江衛(wèi)華,李慶敏,周彩蓮
(河北科技大學(xué)理學(xué)院,河北石家莊 050018)
?
分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性
江衛(wèi)華,李慶敏,周彩蓮
(河北科技大學(xué)理學(xué)院,河北石家莊 050018)
為了解決對半無窮區(qū)間上具有可數(shù)個(gè)脈沖點(diǎn)且?guī)в蟹e分邊界條件的分?jǐn)?shù)階脈沖微分方程邊值問題,具體研究此類微分方程邊值問題解的存在性。通過定義合適的Banach空間、范數(shù)以及算子,合理運(yùn)用分?jǐn)?shù)階微積分的性質(zhì),分別應(yīng)用壓縮映像原理和Krasnoselskii不動(dòng)點(diǎn)定理證明了分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性,最后通過實(shí)例驗(yàn)證了此類方程邊值問題解的存在性。
常微分方程解析理論;脈沖;壓縮映像原理;Krasnoselskii不動(dòng)點(diǎn)定理;邊值問題;半無窮區(qū)間
分?jǐn)?shù)階微積分是對整數(shù)階微積分理論的拓展,它可以更好地描述某些客觀事物或規(guī)律,應(yīng)用廣泛,比如在處理光學(xué)和熱學(xué)系統(tǒng)、流變學(xué)及材料和力學(xué)系統(tǒng)、信號處理和系統(tǒng)辨識、控制等問題的過程中,經(jīng)常會用到分?jǐn)?shù)階微積分的理論。所以分?jǐn)?shù)階微積分理論受到了人們越來越多的關(guān)注[1-12]。此外,脈沖微分方程也有廣泛的應(yīng)用,許多學(xué)者對脈沖微分方程的理論及其應(yīng)用[13-24]進(jìn)行了深入的研究。
文獻(xiàn)[2]中GUO應(yīng)用Banach空間中的錐拉伸與壓縮不動(dòng)點(diǎn)定理研究了半無窮區(qū)間上具有可數(shù)個(gè)脈沖點(diǎn)的二階奇異脈沖微分方程邊值問題:
解的存在性。
文獻(xiàn)[4]中AHMAD等根據(jù)壓縮映像原理和Krasnoselskii不動(dòng)點(diǎn)定理研究了有限區(qū)間上具有有限個(gè)脈沖點(diǎn)的非線性分?jǐn)?shù)階脈沖微分方程邊值問題:
解的存在性。
受上述文獻(xiàn)的啟發(fā),本文將應(yīng)用壓縮映像原理和Krasnoselskii不動(dòng)點(diǎn)定理研究半無窮區(qū)間上具有可數(shù)個(gè)脈沖點(diǎn)的分?jǐn)?shù)階脈沖微分方程邊值問題:
定義1u:J→R是連續(xù)函數(shù),u的α階Riemann-Liuville積分的定義式為
定義2u:J→R是連續(xù)函數(shù),u的α階Riemann-Liuville導(dǎo)數(shù)的定義式為
定理1 (壓縮映像原理)
設(shè)X是完備的度量空間,T是X上的壓縮映像,那么T有且僅有1個(gè)不動(dòng)點(diǎn)。
定理2 (Krasnoselskii不動(dòng)點(diǎn)定理)
設(shè)M是Banach空間X中的一個(gè)非空凸閉子集。假設(shè)A,B是2個(gè)算子,滿足:
a) 對任意的x,y∈M,有Ax+By∈M;
b)A是全連續(xù)映射;
c)B是一個(gè)壓縮映射,
則至少存在一個(gè)z∈M,使得z=Az+Bz。
引理4 對于給定的函數(shù)y∈C(Jk),k=1,2,…,u(t)是分?jǐn)?shù)階脈沖微分方程邊值問題:
的解當(dāng)且僅當(dāng)u(t)滿足
證明 設(shè)u(t)是分?jǐn)?shù)階脈沖微分方程邊值問題(2)的解,由引理2可得當(dāng)t∈[0,t1]時(shí),
同理由u(t)的連續(xù)性可知b=0,所以t∈Jk=(tk-1,tk]時(shí),
因此,對?t∈J有
(4)
H2)存在常數(shù)γk∈J,使得對?t∈J,u,v∈R,有
|Ik(u)-Ik(v)|≤γk‖u-v‖,
H4)存在函數(shù)F∈C[R,J],常數(shù)ηk∈J,使得對?t∈J,u∈R,有
|Ik(u)|≤ηkF(u),
證明 定義算子T:PC1[J,R]→PC1[J,R]如下:
所以
對?u,v∈PC1[J,R],?t∈J有
所以‖Tu-Tv‖S≤ρ‖u-v‖。
證明 定義算子如下:
所以
由條件H3)—條件H4)可知:對?r>0,
|Ik(u)|≤ηkF(u)≤Nηk,k=1,2,…,
對?u,v∈Br,?t∈J,
所以‖Au+Bv‖S≤r。
下證Bu為壓縮算子。對?u,v∈Br,?t∈J有
對?t∈J,
下證算子A的緊性。取un∈Br={u∈PC1[J,R]:‖u‖≤r}。對?t∈J,
定義函數(shù)
對?t1,t2∈Jk,當(dāng)t2>t1時(shí),有
由積分的絕對連續(xù)性可知:存在δ3,使得|t2-t1|<δ3時(shí),
由一元連續(xù)函數(shù)的一致連續(xù)性可知:存在δ4,使得|t2-t1|<δ4時(shí),
令
對?ξ 對?ξ 例1 考慮半無窮區(qū)間上分?jǐn)?shù)階脈沖微分方程邊值問題 例2 考慮半無窮區(qū)間上分?jǐn)?shù)階脈沖微分方程邊值問題 因此,根據(jù)定理4可得該分?jǐn)?shù)階脈沖微分方程邊值問題至少有1個(gè)解。 [1] GUO Dajun. Multiple positive solutions for first order impulsive singular integro-differential equations on the half line[J]. Acta Mathematica Scientia, 2012, 32B(6): 2176-2190. [2] GUO Dajun. Existence of two positive solutions for a class of second order impulsive singular integro-differential equations on the half line in banach spaces[J]. Boundary Value Problems, 2016(1):1-31. [3] AHMAD B, SIVASUNDARAM S. Existence of solutions for impulsive integral boundary value problems of fractional order[J]. Nonlinear Analysis: Hybrid Systems, 2010, 4(1):134-141. [4] AHMAD B, SIVASUNDARAM S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(3): 251-258. [5] 江衛(wèi)華, 李海明. 