麻 慧,韓紅兵,寧中華,連正興
?
應(yīng)用吞噬性能選育矮小雞的抗病群體
麻 慧1,韓紅兵2,寧中華2,連正興2
(1蘭州理工大學(xué)生命科學(xué)與工程學(xué)院,蘭州 730050;2中國農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院, 北京 100193)
【目的】單核巨噬細(xì)胞在免疫系統(tǒng)中發(fā)揮著重要的作用,試驗(yàn)研究了對(duì)單核巨噬細(xì)胞吞噬性能的選擇影響矮小雞G1代抗傳染性支氣管炎病毒(IBV)的能力?!痉椒ā吭诎‰u290日齡時(shí),檢測了G0代500只個(gè)體(母雞400只,公雞100只)的吞噬指數(shù)(PI),并根據(jù)PI的大小分為強(qiáng)吞噬力組(HPIG)和弱吞噬力組(LPIG)。建立2′2交配組合:HPIG ♂′HPIG ♀(強(qiáng)公強(qiáng)母組),LPIG ♂′HPIG ♀(弱公強(qiáng)母組),HPIG ♂′LPIG ♀(強(qiáng)公弱母組),LPIG ♂′LPIG ♀(弱公弱母組)。隨機(jī)選擇400只1日齡G1代雛雞(每組100只,公母各半),其中360只采用滴鼻方式人工接種含 IBV M41病毒的雞胚尿囊液,40只作為對(duì)照,連續(xù)觀察14d,記錄死亡數(shù),制作石蠟切片進(jìn)行H. E.染色,并通過紅細(xì)胞凝集抑制試驗(yàn)(HI)測定15 d時(shí)存活雞只的抗體效價(jià)。G1代雞20周齡時(shí),選擇母雞12只,其中強(qiáng)組母雞后代6只,弱組母雞后代6只,以病毒模擬物Poly I:C刺激體外培養(yǎng)的單核巨噬細(xì)胞,采用熒光定量PCR的方法測定細(xì)胞因子及主要組織相容性復(fù)合體(MHC)mRNA的表達(dá)水平?!窘Y(jié)果】G0代不同個(gè)體對(duì)異源紅細(xì)胞的吞噬能力差異顯著,通過測定G0代個(gè)體的吞噬指數(shù),建立交配組合,孵育得到G1代雞。對(duì)G1代雞的IBV攻毒試驗(yàn)的結(jié)果為強(qiáng)公強(qiáng)母組后代的死亡率(33.3±0.05)%顯著低于弱公弱母組(55.6±0.05)%,其他兩個(gè)組合后代的死亡率介于上述值之間,弱公強(qiáng)母組為(43.3±0.05)%,強(qiáng)公弱母組為(47.8±0.05)%;母雞對(duì)后代的影響大于公雞,強(qiáng)母組后代的死亡率(38.3±0.04)%顯著低于弱母組(51.7±0.04)%。攻毒組在接種IBV M41病毒3 d后表現(xiàn)出咳嗽、呼吸困難、食欲減退、精神沉郁等臨床癥狀,對(duì)病死雞的氣管及腎臟的H.E.染色結(jié)果可見典型的病灶,氣管上皮細(xì)胞壞死脫落,腎小管上皮細(xì)胞發(fā)生空泡變性等,而對(duì)照組均無臨床癥狀及組織病變。對(duì)198只攻毒后存活個(gè)體抗體滴度的測定結(jié)果顯示強(qiáng)組母雞后代抗體滴度(8.45±0.07)顯著高于弱組母雞后代的抗體滴度(8.10±0.08)。利用病毒模擬物Poly I:C刺激體外培養(yǎng)的單核巨噬細(xì)胞2 h后,強(qiáng)吞噬力個(gè)體(強(qiáng)組母雞后代)細(xì)胞因子IFN γ和IL-1β的表達(dá)量分別是弱吞噬力個(gè)體(弱組母雞后代)的5.14倍(<0.05)和2.41倍(<0.05)。強(qiáng)吞噬力個(gè)體MHCⅠ的表達(dá)量顯著高于弱吞噬力個(gè)體,而MHCⅡ的表達(dá)量差異不顯著。【結(jié)論】通過測定體外培養(yǎng)的單核巨噬細(xì)胞的吞噬性能,按照吞噬指數(shù)的高低建立交配組合,強(qiáng)吞噬力母雞后代的攻毒死亡率顯著低于弱吞噬力母雞后代,且其抗體滴度、細(xì)胞因子(IFN γ、IL-1β)和MHCⅠ的表達(dá)量顯著高于弱吞噬力母雞后代,說明強(qiáng)吞噬力母雞后代具有較強(qiáng)的抗IBV的能力。因此單核巨噬細(xì)胞的吞噬能力可以作為培育抗IBV品系的一種指標(biāo)。
單核細(xì)胞;巨噬細(xì)胞;吞噬性能;抗病性能;矮小雞
