国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

內(nèi)質(zhì)網(wǎng)應(yīng)激在PFOS致大鼠肝損傷中的作用

2016-12-12 03:52肖靜毛偉明丁慧丁晴鸝璐齊聰徐仙劉夢(mèng)包怡寧
生態(tài)毒理學(xué)報(bào) 2016年2期
關(guān)鍵詞:內(nèi)質(zhì)網(wǎng)肝細(xì)胞肝臟

肖靜,毛偉明,丁慧,丁晴,鸝璐,齊聰,徐仙,劉夢(mèng),包怡寧

1. 南通大學(xué)公共衛(wèi)生學(xué)院 職業(yè)衛(wèi)生與環(huán)境毒理學(xué)教研室,南通 226019 2. 新疆醫(yī)科大學(xué)公共衛(wèi)生學(xué)院,烏魯木齊 830054

?

內(nèi)質(zhì)網(wǎng)應(yīng)激在PFOS致大鼠肝損傷中的作用

肖靜1,*,毛偉明1,丁慧1,丁晴1,鸝璐1,齊聰1,徐仙2,劉夢(mèng)1,包怡寧1

1. 南通大學(xué)公共衛(wèi)生學(xué)院 職業(yè)衛(wèi)生與環(huán)境毒理學(xué)教研室,南通 226019 2. 新疆醫(yī)科大學(xué)公共衛(wèi)生學(xué)院,烏魯木齊 830054

通過(guò)全氟辛烷磺酸(PFOS) 28 d大鼠經(jīng)口染毒評(píng)價(jià)PFOS肝損傷效應(yīng),探討內(nèi)質(zhì)網(wǎng)應(yīng)激在PFOS毒效應(yīng)中的作用。Wistar大鼠隨機(jī)分組,分別以0 mg·kg-1、5 mg·kg-1和10 mg·kg-1PFOS 灌胃染毒28 d。HE染色觀察大鼠肝臟形態(tài)改變。ELISA法測(cè)定各組丙氨酸轉(zhuǎn)氨酶(ALT)、天門(mén)冬氨酸轉(zhuǎn)氨酶(AST)、堿性磷酸酶(ALP)和淀粉酶(AMY)含量變化。紫外分光光度法測(cè)定肝組織勻漿中丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽過(guò)氧化物酶(GSH-Px)活性變化。RT-PCR檢測(cè)肝臟內(nèi)質(zhì)網(wǎng)應(yīng)激標(biāo)志蛋白表達(dá)水平。結(jié)果表明,PFOS造成大鼠體重降低、肝重增高(P<0.05),組織切片顯示肝細(xì)胞出現(xiàn)脂質(zhì)沉積。PFOS不同劑量組大鼠ALT隨暴露濃度增加,分別為(50.96±10.02) U·L-1、(71.73±11.55) U·L-1,顯著高于對(duì)照組(P<0.05),AST、ALP含量與對(duì)照組相比顯著上升(P<0.05),高劑量組AMY水平為(833.46±63.05) U·L-1,與對(duì)照組相比顯著降低(P<0.05)。GSH-Px和SOD水平隨PFOS濃度增加出現(xiàn)了顯著降低(P<0.05),而MDA水平顯著升高(P<0.05)。內(nèi)質(zhì)網(wǎng)應(yīng)激標(biāo)志蛋白表達(dá)均較對(duì)照組顯著上升(P<0.05)。以上結(jié)果說(shuō)明PFOS可導(dǎo)致大鼠肝細(xì)胞損傷,其機(jī)制可能與內(nèi)質(zhì)網(wǎng)應(yīng)激調(diào)控有關(guān)。

