)系。
1.1 建立模型
本實(shí)驗(yàn)中采用的杯形件模型包括壓頭、墊塊、套筒和坯料,Pro/E中實(shí)體建模如圖1所示。
圖1 杯形件模型Pro/E建模Fig.1 Pro/E modeling for cup shell model
裝配后模具的三維立體示意圖如圖2所示;圖3為部分模具模型網(wǎng)格劃分圖。
圖2 裝配后模具 Fig.2 Assembled mould
圖3 部分模具的實(shí)體網(wǎng)格Fig.3 Solid mesh of partial mould
1.2 材料參數(shù)設(shè)置
實(shí)驗(yàn)所用材料為7075合金,其主要成分的質(zhì)量分?jǐn)?shù)分別為Zn:5.1%~6.1 %;Mg:2.1%~2.9%;Cu: 1.2%~2.0 %;Si:0.40%, Fe:0.50%;Mn:0.30%;Cr:0.18%~0.28%;Ti:0.20%;余量為Al。材料的熱物性參數(shù)見表1。
表1 材料的熱物性參數(shù)
1.3 其他參數(shù)設(shè)置
在模擬運(yùn)算完成后應(yīng)用DEF0RM軟件中的后處理模塊進(jìn)行分析,設(shè)置壓頭為活動(dòng)件,其余模具及坯料速度設(shè)為零,壓頭下壓速度方向?yàn)?Z(垂直向下),壓頭的下壓速度為時(shí)間函數(shù)。定義本實(shí)驗(yàn)中所有模具和坯料間的接觸類型全部為黏著,在接觸的主次關(guān)系中定義坯料均為次要,摩擦類型為剪切摩擦,設(shè)定值為0.4。界面換熱系數(shù)中壓頭和坯料的換熱系數(shù)為11,其余為5。
1.4 模擬工藝方案
采用3組不同成形速度進(jìn)行模擬,模具下模溫度設(shè)為350 ℃,成形比壓為50 MPa,模擬方案見表2。
表2 模擬工藝方案
圖4表示的是成形速度對(duì)充型過程的影響。
圖4 成形速度對(duì)充型過程的影響Fig.4 Influence of forming velocity on filling process
從圖4可以看出,當(dāng)其他工藝參數(shù)相同,隨著充型速度的增大,7075鋁合金半固態(tài)合金充型過程變得不平穩(wěn)。這是由于隨著充型速度的提高,半固態(tài)合金之間的相對(duì)運(yùn)動(dòng)變得較為劇烈,導(dǎo)致合金的充型過程不平穩(wěn)。
圖5 實(shí)驗(yàn)?zāi)>逨ig.5 Experimental mold
為了驗(yàn)證模擬結(jié)果,進(jìn)行了半固態(tài)模鍛實(shí)驗(yàn)。實(shí)驗(yàn)?zāi)>呷鐖D5所示。將預(yù)先定量切割好的圓柱形試塊放入下模中,加熱到一定溫度后,采用手工機(jī)械攪拌的方式制備半固態(tài)合金,待到預(yù)定溫度后,進(jìn)行半固態(tài)模鍛成形。成形工藝方案同表1,成形的杯形件斷面如圖6所示。圖6中的c)是由于涂料涂覆不到位,造成杯形件脫模力過大,杯形件由圖5中下模具中取出時(shí),由于錘擊過猛,導(dǎo)致從下部斷裂。
圖6 不同成形速度下杯形件的斷面Fig.6 Section state of cup part under different forming velocity
通過對(duì)圖6杯形件斷面觀察及金相組織分析,發(fā)現(xiàn)高溫液相形成的共晶在杯形件的上部,中部、下部不存在高溫液相形成的共晶。圖6中杯形件斷面上部用線圈定的區(qū)域?yàn)楦邷匾合嘈纬傻墓簿^(qū)域。從圖6可以看出,不同成形速度下成形的杯形件,高溫液相形成的共晶區(qū)域大小也不同,隨著成形速度的提高,杯形件上部共晶區(qū)域面積逐漸加大。圖6 c)的微觀組織如圖7所示。
為了定量描述半固態(tài)合金溫度與高溫液相形成的共晶區(qū)域的關(guān)系,引入了液相偏析度的概念:高溫液相形成的共晶區(qū)域所占面積A液與整個(gè)杯形斷面總面積A總的比例為液相偏析度,即
經(jīng)分析計(jì)算,不同成形速度下的液相偏析度如圖8所示。
圖7 試樣斷面及微觀組織Fig.7 Sample cross section and microstructure
圖8 不同成形速度下的液相偏析度Fig.8 Liquid phase segregation degree under different forming velocity
由圖8可以看出,隨著成形速度的提高,液相偏析度是逐漸增加的。這是因?yàn)殡S著成形速度的增加,液相的流動(dòng)速度相對(duì)于固相的流動(dòng)速度也會(huì)增加,導(dǎo)致高溫下液相明顯優(yōu)于固相流動(dòng),導(dǎo)致最后充填部位(杯形件的上部)高溫液相形成的共晶區(qū)域偏多,充型速度大的杯形件杯口處的共晶區(qū)域增多,造成了試件上部和其他部位的組織不均勻。因此,嚴(yán)格控制半固態(tài)合金成形速度對(duì)成形零件的組織均勻性是非常有利的。另外,成形速度過高,也會(huì)造成合金在充型的過程中容易產(chǎn)生紊流、卷氣,使零件產(chǎn)生氣孔。
1)利用DEFORM-3D軟件,模擬了成形速度對(duì)7075鋁合金杯形件充型過程的影響規(guī)律。模擬結(jié)果表明:成形速度越高,充型越不平穩(wěn)。
2)在模擬的基礎(chǔ)上,進(jìn)行了半固態(tài)模鍛成形,模鍛工藝參數(shù)在壓頭預(yù)熱溫度400 ℃、成形比壓50 MPa、合金溫度628 ℃時(shí),隨著成形速度的增加,杯形件的液相偏析度增加,組織越不均勻;當(dāng)成形速度為5 mm/s時(shí),杯形件的液相偏析度高達(dá)18.2%。
[1] SEO P K,KIM D U,KANG C G. The effect of the gate shape on the microstructural characteristic of the grain size of Al-Si alloy in the semi-solid die casting process[J].Mater Sci Eng A,2007, 445/446:20-30.