分?jǐn)?shù)階脈沖微分方程組邊值問題解的存在性[J]. 河北科技大學(xué)學(xué)報(bào), 2015, 36(2): 134-143. JIANG Weihua, LI Haiming. Existence of solutions for boundary value problem of fractional order impulsive differential equations systems[J]. Journal of Hebei University of Science and Technology, 2015, 36(2): 134-143. [6] REHMAN M, ELOE P. Existence and uniqueness of solutions for impulsive fractional differential equactions[J]. Applied Mathematics & Computation, 2013, 224(1): 422-431. [7] 許曉婕, 孫新國, 呂煒. 非線性分?jǐn)?shù)階微分方程邊值問題正解的存在性[J]. 數(shù)學(xué)物理學(xué)報(bào), 2011, 31A(2): 401-409. XU Xiaojie, SUN Xinguo, LYU Wei. Existence of positive solutions for boundary value problems with nonlinear fractional differential equations[J]. Acta Mathematica Scientia, 2011, 31A(2): 401-409. [8] LIU Zhenhai, LI Xiuwen. Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equactions[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(6): 1362-1373. [9] WANG Jinrong, ZHOU Yong, FECKAN M. On recent developments in the theory of boundary value problems for impulsive fractional differential equactions[J]. Computers & Mathematics with Applications, 2012, 64(10): 3008-3020. [10] CAO Jianxin, CHEN Haibo. Impulsive fractional differential equactions with nonlinear boundary conditions[J]. Mathematical and Computer Moelling, 2012, 55(3/4): 303-311. [11] GUO Tianliang,WEI Jiang. Impulsive problems for fractional differential equactions with boundary value conditions[J]. Computers & Mathematics with Applications, 2012, 64(10): 3281-3291. [12] BAI Zhanbing, LYU Haishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505. [13]張愛華, 胡衛(wèi)敏. 非線性分?jǐn)?shù)階脈沖微分方程邊值問題的解[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識, 2014, 44(6): 233-240. ZHANG Aihua, HU Weimin. Solutions for a boundary value problem of nonlinear impulsive fractional differential equations[J]. Mathematics in Practice and Theory, 2014, 44(6): 233-240. [14]董雪. 非線性分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性[J]. 山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 29(4): 70-74. DONG Xue. Existence of solutions for impulsive nonlinear fractional differential equations boundary value problems[J]. Journal of Shandong University of Technology(Natural Science Edition), 2015, 29(4): 70-74. [15]GUO Dajun. Existence of solutions of boundary value problem for nonlinear second order impulsive differential equations in banach space[J]. Journal of Mathematical Analysis and Applications, 1994, 181(2):407-421. [16]杜珺. 