【研究意義】雞傳染性支氣管炎是一種急性高度接觸性傳染病,引起雞呼吸道、腎臟、腸道及輸卵管等多個(gè)部位的感染。疫苗在雞群的疾病抵御方面具有重要的保護(hù)作用,但I(xiàn)BV血清型眾多,新的變異株不斷出現(xiàn),且不同血清型間的交叉保護(hù)性小,造成雞群免疫失敗[1]。因此,抗病品系的篩選和培養(yǎng)是一項(xiàng)重要的工作。單核巨噬細(xì)胞具有廣泛的生物學(xué)效應(yīng),病原體入侵機(jī)體后,首先被單核巨噬細(xì)胞捕獲,啟動(dòng)非特異性免疫,巨噬細(xì)胞具有趨化性及吞噬性,有效地吞噬消化外源微生物及內(nèi)源性物質(zhì),活化的巨噬細(xì)胞可以產(chǎn)生細(xì)胞毒性物質(zhì)(NO、活性氧等)破壞吞噬物,并且分泌多種細(xì)胞因子、補(bǔ)體、防御素等活性物質(zhì)[2]。通過對(duì)單核巨噬細(xì)胞性能的篩選,選育抗傳染性支氣管炎病毒的品系,具有重要的意義?!厩叭搜芯窟M(jìn)展】抗病育種的方法有多種,從最初的觀察畜種、攻擊畜種或后裔等直接選擇法,發(fā)展到以分子標(biāo)記輔助選擇、轉(zhuǎn)基因技術(shù)為主要內(nèi)容的間接選擇法,不同方法具有各自的優(yōu)越性,同時(shí)也具有限制其發(fā)展的缺點(diǎn)[3-4]。為了獲得家禽的抗病品系,ZHAO等[5-7]分別從抗體滴度、沙門氏菌的含量、生產(chǎn)性狀等方面對(duì)群體進(jìn)行了選育。LYALL等[8]制備了對(duì)病毒具有高抗性和易感性的轉(zhuǎn)基因雞的群體。但是消費(fèi)者很難接受轉(zhuǎn)基因的禽類產(chǎn)品,并且轉(zhuǎn)基因雞無法廣泛應(yīng)用于家禽業(yè)。以細(xì)胞學(xué)為標(biāo)記的選擇方法,目前已具有一些成功的例子。SWAGGERTY等[9]利用外周血嗜異白細(xì)胞培育了雞白痢沙門氏菌的抗病品系A(chǔ)、D及易感B、C,其中A、B為親本商品代肉雞品系,C、D為F1代A、B系的正反交品系。通過對(duì)F1代抗病性能的測定發(fā)現(xiàn)體外異嗜細(xì)胞的功能與雞對(duì)腸炎沙門氏菌的抗性呈正相關(guān)[10],與腸球菌及艾美爾球菌的抗性呈正相關(guān)[11-12]。通過對(duì)分子機(jī)理的研究發(fā)現(xiàn),抗性品系的促炎因子和趨化因子mRNA的表達(dá)水平均高于易感品系[13]。LI等[14]研究表明單核巨噬細(xì)胞吞噬能力較高的母雞,其子代含有較高的母源抗體,因而具有較強(qiáng)的抗病能力?!颈狙芯壳腥朦c(diǎn)】雖然SWAGGERTY等[9]通過對(duì)家禽異嗜細(xì)胞功能的選育,建立了抗性品系和易感品系,但其并未研究這兩種品系對(duì)于傳染性支氣管炎病毒的抗性差異。單核巨噬細(xì)胞作為固有免疫中的重要吞噬細(xì)胞,其功能的差異直接影響固有免疫的能力,LI等[14]指出高吞噬力母雞的子代具有較高的抗病力,但并未就具體的疾病展開研究,也未研究其高抗病力的分子機(jī)制。【擬解決的關(guān)鍵問題】本研究旨在通過對(duì)G0代單核巨噬細(xì)胞吞噬性能的選擇,研究是否可以提高G1代中高吞噬組后代對(duì)IBV病毒的抵抗力,并研究其分子機(jī)制。
試驗(yàn)于2010年3—11月在中國農(nóng)業(yè)大學(xué)細(xì)胞與分子實(shí)驗(yàn)室及北京北農(nóng)大種禽有限責(zé)任公司完成。
1.1 試驗(yàn)動(dòng)物
隨機(jī)選擇900只農(nóng)大3號(hào)節(jié)糧矮小型蛋雞飼養(yǎng)于北京北農(nóng)大種禽有限責(zé)任公司,雞只按照標(biāo)準(zhǔn)條件飼養(yǎng),采食飲水自由。290日齡時(shí),測定G0代500只雞(母雞400只,公雞100只)的吞噬指數(shù)(phagocytic index,PI),按照PI的強(qiáng)弱,分為強(qiáng)吞噬組(high phagocytic index groups,HPIG,其中公雞PI ≥ 3.0,母雞PI ≥ 2.0)和弱吞噬組(low phagocytic index groups,LPIG,其中公雞PI=1.0,母雞PI ≤ 1.1)。192只中等吞噬力的個(gè)體被淘汰。