全氟辛烷磺酸(PFOS);大鼠;肝損傷;內(nèi)質(zhì)網(wǎng)應(yīng)激

Received 9 November 2015 accepted 18 November 2015

全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)是全氟有機(jī)化合物(perfluorinated compounds, PFCs)的一種,因其物理化學(xué)性質(zhì)穩(wěn)定而在紡織、皮革制造、農(nóng)藥及個(gè)人消費(fèi)領(lǐng)域廣泛應(yīng)用,但同時(shí)PFOS所具有的疏水疏油特性使其難以降解并易在各環(huán)境介質(zhì)間遷移,目前在大氣、水體和土壤中都已檢測(cè)到PFOS的廣泛存在[1-2]。環(huán)境中的PFOS可通過(guò)呼吸、飲食等方式進(jìn)入機(jī)體,并在生物放大、生物濃縮等作用下在人體內(nèi)富集產(chǎn)生毒性效應(yīng),代謝動(dòng)力學(xué)實(shí)驗(yàn)表明肝臟為PFOS主要蓄積和作用器官[3-4]。目前研究發(fā)現(xiàn)PFOS可導(dǎo)致實(shí)驗(yàn)動(dòng)物出現(xiàn)肝細(xì)胞通訊異常、引發(fā)線粒體腫脹、生物膜結(jié)構(gòu)受損,造成肝細(xì)胞變性壞死和級(jí)聯(lián)炎性反應(yīng),影響肝臟正常功能及基因表達(dá)轉(zhuǎn)錄[5-6],有研究這認(rèn)為PFOS的這種損害結(jié)局可能與過(guò)氧化物酶體增殖激活受體(peroxisome proliferators-activated receptor, PPAR)及其下游基因表達(dá)過(guò)度上調(diào)有關(guān)[6],但也有學(xué)者指出不同種屬動(dòng)物及人體內(nèi)PPAR在表達(dá)分布及功能調(diào)控上均存在一定差異,且不同全氟化合物對(duì)嚙齒類(lèi)動(dòng)物和人類(lèi)PPAR各亞基激活能力各有不同,相對(duì)嚙齒類(lèi)動(dòng)物,PFOS對(duì)人類(lèi)PPAR的作用較弱[7-9]。Rosen等[10]發(fā)現(xiàn)小鼠敲除PPAR基因后,肝臟腫大、脂質(zhì)堆積及炎性反應(yīng)并未消失,Jacquet等[11]和Takacs等[12]通過(guò)細(xì)胞轉(zhuǎn)染實(shí)驗(yàn)也認(rèn)為PFOS存在獨(dú)立于PPAR之外的損傷途徑。但截至目前,對(duì)PFOS所致肝臟損傷的具體機(jī)制尚未明了。

近年研究表明應(yīng)激反應(yīng)是肝損傷過(guò)程中的重要環(huán)節(jié)之一,其中內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)ERS作為獨(dú)立于細(xì)胞膜受體或線粒體途徑的第3條凋亡途徑參與了包括外源化學(xué)物、病毒、非酒精性脂肪肝等多種因素引起的肝損傷發(fā)生發(fā)展[13-14]。ERS作為細(xì)胞自我保護(hù)機(jī)制,正常情況下參與機(jī)體應(yīng)對(duì)外在刺激的多重信號(hào)傳導(dǎo)及基因網(wǎng)絡(luò)調(diào)控,但當(dāng)ERS過(guò)度時(shí),可通過(guò)C/EBP同源蛋白(C/EBP homology protein, CHOP)、葡萄糖調(diào)節(jié)蛋白-78(glucose regulated protein-78, GRP78)、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)及半胱氨酸蛋白水解酶介導(dǎo)的多種方式促進(jìn)細(xì)胞信號(hào)錯(cuò)誤,導(dǎo)致疾病發(fā)生[15]。鑒于以上原因,我們擬通過(guò)動(dòng)物實(shí)驗(yàn)考察PFOS對(duì)大鼠肝臟損害效應(yīng)表現(xiàn)及對(duì)ERS標(biāo)志蛋白表達(dá)的影響,借此探討PFOS肝損傷的潛在機(jī)制與可能途徑,為PFOS生態(tài)毒理學(xué)研究提供基礎(chǔ)數(shù)據(jù)。

1 材料與方法 (Materials and methods)

1.1 試劑與儀器

試劑:全氟辛烷磺酸(Assay LC-MS 98%,Sigma-Aldrich公司,美國(guó));RT-PCR試劑及引物(TaKaRa大連寶生物公司,中國(guó));丙氨酸轉(zhuǎn)氨酶試劑盒、谷草轉(zhuǎn)氨酶試劑盒、堿性磷酸酶試劑盒(Applied Biosystems公司,美國(guó));單胺氧化酶、超氧化物歧化酶、谷胱甘肽、琥珀酸脫氫酶試劑盒(碧云天生物研究所,中國(guó));其他試劑均為國(guó)產(chǎn)分析純。

儀器:5332型PCR儀(Eppendorf公司,德國(guó))、MODEL550酶標(biāo)儀(Bio-Rad公司,美國(guó))、RM2126切片機(jī)(Leica公司,德國(guó))、CK40顯微鏡(Olympus公司,日本)、CFI60數(shù)碼相機(jī)(Nikon, 日本);

1.2 試驗(yàn)動(dòng)物及染毒

考慮到文獻(xiàn)報(bào)道中PFOS對(duì)雄性大鼠具有較為明顯的毒性效應(yīng)[16-17],本次實(shí)驗(yàn)選用成年Wistar雄性大鼠48只,體重220~250 g,上海西普爾必凱實(shí)驗(yàn)動(dòng)物有限公司提供(SCXK滬2008-0016),實(shí)驗(yàn)室馴養(yǎng)1周后隨機(jī)分為0 mg·kg-1PFOS(對(duì)照組)、5 mg·kg-1PFOS(低劑量組)和10 mg·kg-1PFOS(高劑量組)(n = 16),灌胃染毒28 d。期間每周稱(chēng)重并于實(shí)驗(yàn)結(jié)束頸椎脫臼處死動(dòng)物,采集血清及肝臟樣本進(jìn)行相關(guān)指標(biāo)檢測(cè)。動(dòng)物飼養(yǎng)室溫(18~23) ℃,相對(duì)濕度45%~55%。實(shí)驗(yàn)期間自由飲水?dāng)z食。