[2] 陳剛.2A50鋁合金半固態(tài)模鍛成形的組織性能不均勻性研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2009. CHEN Gang. Research on Inhomogeneity of Microstructure and Mechanical Properties for 2A50 Aluminum Alloy Prepared by Thixoforging[D]. Harbin: Harbin Institute of Technology, 2009.
[3] DU Z M,CHEN G,CHENG Y S, et al. Inhomogeneity of density and mechanical properties of A357 aluminum alloy backward extruded in semi-solid state[J]. Transactions of Nonferrous Metals Society of China,2011(10):2285-2293.
[4] 譚建波,楊帥,李祎超.半固態(tài)6061合金流變鑄-鍛成形及組織均勻性[J].特種鑄造及有色合金, 2015,35(6): 561-565. TAN Jianbo, YANG Shuai, LI Yichao. Research on forming process and microstructure uniformity of semi-solid rheological casting-forging 6061 alloy[J]. Special Casting & Nonferrous Alloys, 2015,35(6): 561-565.
[5] 錢福梅.2024鋁合金半固態(tài)觸變模鍛過程研究及數(shù)值模擬[D].哈爾濱:哈爾濱工業(yè)大學(xué), 2011. QIAN Fumei. Research on the Semi-solid Thixoforging Process and Numerical Simulation of Aluminum Alloy 2024[D]. Harbin: Harbin Institute of Technology, 2011.
[6] 劉靜安. 鋁合金鍛壓生產(chǎn)現(xiàn)狀及鍛件應(yīng)用前景分析[J]. 輕合金加工技術(shù), 2005,33(6):1-5. LIU Jingan. Application foreground of forgings and states of aluminium alloy forging production[J]. Light Alloy Fabrication Technology, 2005,33(6):1-5.
[7] 王順成, 戚文軍,鄭開宏.半固態(tài)模鍛ZL101鋁合金車輪的組織與力學(xué)性能[J]. 材料熱處理學(xué)報(bào), 2013,34(5):116-120. WANG Shuncheng, QI Wenjun, ZHENG Kaihong. Microstructure and mechanical properties of semisolid forged ZL101 aluminum alloy wheel[J]. Transactions of Materials and Heat Treatment, 2013,34(5):116-120.
[8] M?LLER H, CURLE U A, MASUKU E P. Characterization of surface liquid segregation in SSM-HPDC aluminium alloys 7075,2024,6082 and A201[J].Transactions of Nonferrous Metals Society of China,2010,20(3):847-851.
[9] 肖文華.半固態(tài)5083鋁合金壓縮行為及觸變軋制研究[D].廣州:華南理工大學(xué),2011. XIAO Wenhua. Study on Compression Behavior and Thixo-rolling of Semi-solid 5083 Aluminum Alloy[D]. Guangzhou: South China University of Technology,2011.
[10]閆冬, 紀(jì)興華, 陳文, 等.近液相線鍛造及部分重熔制備AM60鎂合金半固態(tài)坯及觸變成形研究[J].鑄造,2014,63(5):429-431. YAN Dong, JI Xinghua, CHEN Wen, et al. Study on thixoforging of AM60 magnesium alloy semi-solid billet prepared by near-liquidus forging and partial remelting[J]. Foundry,2014,63(5):429-431.
[11]譚建波,楊帥,李祎超.工藝參數(shù)對(duì)半固態(tài)流變鑄-鍛6061合金成形性的影響[J]. 河北科技大學(xué)學(xué)報(bào), 2016,37(1):65-69. TAN Jianbo, YANG Shuai, LI Yichao. Effect of technological parameters on formability of semi-solid rheological casting-forging 6061 alloy[J]. Journal of Hebei University of Science and Technology, 2016,37(1):65-69.