試驗(yàn)選用2×2配種組合:HPIG ♂×HPIG ♀(強(qiáng)公強(qiáng)母組),LPIG ♂×HPIG ♀(弱公強(qiáng)母組),HPIG ♂×LPIG ♀(強(qiáng)公弱母組),LPIG ♂×LPIG ♀(弱公弱母組)。每組7只公雞,每只公雞配種10只母雞。連續(xù)15 d收集種蛋后入孵。所得G1代雛雞,每組隨機(jī)選擇100只(公母各半),4組共400只用于攻毒試驗(yàn)。其余G1代雞飼養(yǎng)到20周齡時(shí),HPIG與LPIG各選擇6只健康的母雞,用于細(xì)胞因子測定試驗(yàn)。
1.2 細(xì)胞分離培養(yǎng)
翅靜脈采集0.5 mL外周血,緩慢注入加有肝素的1.5 mL無菌離心管中。利用密度梯度離心法分離外周血單個(gè)核細(xì)胞(PBMC):抗凝血與Hank’s以1﹕1的比例混合,再加入1 mL淋巴細(xì)胞分離液的液面上,500×水平離心20 min收集中間層的PBMC,加Hank’s液800×離心10 min洗滌PBMC一次。將PBMC用配好的RPMI1640培養(yǎng)液以1×107個(gè)/孔接種于96孔板中,在37℃,5% CO2飽和濕度培養(yǎng)箱中培養(yǎng)24 h。用移液器移走懸浮細(xì)胞,RPMI1640培養(yǎng)液洗滌貼壁細(xì)胞2—3次,貼壁細(xì)胞即為單核巨噬細(xì)胞,淋巴細(xì)胞和血小板不具有貼壁特性。培養(yǎng)48 h后,90%的貼壁細(xì)胞為單核巨噬細(xì)胞[3]。
1.3 吞噬性能測定
經(jīng)過72 h培養(yǎng),單核巨噬細(xì)胞的密度為2×105個(gè)/孔。取壽光雞的紅細(xì)胞作為異源紅細(xì)胞,并以1×106個(gè)/孔加入培養(yǎng)單核巨噬細(xì)胞的96孔培養(yǎng)板。將培養(yǎng)板放入CO2培養(yǎng)箱,吞噬反應(yīng)于6 h內(nèi)發(fā)生。吞噬性能的計(jì)數(shù)方法:吞噬后細(xì)胞用PBS洗滌2次,用相差顯微鏡,計(jì)數(shù)300個(gè)單核巨噬細(xì)胞中吞噬紅細(xì)胞的單核巨噬細(xì)胞數(shù),及被吞噬的紅細(xì)胞總數(shù)[15]。吞噬指數(shù)(PI)表示為被吞噬的紅細(xì)胞數(shù)除以吞噬紅細(xì)胞的單核巨噬細(xì)胞數(shù)[16]。
1.4 傳染性支氣管炎病毒復(fù)壯及收獲
IBV M41株凍干毒購自中國獸藥監(jiān)察所。使用前,加2 mL無菌生理鹽水入凍干毒得病毒液。選用10日齡SPF雞胚,照蛋畫出氣室和胚位,在氣室接近胚位處用酒精消毒,打孔器打小孔,將注射器針頭從小孔處小心扎入1.5 cm深注入0.1 mL病毒液。用石蠟封口,置孵育箱中孵育,棄掉24 h內(nèi)死亡雞胚。每天照蛋1次,收集72 h內(nèi)死亡雞胚的尿囊液。離心去雜質(zhì)后取上清病毒液放4℃冰箱備用。
1.5 IBV攻毒及抗體測定
隨機(jī)選擇400只(每組100只,公母各半)1日齡的G1代雛雞,其中360只用于攻毒試驗(yàn),40只作為對(duì)照。攻毒組采用滴鼻方式人工接種IBV M41病毒雞胚尿囊液0.2 mL/只,含毒量為107—109EID50,對(duì)照組接種非感染尿囊液0.2 mL/只。為了避免交叉感染,攻毒組和對(duì)照組嚴(yán)格隔離飼養(yǎng),試驗(yàn)時(shí)按照先對(duì)照組后攻毒組的原則進(jìn)行飼養(yǎng)與記錄,各飼養(yǎng)組有獨(dú)立的工作服及器皿,嚴(yán)格避免病原菌的傳播。接種后連續(xù)觀察14 d,記錄死亡數(shù),剖解死亡雞只,觀察心、肝、脾、肺、腎等的病理變化,確定其死亡原因。制作切片并通過H. E. 染色觀察組織的病理變化。第15天屠宰被感染的活雞,取血清進(jìn)行紅細(xì)胞凝集抑制試驗(yàn)(HI)測定其抗體效價(jià)(log2)。
1.6 病毒模擬物Poly I:C刺激細(xì)胞