1.3 指標(biāo)檢測(cè)

1.3.1 臟器系數(shù)

大鼠處死前稱(chēng)重,處死后用預(yù)冷生理鹽水漂洗肝臟,濾紙吸干稱(chēng)取肝重計(jì)算臟器系數(shù):臟器系數(shù)(%)=臟器重量(g)/大鼠體重(g)×100%。

1.3.2 肝臟病理觀察

肝臟組織用10%中性福爾馬林溶液固定,常規(guī)脫水后石蠟包埋制備4 μm切片,HE染色后顯微鏡觀察其病理學(xué)變化。

1.3.3 血清中代謝酶測(cè)定

大鼠經(jīng)下腔靜脈取血后室溫3 000 r·min-1離心分離血清,ELISA試劑盒檢測(cè)血清中丙氨酸轉(zhuǎn)氨酶(ALT)、天門(mén)冬氨酸轉(zhuǎn)氨酶(AST)、堿性磷酸酶(ALP)和淀粉酶(AMY)水平。

1.3.4 氧化還原酶活力測(cè)定

取大鼠肝臟組織1 g,按重量體積比加生理鹽水制備10%組織勻漿,2 000 r·min-1離心5 min取上清。硫代巴比妥酸(TBA)法測(cè)定丙二醛(MDA)含量,黃嘌呤氧化酶法測(cè)定超氧化物歧化酶(SOD)含量,DTNB直接法測(cè)定谷胱甘肽過(guò)氧化物酶(GSH-Px)含量,具體操作按試劑盒說(shuō)明書(shū)進(jìn)行。

1.3.5 內(nèi)質(zhì)網(wǎng)應(yīng)激蛋白表達(dá)水平檢測(cè)

大鼠處死后迅速剖腹摘取肝臟,稱(chēng)取100 mg肝組織,Trizol抽提總RNA,紫外分光光度計(jì)測(cè)定OD260/OD280比值以檢驗(yàn)純度,兩步法進(jìn)行反轉(zhuǎn)錄和實(shí)時(shí)PCR。擴(kuò)增所用引物如下:GRP78-F:AACCCAGATGAGGCTGTAGCA,GRP78-R:ACATCAAGCAGAACCAGGTCA;CHOP-F:CCAGCAGAGGTCACAAGCAC,CHOP-R:CGCACTGACCACTCTGTTTC;管家基因?-Actin-F:CAGTGTGGGTGACCCCGT,?-Actin-R:CCCAGCCATGTACGTTGCTA。反應(yīng)體系為10 μg·μL-1cDNA模板2 μL、10 μmol·L-1引物各0.4 μL、2×SYBR 10 μL、ddH2O補(bǔ)充總體積為20 μL。反應(yīng)條件為95 ℃ 5 s,退火溫度65 ℃ 30 s,72 ℃ 30 s,反應(yīng)40個(gè)循環(huán)計(jì)算相對(duì)表達(dá)量。

1.4 統(tǒng)計(jì)學(xué)分析

2 結(jié)果(Results)

2.1 PFOS暴露對(duì)大鼠一般狀況的影響

隨實(shí)驗(yàn)周期進(jìn)展,PFOS暴露組大鼠出現(xiàn)活動(dòng)遲緩、被毛暗淡、毛發(fā)豎直現(xiàn)象,其中以10 mg·kg-1組大鼠更為明顯,偶有大鼠出現(xiàn)輕微腹瀉、鼻出血,個(gè)別實(shí)驗(yàn)動(dòng)物出現(xiàn)脫毛、蜷臥。隨染毒時(shí)間延長(zhǎng)、劑量增加,暴露組大鼠出現(xiàn)不同程度體型消瘦。

如表1所示,實(shí)驗(yàn)第3周時(shí),10 mg·kg-1暴露組大鼠體重(288.4±20.6) g與0 mg·kg-1組(344.4±24.9) g相比出現(xiàn)顯著降低(P<0.05),5 mg·kg-1暴露組大鼠雖也出現(xiàn)了體重減少(318.5±19.5) g,但與0 mg·kg-1組相比差異并不顯著。第4周時(shí)5 mg·kg-1和10 mg·kg-1PFOS暴露組大鼠體重分別為(339.2±14.7) g和(304.4±19.7) g,相比0 mg·kg-1組(387.1±19.3) g均出現(xiàn)顯著降低(P<0.05),但不同劑量組間無(wú)顯著差異。如表2所示,與此同時(shí),PFOS暴露造成大鼠肝重的增加,不同劑量組大鼠肝臟系數(shù)與0 mg·kg-1組相比均顯著增加(P<0.05)。

