国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類Caputo分?jǐn)?shù)階微分方程正解的存在性

2016-12-19 02:36李云紅呂文靜
河北科技大學(xué)學(xué)報 2016年6期
關(guān)鍵詞:邊值問題石家莊算子

李云紅,呂文靜

(1.河北科技大學(xué)理學(xué)院,河北石家莊 050018;2.河北科技大學(xué)總務(wù)處,河北石家莊 050018)

?

一類Caputo分?jǐn)?shù)階微分方程正解的存在性

李云紅1,呂文靜2

(1.河北科技大學(xué)理學(xué)院,河北石家莊 050018;2.河北科技大學(xué)總務(wù)處,河北石家莊 050018)

為了研究一類帶p-Laplacian 算子的Caputo分?jǐn)?shù)階微分方程邊值問題正解的存在性,通過計算得到該問題的格林函數(shù),并討論其性質(zhì)。運(yùn)用單調(diào)迭代方法,得到該邊值問題至少存在2個正解,最后通過實例驗證了此類方程邊值問題正解的存在性。

常微分方程其他學(xué)科;Caputo分?jǐn)?shù)階微分;正解;單調(diào)迭代方法;邊值問題

微分方程是現(xiàn)代數(shù)學(xué)的一個重要分支,它在幾何、力學(xué)、航天、經(jīng)濟(jì)等領(lǐng)域都有著廣泛的應(yīng)用。近年來,分?jǐn)?shù)階微分方程邊值問題成為許多數(shù)學(xué)工作者的研究熱點[1-14]。

本文討論帶p-Laplacian算子的邊值問題的正解情況,

在本文中,總假設(shè)下面條件成立:

H1)μ1>0,μ2>0,0<η<1,ρ=η+μ1-μ2,ρ>0,(α-1)μ2≥1;

H2)f:[0,1]×[0,+∞)→[0,+∞)是連續(xù)的;

1 預(yù)備知識

為證明結(jié)論,需要利用下面的預(yù)備知識[15-16]。

定義1 函數(shù)y:(0,+∞)→R的α>0階Riemann-Liouville積分定義如下:

其中右邊是在(0,+∞)上逐點定義的。

定義2 函數(shù)y:(0,+∞)→R的α>0階Caputo微分定義如下:

其中n=[α]+1,右邊是在(0,+∞)上逐點定義的。

其中N是大于或等于α的最小整數(shù)。

2 主要結(jié)果

引理2 邊值問題(1)等價于

(2)

其中:

(3)

(4)

(5)

兩邊從0到t積分,利用引理1得

因此,

對上式兩邊從0到t積分,利用引理1得

利用式(1)中的u″(0)=0,得d2=0,所以

(6)

由式(6),可得

(7)

由式(6)、式(7)和式(1)中的u(0)=μ1μ′(0),可得

d0=μ1d1。

(8)

由式(6)—式(8)和式(1)中的u(η)=μ2u′(1),可得

證明完畢。

引理3 引理2中的?(s)≥0,對于0≤s≤t≤1。d1≥0。G(t,s)≥0且k1p(s)≤G(t,s)≤k2p(s),

證明 由條件H2)可得f(t,u(t))≥0,因此對任意的0≤s≤t≤1,有:

由條件H1)可得μ2>0,0<η<1,ρ=η+μ1-μ2>0,(α-1)μ2≥1,因此

當(dāng)0≤s≤min{t,η}≤1時,

所以k1p(s)≤G(t,s)≤k2p(s)。又因為(α-1)μ2≥1,所以k1≥0,因此G(t,s)≥0。其他區(qū)間的證明類似,省略。

K={u|u∈E,u是[0,1]上的非負(fù),不減的函數(shù)}。

算子T:K→E為

(9)

定理1 設(shè)條件H1)—H3)成立,且存在常數(shù)r>1,使得

S1) 當(dāng)0≤t≤1,0≤u≤v≤r時,有f(t,u)≤f(t,v);

則邊值問題(1)至少存在2個正解u*和v*,使得0≤‖u*‖≤r,0≤‖v*‖≤r,其中:

證明 首先證明T:K→K是全連續(xù)的。

因此,

所以T(M)是一致有界的。

下面來證明T(M)是等度連續(xù)的。任取u∈M,0≤t1≤t2≤1,可得

|(Tu)(t2)-(Tu)(t1)|≤

這樣T(M)是等度連續(xù)的,應(yīng)用Arzel-Ascoli定理,可得T是全連續(xù)的。

因為

u1(t)=(Tu0)(t)=

注:定理1中的u*,v*有可能重合,在這種情況下問題(1)至少有1個正解。

3 舉 例

討論下面邊值問題的正解情況,

利用定理1可知,上述邊值問題至少有2個正解。

[1] AHMAD B, MATAR M, AGARWAL R. Existence results for fractional differential equations of arbitrary order with nonlocal integral boundary conditions[J]. Boundary Value Problem,2015,220:1-13.

[2] ZHANG Lihong, AHMAD B, WANG Guotao,et al. Nonlinear fractional integro-differential equations on unbounded domains in a Banach space[J]. Journal of Computational and Applied Mathematics,2013,240:51-56.