選擇20周齡G1代健康母雞12只,其中強(qiáng)吞噬力個(gè)體(強(qiáng)組母雞后代)和弱吞噬力個(gè)體(弱組母雞后代)各6只。提取外周血單核細(xì)胞,細(xì)胞計(jì)數(shù)后,以相同濃度接種于6孔板中。細(xì)胞純化培養(yǎng)到46 h時(shí),向培養(yǎng)液中加入Poly I:C(Sigma),添加濃度為1 μg·mL-1,刺激時(shí)間為0、2 h。48 h時(shí)加裂解液收集細(xì)胞,使用RNA提取試劑盒(Omega Bio-tek公司)提取RNA。純化后的RNA分裝后放入-80℃?zhèn)溆谩?/p>
1.7 熒光定量PCR
熒光定量PCR引物設(shè)計(jì)程序?yàn)镻rimer Express 3.0,引物參見表1。反應(yīng)程序:95℃ 10 min;95℃ 30 s,60℃ 30s,68℃ 30s,40個(gè)循環(huán),在60℃ 30s處采集熒光信號(hào);95℃ 30s,60℃ 30s,95℃ 30s,1個(gè)循環(huán),在60℃ 30s處采集熒光信號(hào)。
表1 基因及引物
1.8 數(shù)據(jù)分析
利用χ2檢驗(yàn)分析不同組間攻毒死亡率的差異,并利用GLM程序(SAS V8.2)對(duì)對(duì)數(shù)轉(zhuǎn)化后的抗體滴度的差異性進(jìn)行方差分析,所用模型如下:
Yij= μ + Fi+ Mj+ Fi′Mj+ eij
式中,Yij表示第ij個(gè)個(gè)體的表型性狀記錄值,μ為平均值,F(xiàn)i為第i個(gè)母雞吞噬能力的效應(yīng),Mj為第j個(gè)公雞吞噬能力的效應(yīng),F(xiàn)i×Mj為第i個(gè)母雞吞噬能力與第j個(gè)公雞吞噬能力互作對(duì)表型值的效應(yīng),eij為殘差效應(yīng)。差異顯著水平為0.05。
攻毒死亡率表示為死亡率±標(biāo)準(zhǔn)誤。標(biāo)準(zhǔn)誤的計(jì)算方法依據(jù)樣本百分?jǐn)?shù)標(biāo)準(zhǔn)誤計(jì)算公式,表示樣本百分?jǐn)?shù),S為樣本百分?jǐn)?shù)標(biāo)準(zhǔn)誤,S=,其中,=,=總樣本數(shù)。
熒光定量PCR的結(jié)果分析采用2-ddCt相對(duì)定量法,計(jì)算出目標(biāo)基因轉(zhuǎn)錄的變化倍數(shù),β-actin作為內(nèi)參基因。不同組合倍數(shù)變化的差異比較采用SAS軟件的GLM程序。
2.1 G0代吞噬性能的差異
對(duì)異源紅細(xì)胞的吞噬能力有效地反映了不同個(gè)體間單核巨噬細(xì)胞的吞噬性能。通過對(duì)500只G0個(gè)體PI值的檢測,篩選出了吞噬力差異顯著的個(gè)體(圖1)。
(a)強(qiáng)吞噬指數(shù)組(公雞PI ≥ 3.0,母雞PI ≥ 2.0)的個(gè)體;(b)弱吞噬指數(shù)組(公雞PI = 1.0,母雞PI ≤ 1.1)的個(gè)體
2.2 IBV攻毒死亡率
攻毒時(shí)間為14d,死亡162只,解剖全部病死雞,均具有典型的傳染性支氣管炎癥狀。強(qiáng)公強(qiáng)母組后代的死亡率(33.3±0.05)%顯著低于弱公弱母組(55.6±0.05)%,其他兩個(gè)組合后代的死亡率介于強(qiáng)公強(qiáng)母組和弱公弱母組之間,弱公強(qiáng)母組為(43.3±0.05)%,強(qiáng)公弱母組為(47.8±0.05)%(圖2-A)。分析公雞和母雞的PI對(duì)后代死亡率的影響,結(jié)果顯示母雞對(duì)后代的影響大于公雞,強(qiáng)母組后代的死亡率((38.3±0.04)%)顯著低于弱母組((51.7± 0.04)%),而強(qiáng)弱公雞組后代的死亡率差異不顯著(圖2-B)。
2.3 抗體滴度
測定了198只個(gè)體血清中抗IBV的抗體滴度。強(qiáng)公強(qiáng)母組后代的抗體滴度顯著高于其余3組(圖3-A)。統(tǒng)計(jì)結(jié)果表明,公雞對(duì)后代的影響不顯著。強(qiáng)組母雞后代抗體滴度(8.45±0.07)顯著高于弱組母雞后代的抗體滴度(8.10±0.08)(圖3-B)。