2.2 PFOS暴露對(duì)大鼠肝臟形態(tài)影響

對(duì)各組大鼠肝臟形態(tài)進(jìn)行比較,大體觀察可見(jiàn)0 mg·kg-1組大鼠肝臟色澤鮮紅,質(zhì)地柔軟且表面光滑,邊緣銳利,光鏡下HE染色顯示肝細(xì)胞排列整齊,細(xì)胞中央有大而圓的核,細(xì)胞質(zhì)均勻。而在PFOS暴露組大體可見(jiàn)明顯的肝臟體積增大,肝臟表面出現(xiàn)黃色點(diǎn)狀分布的脂肪沉著,肝臟邊緣變鈍,HE染色鏡下觀察染毒組肝細(xì)胞腫脹,胞質(zhì)內(nèi)可見(jiàn)大小不等的脂滴空泡并將細(xì)胞核擠向一側(cè),在10 mg·kg-1組改變更為明顯。

GroupDay0Day7Day14Day21Day280mg·kg-1215.5±15.6287.9±14.8319.1±19.9344.4±24.9387.1±19.35mg·kg-1238.6±17.2290.6±19.1311.5±18.1318.5±19.5339.2±14.710mg·kg-1229.4±15.7268.9±20.0284.7±13.8288.4±20.6*304.4±19.7*

注:*表示與0 mg·kg-1組相比P<0.05。

Note:* P<0.05 compared with 0 mg·kg-1group.

組別Group肝重/gLiverweight/g肝臟臟器系數(shù)/%Organcoefficien/%0mg·kg-112.14±1.193.15±0.165mg·kg-115.75±1.814.63±0.29*10mg·kg-117.07±1.10*5.61±0.42*

注:*表示與0 mg·kg-1組相比P<0.05。

Note:* P<0.05 compared with 0 mg·kg-1group.

2.3 PFOS暴露對(duì)大鼠血清中肝臟代謝酶水平影響

對(duì)PFOS暴露后大鼠血清中肝功能相關(guān)酶活性進(jìn)行了檢測(cè),結(jié)果如表3所示。PFOS暴露造成ALT、AST、ALP含量顯著上升(P<0.05),其中ALT水平隨暴露濃度增高顯著上升(P<0.05),AST和ALP水平在PFOS各暴露組中均顯著高于0 mg·kg-1組(P<0.05),但各暴露組間差異并不顯著。AMY在5 mg·kg-1PFOS組改變并不明顯,但在10 mg·kg-1組中較對(duì)照組出現(xiàn)了顯著降低(P<0.05)。

2.4 PFOS暴露對(duì)大鼠氧化還原指標(biāo)的影響

對(duì)各組大鼠肝細(xì)胞勻漿中氧化還原酶水平的檢測(cè)發(fā)現(xiàn),5 mg·kg-1PFOS暴露組大鼠肝臟SOD活性相比對(duì)照組略有增高,但差異并不顯著,而在10 mg·kg-1組SOD水平隨PFOS濃度增加出現(xiàn)了顯著的降低(P<0.05)。與此同時(shí)如表4所示,GSH-Px活性同樣受到PFOS暴露的影響,與0 mg·kg-1組相比在各暴露組出現(xiàn)了顯著降低(P<0.05),且隨PFOS濃度增高受影響程度更為顯著(P<0.05),與GSH-Px趨勢(shì)類(lèi)似,在暴露組中隨PFOS濃度增加MDA水平也隨之顯著升高(P<0.05)。

圖1 PFOS對(duì)大鼠肝臟組織病理的影響(HE×100) 注:A,0 mg·kg-1;B,5 mg·kg-1;C,10 mg·kg-1。Fig. 1 Effect of PFOS on liver tissue morphology (HE×100) Note: A, 0 mg·kg-1; B, 5 mg·kg-1; C, 10 mg·kg-1.

表3 PFOS暴露對(duì)大鼠血清肝代謝酶的影響

注:*表示與0 mg·kg-1組相比P<0.05,#表示與5 mg·kg-1相比P<0.05。

Note:* P<0.05 compared with 0 mg·kg-1group; # P<0.05 compared with 5 mg·kg-1group.

表4 PFOS暴露對(duì)大鼠肝組織中氧化還原酶的影響± s,n=16)

注:*表示與0 mg·kg-1組相比P<0.05,#表示與5 mg·kg-1相比P<0.05。

Note:* P<0.05 compared with 0 mg·kg-1group; # P<0.05 compared with 5 mg·kg-1group.