[12]KANG C G, LEE S M. The effect of solid fraction and indirect forging pressure on mechanical properties of wrought aluminum alloy fabricated by electromagnetic stirring[J]. International Journal of Advanced Manufacturing Technology, 2009,42:73-82.
[13]譚建波,王子超,王東旭.杯形件半固態(tài)模鍛充型過程模擬及實(shí)驗(yàn)驗(yàn)證[J].河北科技大學(xué)學(xué)報(bào),2015, 36(3):313-318. TAN Jianbo, WANG Zichao, WANG Dongxu.The simulation and verification of the filling process of cup shell semi-solid die forging[J].Journal of Hebei University of Science and Technology,2015, 36(3):313-318.
[14]VIEIRA E A,FERRANTE M. Prediction of rheological behaviour and segregation susceptibility of semi-solid aluminium-silicon alloys by a simple back extrusion test[J].Acta Mater,2005, 53(20):5379-5386.
[15]秦晉.鋁合金T型件半固態(tài)填充——塑性流動(dòng)一體化模鍛研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2010. QIN Jin. Investigation of T-Shaped Workpiece Semi-solid Aluminum Alloy Filling-plastic Flowing in Thixoforging[D]. Harbin: Harbin Institute of Technology, 2010.
[16]GOVENDER G, M?LLER H. Evaluation of surface chemical segregation of semi-solid metal cast aluminium alloy A356[J]. Solid State Phenomena, 2008,141/142/143:433-438.
[17]LIU D,ATKINSON H V,KAPRANOS P, et al. Effect of heat treatment on structure and properties of thixoformed wrought alloy 2024[C]//Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites.Tokyo:[s.n.], 2002: 311-316.
[18]CHO W G, KANG C G. Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys[J]. J Mater Process Technol,2000,105(3): 269-277.
[19]CHARREYRON P O, FLEMINGS M C. Rheology of semi-solid dendritic Sn-Pb alloys at low strain rates[J]. International Journal of Mechanical Sciences, 1985, 27:781-785.
[20]李元東,劉興海,張心龍,等.變形鋁合金半固態(tài)近凈成形研究進(jìn)展[J].特種鑄造及有色合金,2014,34(5):471-479. LI Yuandong, LIU Xinghai, ZHANG Xinlong,et al. An review of semi-solid near-net forming in wrought aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2014,34(5):471-479.
[21]李建,孫惠學(xué),郭朋,等.鎂合金車輪成形工藝及模具研究[J].燕山大學(xué)學(xué)報(bào),2013,37(6):494-498. LI Jian,SUN Huixue,GUO Peng,et al.Development of forming technology and die of magnesium alloy wheels[J].Journal of Yanshan University,2013,37(6):494-498.
Influence of forming velocity on the uniformity of microstructure of semisolid die forging 7075 alloy
TAN Jianbo1,2, ZHAO Pengpeng1,2
(1.School of Material Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China; 2.Hebei Key Laboratory of Material Near-net Forming Technology, Shijiazhuang, Hebei 050018, China)
Liquid phase segregation frequently occurs in the process of semi solid die forging, which makes the parts appear "weak point" or "weak region", and usually, the "weak point" or "weak area" is the reason of crack and service condition failure. In order to analyze the influence factors of the liquid phase segregation of the semi solid die forging, DEFORM-3D is used for the numerical simulation of semi-solid die forging forming process of 7075 aluminum alloy, to study the influence rule of forming velocity on the forming process of cup part. Based on the simulation results, the rheological die forging forming of 7075 aluminum alloythe part is conducted to research the influence of forming velocity on the uniformity of microstructure by means of press machine and cup mould. The simulation and experimental results show that as the filling velocity is faster, the forming process is more unstable; under the condition of head temperature of 400 ℃, the forming pressure of 50 MPa, and the alloy temperature 628 ℃, as the forming velocity increases, the liquid phase segregation degree of cup part increases, and the microstructure is far from uniformity. The segregation degree is up to 18.2% as the forming velocity is 5 mm/s.
foundry technology and equipment; semisolid; rheological die forging; 7075 aluminum alloy; uniformity of microstructure; liquid phase segregation degree
1008-1542(2016)06-0609-05
10.7535/hbkd.2016yx06013
2016-03-31;
2016-04-13;責(zé)任編輯:王海云
河北省自然科學(xué)基金(E2014208087);河北省高等學(xué)??茖W(xué)技術(shù)研究項(xiàng)目(ZD2015003);河北省引進(jìn)留學(xué)人員資助項(xiàng)目(C201400515)
譚建波(1964—),男,河北定州人,教授,博士,主要從事半固態(tài)成形技術(shù)與理論方面的研究。
E-mail:tanjian1998@163.com
TG146.4
A
譚建波,趙鵬鵬.成形速度對(duì)7075半固態(tài)模鍛組織均勻性的影響[J].河北科技大學(xué)學(xué)報(bào),2016,37(6):609-613. TAN Jianbo, ZHAO Pengpeng.Influence of forming velocity on the uniformity of microstructure of semisolid die forging 7075 alloy[J].Journal of Hebei University of Science and Technology,2016,37(6):609-613.