二階脈沖微分方程邊值問題解的存在性[J]. 生物數(shù)學(xué)學(xué)報(bào), 2012, 27(2): 311-321. DU Jun. The existence result of solution to boundary value problem of a class of second-order impulsive differential equation[J]. Journal of Biomathematics, 2012, 27(2): 311-321. [17] HERRERO M A, VAZQUEZ J L. On the propagation properties of a nonlinear degenerate parabolic equation[J]. Communications in Partial Differential Equations, 1982, 7(12): 1381-1402. [18]ESTEBAN J R,VAZQUEZ J L. On the equation of the turbulent filtration in one-dimensional porous media[J]. Nonlinear Analysis, 1986, 10(11):1305-1325. [19] KAUL S, LAKSHMIKANTHAM V, LEELA S. Extremal solutions comparison principle and stability criteria for impulsive differential equations with variable times[J]. Nonlinear Analysis Theory Methods & Applications, 1994, 22(10): 1263-1270. [20] GUO Dajun. A class of second order impulsive integro-differential equations on unbounded domain in a banach space[J]. Applied Mathematics & Computation, 2002, 125(1): 59-77. [21]YAN Baoqiang. Boundary value problems on the half -line with impulses and infinite delay[J]. Journal of Mathematical Analysis & Applications, 2001, 259(1): 94-114. [22] LIANG Sihua, ZHANG Jihui. The existence of countably many positive solutions for some nonlinear singular there-point impulsive boundary value problems[J]. Nonlinear Analysis, 2009, 71(10): 4588-4597. [23] GUO Dajun. Variational approach to a class of impulsive differential equations[J]. Boundary Value Problems, 2014,2014(1):1-10. [24] ZHAO Yulin, CHEN Haibo. Multiplicity of solutions to two-point boundary value problems for second-order impulsive differential equations[J]. Applied Mathematics & Computation, 2008, 206(206): 925-931. Existence of solutions to boundary value problem of fractional differential equations with impulsive JIANG Weihua, LI Qingmin, ZHOU Cailian (School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China) In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems. analytic theory of ordinary differential equation; impulse; contraction mapping theorem; Krasnoselskii’s fixed point theorem; boundary value problem; the half line 1008-1542(2016)06-0562-13 10.7535/hbkd.2016yx06007 2016-03-24; 2016-09-10;責(zé)任編輯:張 軍 河北省自然科學(xué)基金(A2013208108) 江衛(wèi)華(1964—),女,河北邯鄲人,教授,博士,主要從事應(yīng)用泛函分析、常微分方程邊值問題方面的研究。 E-mail:jianghua64@163.com O175.8 MSC(2010)主題分類:34B18 A 江衛(wèi)華,李慶敏,周彩蓮.分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性[J].河北科技大學(xué)學(xué)報(bào),2016,37(6):562-574. JIANG Weihua, LI Qingmin, ZHOU Cailian.Existence of solutions to boundary value problem of fractional differential equations with impulsive[J].Journal of Hebei University of Science and Technology,2016,37(6):562-574.4 舉 例