2.5 PFOS暴露對(duì)大鼠肝臟內(nèi)質(zhì)網(wǎng)應(yīng)激蛋白表達(dá)水平影響

為了解PFOS是否造成內(nèi)質(zhì)網(wǎng)應(yīng)激的出現(xiàn),對(duì)肝臟中ERS標(biāo)志蛋白GRP78和CHOP表達(dá)水平進(jìn)行了檢測(cè)。GRP78 mRNA水平在PFOS暴露后,相較對(duì)照組均出現(xiàn)了顯著上升,分別為對(duì)照組的1.87倍和2.75倍,并隨著暴露濃度增加表達(dá)水平顯著升高。實(shí)驗(yàn)中同樣發(fā)現(xiàn)PFOS導(dǎo)致了CHOP mRNA相對(duì)表達(dá)量的顯著增高,分別為對(duì)照組1.30和1.53倍,但不同劑量組間CHOP表達(dá)差異并不顯著。

3 討論(Discussion)

PFOS作為全氟化合物的典型代表,是目前繼多氯聯(lián)苯、有機(jī)氯農(nóng)藥和二噁英之后的一種新型持久性有機(jī)污染物,PFOS眾多毒效應(yīng)中以肝臟損害較為明顯[18]。本實(shí)驗(yàn)中發(fā)現(xiàn)PFOS暴露組大鼠血清ALT、AST、ALP和AMY水平隨PFOS染毒劑量增加改變顯著。ALT、AST為分布于肝細(xì)胞胞質(zhì)及線粒體中的非特異性功能酶,在肝細(xì)胞破壞時(shí)釋放入血。ALP通常由肝臟排泄,肝損傷時(shí)可經(jīng)淋巴道和肝竇反流入血出現(xiàn)增高。AMY是催化淀粉和糖原水解的淀粉酶,有研究發(fā)現(xiàn)AMY與肝炎、肝纖維化進(jìn)程有關(guān)[19-20],在輕中度肝損害時(shí)可能出現(xiàn)降低[21],與此同時(shí),代謝性疾病患者如胰島素抵抗人群也常伴隨AMY活性減退,證實(shí)與肝功能受損直接或間接影響胰腺細(xì)胞結(jié)構(gòu)或功能有關(guān)[19, 22]。本實(shí)驗(yàn)中發(fā)現(xiàn)除AMY僅在高劑量組出現(xiàn)降低外,其余指標(biāo)均表現(xiàn)為隨PFOS暴露劑量增加而改變顯著,這與動(dòng)物和人群實(shí)驗(yàn)中觀察到現(xiàn)象一致[6, 23],表明PFOS可能已造成肝細(xì)胞破壞及肝臟代謝紊亂,提示肝臟損害出現(xiàn)。

GroupGRP78mRNACHOPmRNA0mg·kg-10.28±0.050.30±0.055mg·kg-10.53±0.10*0.39±0.11*10mg·kg-10.77±0.19*#0.46±0.08*

注:*表示與0 mg·kg-1組相比P<0.05,#表示與5 mg·kg-1相比P<0.05。

Note:* P<0.05 compared with 0 mg·kg-1group; # P<0.05 compared with 5 mg·kg-1group.