選擇400只G1代個(gè)體(公母各半)平均來自4個(gè)交配組合。然后,360只采用滴鼻方式(107-109 EID50/只)接種含有IBV的尿囊液0.2 mL,40只接種不含IBV的尿囊液0.2mL作為對(duì)照組。觀察14 d。A. 4個(gè)交配組合后代的死亡率:1:HPIG ♂ ′ HPIG ♀,2:LPIG ♂ ′ HPIG ♀,3:HPIG ♂ ′ LPIG ♀,4:LPIG ♂ ′ LPIG ♀。B. 母雞HPIG 和母雞LPIG 后代的死亡率。HPIG =強(qiáng)吞噬指數(shù)組;LPIG =弱吞噬指數(shù)組。數(shù)據(jù)表示為平均數(shù)±標(biāo)準(zhǔn)誤。a, b表示差異顯著(P<0.05)
2.4 病死雞臨床癥狀及病理組織學(xué)觀察
攻毒組雞在接種IBV M41病毒后3 d出現(xiàn)臨床癥狀,表現(xiàn)為輕度咳嗽和精神沉郁,從第4天開始,呼吸困難,張口呼吸,出現(xiàn)啰音,食欲減退。對(duì)照組精神和采食正常。
試驗(yàn)組病死雞的器官和組織在攻毒后出現(xiàn)不同程度的病理組織學(xué)損傷,取病死雞的組織樣進(jìn)行H.E.染色鑒定。試驗(yàn)組雞攻毒后第3天起,氣管黏膜層結(jié)構(gòu)不完整,上皮細(xì)胞核變圓,有的胞核碎裂,部分上皮細(xì)胞壞死脫落;黏膜下層水腫,毛細(xì)血管擴(kuò)張充血(圖4-A)。腎間質(zhì)血管擴(kuò)張出血,腎小管上皮細(xì)胞發(fā)生空泡變性,部分出現(xiàn)顆粒變性,核濃縮,間質(zhì)有淋巴細(xì)胞浸潤(圖4-B)。對(duì)照組組織器官均無明顯病變。
A. 氣管;B. 腎臟 A. trachea; B. kidney
2.5 熒光定量PCR
試驗(yàn)通過病毒模擬物Poly I:C對(duì)外周血單核巨噬細(xì)胞的刺激作用,利用相對(duì)定量的方法,比較了G1代不同吞噬力個(gè)體先天性免疫反應(yīng)的差異。單核巨噬細(xì)胞是先天性免疫反應(yīng)中的主要效應(yīng)細(xì)胞,同時(shí)也可以有效地遞呈抗原,激活獲得性免疫反應(yīng)。本試驗(yàn)測定了先天性免疫反應(yīng)中重要的細(xì)胞的因子IFN γ及IL-1β的表達(dá)量,結(jié)果表明刺激2 h時(shí),強(qiáng)吞噬力個(gè)體IFN γ的表達(dá)量是弱吞噬力個(gè)體的5.14倍(<0.05,圖5),而強(qiáng)吞噬力個(gè)體IL-1β的表達(dá)量是弱吞噬力個(gè)體的2.41倍(<0.05,圖6)。主要組織相容性復(fù)合體(MHC)具有介導(dǎo)先天性及獲得性免疫反應(yīng)的重要作用。強(qiáng)吞噬力個(gè)體MHCⅠ的表達(dá)量顯著高于弱吞噬力個(gè)體(圖7),而MHCⅡ的表達(dá)量差異不顯著(圖8)。
將從12只G1代個(gè)體中分離得到的單核細(xì)胞分別培養(yǎng)在6孔板中。46小時(shí)后,向細(xì)胞培養(yǎng)液中加入Poly I:C (1加入分別培養(yǎng)在分別刺激0小時(shí)和2小時(shí)。然后提取mRNA。應(yīng)用實(shí)時(shí)定量PCR檢測細(xì)胞因子的表達(dá)量。* 表示P<0.05即相同刺激時(shí)間時(shí)HPIG 和LPIG的表達(dá)量差異顯著。HPIG =強(qiáng)吞噬指數(shù)組;LPIG =弱吞噬指數(shù)組。數(shù)據(jù)表示為平均數(shù)±標(biāo)準(zhǔn)誤
HPIG =強(qiáng)吞噬指數(shù)組,LPIG =弱吞噬指數(shù)組。數(shù)據(jù)表示為平均數(shù)±標(biāo)準(zhǔn)誤, *表示P<0.05
HPIG =強(qiáng)吞噬指數(shù)組,LPIG =弱吞噬指數(shù)組。數(shù)據(jù)表示為平均數(shù)±標(biāo)準(zhǔn)誤, *表示P<0.05
HPIG =強(qiáng)吞噬指數(shù)組,LPIG =弱吞噬指數(shù)組。數(shù)據(jù)表示為平均數(shù)±標(biāo)準(zhǔn)誤,*表示P<0.05