[3] ALBERTO C, HAMDI Z. Nonlinear fractional differential equations with integral boundary value conditions[J]. Applied Mathematics and Computation,2014,228:251-257.

[4] VONG S. Positive solutions of singlular fractional differential equations with integral boundary conditions[J]. Mathematical and Computer Modelling,2013,57: 1053-1059.

[5] SOTIRIS K N, SINA E. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation,2015,266: 235-243.

[6] KOU Chunhai, ZHOU Huacheng, YAN Ye. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis[J]. Nonlinear Analysis,2011,74: 5975-5986.

[7] CUI Yujun. Uniqueness of solution for boundary value problems for fractional differential equations[J]. Applied Mathematics Letters,2016,51:48-54.

[8] ZHANG Lihong,AHMAD B, WANG Guotao. The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative[J]. Applied Mathematics Letters,2014,31:1-6.

[9] LI Yunhong, LI Guogang. Positive solutions ofp-Laplacian fractional differential equations with integral boundary value conditions[J]. Journal of Nonlinear Science and Applications,2016,9(3):717-726.

[10]ZHAI Chengbo, XU Li. Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter[J]. Communications in Nonlinear Science Numerical Simulation,2014,19:2820-2827.

[11] XU Xiaojie,F(xiàn)EI Xiangli. The positive properties of Green’s function for three point boundary value problems of nonlinear fractional differential equations and its applications[J]. Communications in Nonlinear Science Numerical Simulation,2012,17(4):1555-1565.

[12] NTOUYAS S, ETEMAD S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation,2015,266:235-243.

[13] 李云紅,李艷. 帶p-Laplacian算子的分?jǐn)?shù)階微分方程的正解[J].河北科技大學(xué)學(xué)報,2015,36(6):593-597. LI Yunhong,LI Yan. A positive solution for the fractional differential equation with ap-Laplacian operator[J]. Journal of Hebei University of Science and Technology, 2015,36(6):593-597.

[14] ZHANG Xinguang, LIU Lisan, WIWATANAPATAPHEE B, et al. The eigenvalue for a class of singularp-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition[J]. Applied Mathematics and Computation,2014,235:412-422.

[15]AMKO S G,KILBAS A A,MARICHEV O I. Fractional Integrals and Derivatives: Theory and Applications[M]. Switzerland: Gordon and Breach,1993.

[16]PODLUNY I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York: Academic Press,1999.

Existence of positive solutions to a class of Caputo fractional differential equations

LI Yunhong1, LYU Wenjing2

(1.School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China;2. Office of General Services, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

In order to investigate the existence of positive solutions to a class of Caputo fractional differential equation boundary value problems withp-Laplacian operator, the Green’s function is obtained by calculus, and its properties are discussed. By using monotone iterative technique, at least two positive solutions are obtained for the boundary value problems. An example is given to illustrate the existence of positive solutions to this kind of equation boundary value problems.

ordinary differential equation; Caputo fractional derivative;positive solution;monotone iteratiation;boundary value problems

1008-1542(2016)06-0575-06

10.7535/hbkd.2016yx06008

2016-05-23;

2016-10-19;責(zé)任編輯:張 軍

國家自然科學(xué)基金(11401159);河北省自然科學(xué)基金(A2014208158)

李云紅(1978—),女,河北鹿泉人,講師,碩士,主要從事微分方程方面的研究。

E-mail:mathhong@126.com

O175.1 MSC(2010)主題分類:34B15

A

李云紅,呂文靜.一類Caputo分?jǐn)?shù)階微分方程正解的存在性[J].河北科技大學(xué)學(xué)報,2016,37(6):575-580. LI Yunhong,LYU Wenjing. Existence of positive solutions to a class of Caputo fractional differential equations[J].Journal of Hebei University of Science and Technology,2016,37(6):575-580.

猜你喜歡
邊值問題石家莊算子
與由分?jǐn)?shù)階Laplace算子生成的熱半群相關(guān)的微分變換算子的有界性
石家莊曉進(jìn)機(jī)械制造科技有限公司
臨界Schr?dinger映射非齊次初邊值問題的有限差分格式
擬微分算子在Hp(ω)上的有界性
Heisenberg群上與Schr?dinger算子相關(guān)的Riesz變換在Hardy空間上的有界性
帶有積分邊界條件的奇異攝動邊值問題的漸近解
各向異性次Laplace算子和擬p-次Laplace算子的Picone恒等式及其應(yīng)用
梁叢
非線性m點邊值問題的多重正解
Banach空間分?jǐn)?shù)階微分方程邊值問題解的存在性
万州区| 溆浦县| 酒泉市| 广安市| 诏安县| 鄂托克前旗| 曲周县| 曲水县| 正镶白旗| 若羌县| 化德县| 大冶市| 康马县| 鄂伦春自治旗| 同仁县| 山东| 酉阳| 高雄市| 银川市| 兴隆县| 峨边| 临夏县| 泸西县| 晴隆县| 淮阳县| 松江区| 津南区| 浏阳市| 屏边| 文山县| 宁都县| 河西区| 长泰县| 定安县| 关岭| 依安县| 揭西县| 兴安县| 辉县市| 遂川县| 安图县|