ERS是由鈣失衡、中毒、氧化應(yīng)激、代謝障礙等引起錯(cuò)誤折疊蛋白質(zhì)累積而出現(xiàn)的內(nèi)質(zhì)網(wǎng)結(jié)構(gòu)和功能破壞,GRP78和CHOP作為ERS關(guān)鍵應(yīng)激分子在其未折疊蛋白響應(yīng)調(diào)控中發(fā)揮重要作用。實(shí)驗(yàn)中我們發(fā)現(xiàn)PFOS組大鼠肝臟中以上蛋白表達(dá)出現(xiàn)顯著增高,提示PFOS可能損害內(nèi)質(zhì)網(wǎng)功能、誘導(dǎo)ERS出現(xiàn)。Butenhoff等[24-25]在小鼠實(shí)驗(yàn)中也觀察到PFOS慢性暴露后肝臟內(nèi)質(zhì)網(wǎng)形態(tài)異常并推測(cè)可能導(dǎo)致功能改變,魚(yú)類(lèi)實(shí)驗(yàn)也證實(shí)PFOS能造成ERS蛋白二硫鍵異構(gòu)酶A3表達(dá)增高。近年研究認(rèn)為ERS在多因素引起的肝損害中均發(fā)揮作用,一方面ERS能通過(guò)損害線粒體功能間接誘發(fā)能量衰竭造成氧化容量受損,抑制AMP依賴(lài)蛋白激酶而激活內(nèi)質(zhì)網(wǎng)膜連接分子固醇調(diào)節(jié)元件結(jié)合蛋白入核參與轉(zhuǎn)錄,引起脂代謝相關(guān)基因如脂肪酸合成酶和乙酰輔酶A羧化酶等過(guò)度表達(dá),并通過(guò)JNK途徑激活糖原合成酶激酶3表達(dá)干擾膽固醇和甘油三酯攝取,造成脂代謝紊亂、通過(guò)中間產(chǎn)物積聚引起肝細(xì)胞損傷[26-28]。本次實(shí)驗(yàn)中發(fā)現(xiàn)暴露組大鼠出現(xiàn)不同程度肝臟重量增加和肝細(xì)胞內(nèi)脂滴出現(xiàn)說(shuō)明PFOS的損害效應(yīng)可能與脂肪代謝異常有關(guān),以上ERS調(diào)節(jié)方式在其中可能發(fā)揮作用。這和Curran等[23]報(bào)道結(jié)果一致,Curran等以50~100 mg·kg-1PFOS對(duì)雄性大鼠進(jìn)行連續(xù)28 d染毒,結(jié)果發(fā)現(xiàn)肝細(xì)胞腫大、脂滴增多,肝臟總飽和脂肪酸和硬脂酸水平顯著下降,Rosen等[10, 23]也證實(shí)PFOS能夠誘導(dǎo)SREBP2和PPAR輔助活化因子1表達(dá)改變?cè)斐筛闻K脂肪堆積和炎性浸潤(rùn)。此外,本實(shí)驗(yàn)中PFOS組胞內(nèi)SOD和GSH-px活性顯著降低,脂質(zhì)過(guò)氧化產(chǎn)物MDA的水平則隨暴露劑量增加出現(xiàn)升高,說(shuō)明PFOS能引起機(jī)體過(guò)氧化通路的容量改變,這與他人等研究結(jié)果一致[29]。Huang等[25]認(rèn)為PFOS可顯著改變Mn-SOD等氧化還原反應(yīng)分子水平,并可能通過(guò)CCAAT/增強(qiáng)子結(jié)合蛋白β或等不同亞基的作用參與ERS調(diào)控。這可能因?yàn)镋RS可上調(diào)細(xì)胞氧化酶胞漿亞基直接導(dǎo)致活性氧堆積[30-31],也可在CHOP調(diào)控下誘導(dǎo)凋亡抑制基因、促凋亡因子及胱天蛋白酶-3表達(dá)引起細(xì)胞內(nèi)還原物質(zhì)如谷胱甘肽耗損觸發(fā)活性氧級(jí)聯(lián)瀑布反應(yīng)[32-33],通過(guò)啟動(dòng)細(xì)胞因子如白介素2、腫瘤壞死因子炎性反應(yīng)通路造成肝細(xì)胞凋亡壞死,同時(shí)這種氧化應(yīng)激級(jí)聯(lián)反應(yīng)可通過(guò)磷酸化真核翻譯起始因子2上調(diào)酵母菌轉(zhuǎn)錄因子的表達(dá)持續(xù)激活巰基基因表達(dá)程序,參與內(nèi)質(zhì)網(wǎng)整合應(yīng)激反應(yīng)途徑從而進(jìn)一步加重ERS,造成肝臟細(xì)胞持續(xù)損傷[34-35]。

綜上所述,PFOS具有明顯的肝毒性作用,可導(dǎo)致肝臟形態(tài)異常并影響肝代謝酶水平,同時(shí)導(dǎo)致過(guò)氧化反應(yīng)分子的顯著改變,這可能與GRP78和CHOP所參與的ERS調(diào)控途徑有關(guān)。

[1] Liu B, Zhang H, Xie L, et al. Spatial distribution and partition of perfluoroalkyl acids (PFAAs) in rivers of the Pearl River Delta, southern China [J]. Science of the Total Environment, 2015, 524(8): 1-7

[2] Miralles-Marco A, Harrad S. Perfluorooctane sulfonate: A review of human exposure, biomonitoring and the environmental forensics utility of its chirality and isomer distribution [J]. Environment International, 2015, 77(4): 148-159

[3] Butenhoff J L, Olsen G W, Pfahles-Hutchens A. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum [J]. Environmental Health Perspectives, 2006, 114(11): 1776-1782

[4] Shan G, Ye M, Zhu B, et al. Enhanced cytotoxicity of pentachlorophenol by perfluorooctane sulfonate or perfluorooctanoic acid in HepG2 cells [J]. Chemosphere, 2013, 93(9): 2101-2107

[5] Wan H T, Zhao Y G, Wei X, et al. PFOS-induced hepatic steatosis, the mechanistic actions on beta-oxidation and lipid transport [J]. Biochimica et Biophysica Acta, 2012, 1820(7): 1092-1101

[6] Elcombe C R, Elcombe B M, Foster J R, et al. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPAR alpha and CAR/PXR [J]. Toxicology, 2012, 293(1-3): 16-29

[7] Qazi M R, Xia Z L, Bogdanska J, et al. The atrophy and changes in the cellular compositions of the thymus and spleen observed in mice subjected to short-term exposure to perfluorooctanesulfonate are high-dose phenomena mediated in part by peroxisome proliferator-activated receptor-alpha (PPAR alpha) [J]. Toxicology, 2009, 260(1-3): 68-76

[8] Abbott B D, Wolf C J, Das K P, et al. Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse [J]. Reproductive Toxicology, 2009, 27(4): 258-265