雞傳染性支氣管炎是由冠狀病毒引起的急性高度接觸性呼吸道傳染病。引起雛雞高死亡率、生長發(fā)育受阻及母雞成年后無法達(dá)到產(chǎn)蛋高峰。蛋雞感染傳支后,產(chǎn)蛋量急劇下降,破蛋軟蛋增多,造成養(yǎng)殖業(yè)的巨大經(jīng)濟(jì)損失,因此通過抗病育種的方法選育抗傳染性支氣管炎品系意義重大??共∮N常用的方法有直接選擇法和間接選擇法,其中間接選擇法又包括免疫遺傳學(xué)抗病育種、分子標(biāo)記輔助選擇、利用轉(zhuǎn)基因技術(shù)抗病育種等。畜禽感染病原體后,激活固有免疫和適應(yīng)性免疫應(yīng)答,研究表明,免疫應(yīng)答具有低遺傳力或中等遺傳力。單核巨噬細(xì)胞是固有免疫應(yīng)答的主要細(xì)胞,同時(shí)是激活適應(yīng)性免疫應(yīng)答的重要細(xì)胞,據(jù)報(bào)道單核巨噬細(xì)胞體外的吞噬性能可以很好地反映細(xì)胞自身的免疫功能[17]及機(jī)體的抗病性能[15],檢測其吞噬性能的方法有多種,利用異源紅細(xì)胞作為吞噬物來測定吞噬指數(shù)是常用的一種方法[18]。本文通過體外測定單核巨噬細(xì)胞的吞噬指數(shù),分別將公雞和母雞分為強(qiáng)組和弱組,并進(jìn)行配種,獲得4種交配組合的后代并測定其抗病性能。
強(qiáng)吞噬力母雞后代較弱吞噬力母雞后代對(duì)IBV的抗性強(qiáng),IBV攻毒后,強(qiáng)吞噬力母雞后代的死亡率低且抗體滴度高。首先,單核巨噬細(xì)胞在先天性及獲得性免疫反應(yīng)中都具有重要的調(diào)節(jié)作用。通過細(xì)胞表面的受體感知并吞噬入侵的微生物,并且通過分泌細(xì)胞因子來擴(kuò)大信號(hào)傳導(dǎo)及激活T淋巴細(xì)胞的反應(yīng)[2]。單核巨噬細(xì)胞的強(qiáng)吞噬作用可以有效促進(jìn)抗體的表達(dá),進(jìn)而提高機(jī)體的抗病力[19-20]。其次,LI等[14]報(bào)道,母本的吞噬能力與雞蛋中IgY的含量呈正相關(guān)[3]。對(duì)于剛出生的雛雞,免疫系統(tǒng)不成熟,極易受病菌的感染。而雛雞通過雞蛋獲得的母源抗體具有重要的保護(hù)作用,加強(qiáng)雛雞對(duì)各種病原體的免疫力[21]。母源抗體不僅起被動(dòng)的保護(hù)作用,而且可以促進(jìn)雛雞自身免疫系統(tǒng)的發(fā)育與成熟[22]。因此,母本的吞噬能力決定了后代對(duì)疾病的抗性。
本試驗(yàn)利用Poly I:C這一病毒模擬物,刺激強(qiáng)吞噬組及弱吞噬組體外培養(yǎng)的單核巨噬細(xì)胞,結(jié)果表明強(qiáng)吞噬組IFN γ及IL-1β的表達(dá)量顯著高于弱吞噬組。這一結(jié)果與前人的報(bào)道較為相同。WIGLEY等[23]體外培養(yǎng)了沙門氏菌抗性品系和易感品系的巨噬細(xì)胞,用沙門氏菌感染細(xì)胞后測定細(xì)胞因子,結(jié)果表明抗性品系表達(dá)大量促炎細(xì)胞因子IL-1系、IL-6、CCLi2等。同樣,SWAGGERTY等[24]經(jīng)體內(nèi)及體外沙門氏菌感染試驗(yàn)表明,抗性品系促炎細(xì)胞因子的表達(dá)量均高于易感品系。
細(xì)胞因子是固有免疫應(yīng)答階段重要的免疫分子,包括促炎細(xì)胞因子和抗炎細(xì)胞因子,其中促炎細(xì)胞因子可以通過增強(qiáng)炎癥應(yīng)答來提高機(jī)體的抗感染能力[25-26]。CAUTHEN等[27]對(duì)感染禽流感病毒(AIV)的1日齡及4周齡雞只的研究表明,IFN的表達(dá)量與AIV的毒力、傳播及變異密切相關(guān),IFN表達(dá)量高的個(gè)體其病毒滴度低,且?guī)Ф緯r(shí)間短。NIU等[28]研究表明,雛雞在受到IBV感染后會(huì)產(chǎn)生大量的干擾素[14]。干擾素可以有效抑制IBV在腎及氣管組織中的復(fù)制。IFN γ可以促進(jìn)巨噬細(xì)胞表達(dá)活性氧及NO等活性物來殺傷病源[29]。同時(shí)IFN γ可以促進(jìn)MHCⅡ、IL12等的表達(dá),且促進(jìn)抗體的生成[30-31]。IL-1β是一類主要的促炎細(xì)胞因子,可以促進(jìn)T、B細(xì)胞活化、增殖和分化[32]。單核巨噬細(xì)胞通過調(diào)節(jié)細(xì)胞因子的分泌,抑制了IBV的復(fù)制。
MHC與動(dòng)物的抗病性密切相關(guān)。報(bào)道表明雞只對(duì)傳染性支氣管炎病毒的抗性與MHC的單倍型有關(guān)[33]。而MHC與單核巨噬細(xì)胞具有互相調(diào)節(jié)的作用[34]。在家禽中,不同MHC單倍型的個(gè)體其單核巨噬細(xì)胞在吞噬、胞內(nèi)病毒清除及血液單核細(xì)胞趨化性等方面的功能差異顯著。MHCⅠ的主要作用為遞呈內(nèi)源性抗原(如病毒、腫瘤等),啟動(dòng)Th1型淋巴細(xì)胞反應(yīng)[35]。本試驗(yàn)中,強(qiáng)吞噬組MHCⅠ的表達(dá)量顯著高于弱吞噬組,因此對(duì)病毒的遞呈能力及獲得性免疫反應(yīng)的激活作用較強(qiáng)。
本研究通過活體攻毒試驗(yàn)及體外細(xì)胞因子的表達(dá)測定,證明了強(qiáng)吞噬組后代抗傳染性支氣管炎病毒的能力顯著高于弱吞噬組后代。在受到病毒感染后,強(qiáng)吞噬組后代可以迅速調(diào)動(dòng)機(jī)體的免疫反應(yīng),體內(nèi)的單核巨噬細(xì)胞釋放大量的促炎細(xì)胞因子IL-1β、IFNγ等,增強(qiáng)先天性免疫反應(yīng)對(duì)病毒的清除作用,同時(shí)組織相容性復(fù)合體Ⅰ的高表達(dá)可以提高向細(xì)胞毒性T淋巴細(xì)胞遞呈抗原的效率,啟動(dòng)較強(qiáng)的獲得性免疫反應(yīng)。因此可以通過對(duì)單核巨噬細(xì)胞吞噬能力的選擇來選育抗傳染性支氣管炎病毒的家禽品系。
[1] 陶家權(quán), 劉喬然, 喬榮岑, 孫進(jìn)忠, 張?jiān)S科. 雞傳染性支氣管炎的流行及防控. 中國家禽, 2009, 31(24):65-66.
TAO J Q, LIU Q R, QIAO R C, SUN J Z, ZHANG X K. Epidemiology and control of chicken infectiou bronchitis.2009, 31(24): 65-66. (in Chinese)
[2] O'MAHONY D S, PHAM U, IYER R, HAWNT R, LILES W C. Differential constitutive and cytokine-modulated expression of human toll-like receptors in primary neutrophils, monocytes, and macrophages.2008, 5(1): 1-8.
[3] METTERLEIN T, SCHUSTER F, TADDA L, HAGER M, ROEWER N, ANETSEDER M. Statins alter intracellular calcium homeostasis in malignant hyperthermia susceptible individuals., 2010, 28(6):356-360.
[4] YONASH N, BACON L D, WITTER R L, CHENG H H. High resolution mapping and identification of new quantitative trait loci (qtl) affecting susceptibility to marek’s disease.1999, 30(2):126-135.
[5] ZHAO X L, HONAKER C F, SIEGEL P B. Phenotypic responses of chickens to long-term selection for high or low antibody titers to sheep red blood cells.2012, 91:1047-1056.
[6] BEAUMONT C, CHAPUIS H, PROTAIS J, SELLIER N, MENANTEAU P, FRAVALO P, VELGE P. Resistance to Salmonella carrier state: Selection may be efficient but response depends on animal’s age.2009, 91:161-169.