[9] Vanden Heuvel J P, Thompson J T, Frame S R, et al. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: A comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha [J]. Toxicological Sciences, 2006, 92(2): 476-489

[10] Rosen M B, Schmid J R, Corton J C, et al. Gene expression profiling in wild-type and PPARalpha-null mice exposed to perfluorooctane sulfonate reveals PPARalpha-independent effects [J]. PPAR Research, 2010(2010): 23

[11] Jacquet N, Maire M A, Landkocz Y, et al. Carcinogenic potency of perfluorooctane sulfonate (PFOS) on Syrian hamster embryo (SHE) cells [J]. Archives of Toxicology, 2012, 86(2): 305-314

[12] Takacs M L, Abbott B D. Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate [J]. Toxicolgy Sciences, 2007, 95(1): 108-117

[13] Afrin R, Arumugam S, Soetikno V, et al. Curcumin ameliorates streptozotocin-induced liver damage through modulation of endoplasmic reticulum stress-mediated apoptosis in diabetic rats [J]. Free Radical Research, 2015, 49(3): 279-289

[14] Zhu X, Zhang X, Yu L, et al. Hepatic overexpression of GRP94 in a rabbit model of parenteral nutrition-associated liver disease [J]. Gastroenterol Research Practice, 2015, 2015(1): 1-8

[15] Xu X, Liu T, Zhang A, et al. Reactive oxygen species-triggered trophoblast apoptosis is initiated by endoplasmic reticulum stress via activation of caspase-12, CHOP, and the JNK pathway in Toxoplasma gondii infection in mice [J]. Infection Immunty, 2012, 80(6): 2121-2132

[16] Butenhoff J L, Ehresman D J, Chang S C, et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: Developmental neurotoxicity [J]. Reproductive Toxicology, 2009, 27(3-4): 319-330

[17] Lv Z, Li G, Li Y, et al. Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate [J]. Environmental Toxicology, 2011, 28(9): 532-542

[18] Fabrega F, Kumar V, Schuhmacher M, et al. PBPK modeling for PFOS and PFOA: Validation with human experimental data [J]. Toxicolgy Letter, 2014, 230(2): 244-251

[19] Tian Y F, He C T, Chen Y T, et al. Lipoic acid suppresses portal endotoxemia-induced steatohepatitis and pancreatic inflammation in rats [J]. World Journal of Gastroenterology, 2013, 19(18): 2761-2771

[20] Yao J, Zhao Y, Zhang J, et al. Serum amylase levels are decreased in Chinese non-alcoholic fatty liver disease patients [J]. Lipids Health Disease, 2014, 13(4): 185-189

[21] 劉慧通, 謝亞男, 楊艷麗, 等. 電流損傷后大鼠血清淀粉酶水平的變化及法醫(yī)學(xué)意義[J]. 西安交通大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2011, 32(2): 264-265

Liu H T, Xie Y N, Yang Y L, et al. The medico-legal significance of serum amylase changes in rats' serum after electrical injury [J]. Journal of Xi'an Jiaotong University: Medical Sciences, 2011, 32(2): 264-265 (in Chinese).

[22] Nakajima K, Oshida H, Muneyuki T, et al. Independent association between low serum amylase and non-alcoholic fatty liver disease in asymptomatic adults: A cross-sectional observational study [J]. BMJ Open, 2013, 3(1): 1-25

[23] Curran I, Hierlihy S L, Liston V, et al. Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS) [J]. Journal of Toxicology and Environmental Health-Part A, 2008, 71(23): 1526-1541

[24] Butenhoff J L, Chang S C, Olsen G W, et al. Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats [J]. Toxicology, 2012, 293(1-3): 1-15

[25] Huang T S, Olsvik P A, Krovel A, et al. Stress-induced expression of protein disulfide isomerase associated 3 (PDIA3) in Atlantic salmon (Salmo salar L.) [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2009, 154(4): 435-442

[26] Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction [J]. Journal of Molecular and Cellular Cardiology, 2015, 86(6): 62-74

[27] Olivares S, Henkel A S. Hepatic Xbp1 deletion promotes endoplasmic reticulum stress-induced liver injury and apoptosis [J]. Journal of Biological Chemistry, 2015, doi: 10.1074/jbc.M115.676239jbc.M115.676239.(2015.10.26)

[28] Zhang N, Lu Y, Shen X, et al. Fenofibrate treatment attenuated chronic endoplasmic reticulum stress in the liver of nonalcoholic fatty liver disease mice [J]. Pharmacology, 2015, 95(4): 173-180

[29] Wielsoe M, Long M, Ghisari M, et al. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro [J]. Chemosphere, 2015, 129(3): 239-245

[30] Treton X, Pedruzzi E, Guichard C, et al. Combined NADPH oxidase 1 and interleukin 10 deficiency induces chronic endoplasmic reticulum stress and causes ulcerative colitis-like disease in mice [J]. PLoS One, 2014, 9(7): 357-364

[31] Li B, Tian J, Sun Y, et al. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits [J]. Biochimica et Biophysica Acta, 2015, 1852(5): 805-815

[32] Chen Y J, Su J H, Tsao C Y, et al. Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/eIF2alpha/ATF4/CHOP pathway [J]. Molecules, 2013, 18(9): 10146-10161

[33] Thepparit C, Khakpoor A, Khongwichit S, et al. Dengue 2 infection of HepG2 liver cells results in endoplasmic reticulum stress and induction of multiple pathways of cell death [J]. BMC Research Notes, 2013, 6(3): 372-377

[34] Gentz S H, Bertollo C M, Souza-Fagundes E M, et al. Implication of eIF2alpha kinase GCN2 in induction of apoptosis and endoplasmic reticulum stress-responsive genes by sodium salicylate [J]. Journal of Pharmacy and Pharmacology, 2013, 65(3): 430-440

[35] Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction [J]. Journal of Molecular and Cellular Cardiology, 2015, 86(12): 62-74

Effects of Endoplasmic Reticulum Stress on Perfluorooctane Sulfonate Induced Liver Damage in Rat

Xiao Jing1,*, Mao Weiming1, Din Hui1, Din Qing1, Li Lu1, Qi Cong1, Xu Xian2, Liu Meng1, Bao Yining1

1. Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China 2. School of Public Health, Xinjiang Medical University, Urumqi 830054, China

Effect of endoplasmic reticulum stress on perfluorooctane sulfonate induced liver damage in rat was investigated. Male rats were exposed by gavage with 0 mg·kg-1, 5 mg·kg-1and 10 mg·kg-1PFOS for 28 days. Rats were sacrificed and histological changes of the liver tissue were examined. The contents including ALT, AST, ALP and AMY in serum were determined by ELISA kits. MDA, SOD and GSH-Px were detected by the colorimetric method. Besides, expression of endoplasmic reticulum stress related genes was measured using real-time PCR.The present study showed that PFOS produced significant reductions in body weight gain in male rats. Liver/body weight value was significantly elevated relative to control in male rats. PFOS exposure resulted in a significant hepatic injury with cell edema and hypertrophy in both groups (P<0.05). ALT concentration was highest in 10 mg·kg-1group ((50.96±10.02) U·L-1, (71.73±11.55) U·L-1, respectively) while the content of AMY was lowest in 10 mg·kg-1group ((833.46±63.05) U·L-1). Furthermore, compared with the control, ALP and AST increased significantly (P<0.05). Moreover, PFOS exposure reduced the levels of SOD and GSH-Px while increased the levels of MDA (P<0.05). Furthermore, results from RT-PCR revealed that PFOS up-regulated the expression level of GRP78 and CHOP. In conclusion, exposure to PFOS disturbed the liver homeostasis of male rats, and the mechanism of action is related to endoplasmic reticulum stress.

PFOS; rat; hepatic injury; endoplasmic reticulum stress

10.7524/AJE.1673-5897.20151109004

國(guó)家自然科學(xué)基金(81202228);江蘇省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目(201410304050Z);南通大學(xué)教學(xué)改革課題(2013S03)

肖靜(1980-),女,博士,研究方向?yàn)榄h(huán)境毒理學(xué),E-mail: xiaoj_1980@163.com;

2015-11-09 錄用日期:2015-11-18

1673-5897(2016)2-380-07

X171.5

A

簡(jiǎn)介:肖靜(1980—),女,環(huán)境衛(wèi)生專(zhuān)業(yè)博士,副教授,主要研究方向?yàn)榄h(huán)境內(nèi)分泌干擾物。

肖靜, 毛偉明, 丁慧, 等. 內(nèi)質(zhì)網(wǎng)應(yīng)激在PFOS致大鼠肝損傷中的作用[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(2): 380-386

Xiao J, Mao W M, Ding H, et al. Effects of endoplasmic reticulum stress on perfluorooctane sulfonate induced liver damage in rat [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 380-386 (in Chinese)

猜你喜歡
內(nèi)質(zhì)網(wǎng)肝細(xì)胞肝臟
七種行為傷肝臟
肝臟里的膽管癌
外泌體miRNA在肝細(xì)胞癌中的研究進(jìn)展
內(nèi)質(zhì)網(wǎng)自噬及其與疾病的關(guān)系研究進(jìn)展
憤怒誘導(dǎo)大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá)
加州鱸肝臟養(yǎng)護(hù)
LPS誘導(dǎo)大鼠肺泡上皮細(xì)胞RLE-6 TN內(nèi)質(zhì)網(wǎng)應(yīng)激及凋亡研究
IL-17A促進(jìn)肝部分切除后IL-6表達(dá)和肝臟再生
肝細(xì)胞程序性壞死的研究進(jìn)展
肝細(xì)胞癌診斷中CT灌注成像的應(yīng)用探析