[7] CHENG H W, EICHER S D, CHEN Y, SINGLETON P, MUIR W M. Effect of genetic selection for group productivity and longevity on immunological and hematological parameters of chickens.2001, 80:1079-1086.
[8] LYALL J, IRVINE R M, SHERMAN A, MCKINLEY T J, NUNEZ A, PURDIE A, OUTTRIM L, BROWN I H, ROLLESTON-SMITH G, SANG H, TILEY L. Suppression of avian influenza transmission in genetically modified chickens.2011, 331:223-226.
[9] SWAGGERTY C L, PEVZNER I Y, FERRO P J, CRIPPEN T L, KOGUT M H. Association between in vitro heterophil function and the feathering gene in commercial broiler chickens., 2003, 32(5):483-488.
[10] SWAGGERTY C L, FERRO P J, PEVZNER I Y, KOGUT M H. Heterophils are associated with resistance to systemicinfection in genetically distinct lines of chickens.2005, 43:149-154.
[11] SWAGGERTY C L, LOWRY V K, FERRO P J, PEVZNER I Y, KOGUT M H. Disparity in susceptibility to vancomycin-resistant Enterococcus organ invasion in commercial broiler chickens that differ in innate immune responsiveness.2005, 16:1-15.
[12] SWAGGERTY C L, GENOVESE K J, HE H, DUKE S E, PEVZNER I Y, KOGUT M H. Broiler breeders with an efficient innate selection for resistangce against salmonella.2011, 90: 1014-1019.
[13] SWAGGERTY C L, KAISER P, ROTHWELL L, PEVZNER I Y, KOGUT M H. Heterophil cytokine mRNA profiles from genetically distinct lines of chickens with differential heterophil-mediated innate immune responses.2006, 35:102-108.
[14] LI H, ZHANG Y, NING Z H, DENG X M, LIAN Z X, LI N. Effect of selection for phagocytosis in dwarf chickens on immune and reproductive characters.2008, 87(1):41-49.
[15] SUN S F, PAN Q Z, HUI X, ZHANG B L, WU H M, LI H, XU W, ZHANG Q, LI J Y, DENG X M, CHEN J W, LIAN Z X, LI N. Stronger in vitro phagocytosis by monocytes-macrophages is indicative of greater pathogen clearance and antibody levels2008, 87(9):1725-1733.
[16] BASSOE C F, SMITH I, SORNES S, HALSTENSEN A, LEHMANN A K. Concurrent measurement of antigen- and antibody-dependent oxidative burst and phagocytosis in monocytes and neutrophils.2000, 21(3):203-220.
[17] 薩仁娜, 佟建明, 何春年, 高微微, 張琪. 海帶巖藻聚糖及其級(jí)分在氧化應(yīng)激條件下對(duì)肉雞巨噬細(xì)胞免疫功能的影響. 中國農(nóng)業(yè)科學(xué), 2008, 41(10): 3256-3263.
SA R N, TONG J M, HE C N, GAO W W, ZHANG Q. Effect of fucoidan and fraction isolated from laminaria japonica on immunity of broiler macrophages under oxidation stress condition.2008, 41(10): 3256-3263. (in Chinese)
[18] NILSSON A, OLDENBORG P A. Cd47 promotes both phosphatidylserine-independent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages.2009, 387(1): 58-63.
[19] SOLANO G I, BAUTISTA E, MOLITOR T W, SEGALES J, PIJOAN C. Effect of porcine reproductive and respiratory syndrome virus infection on the clearance of haemophilus parasuis by porcine alveolar macrophages.1998, 62(4):251-256.
[20] HAMAL K R, BURGESS S C, PEVZNER I Y, ERF G F. Maternal antibody transfer from dams to their egg yolks, egg whites, and chicks in meat lines of chickens.2006, 85(8):1364-1372.
[21] GRINDSTAFF J L. Maternal antibodies reduce costs of an immune response during development.2008, 211(Pt 5):654-660.
[22] Reid J M, Arcese P, Keller L F, Hasselquist D. Long-term maternal effect on offspring immune response in song sparrows melospiza melodia.2006, 2(4):573-576.
[23] WIGLEY P, HULME S, ROTHWELL L, BUMSTEAD N, KAISER P, BARROW P. Macrophages isolated from chickens genetically resistant or susceptible to systemic salmonellosis show magnitudinal and temporal differential expression of cytokines and chemokines following salmonella enterica challenge.2006, 74(2):1425-1430.
[24] SWAGGERTY C L, PEVZNER I Y, HE H, GENOVESE K J, NISBET D J, KAISER P, KOGUT M H. Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens.2009, 6(7): 777-783.
[25] 黃琴, 黃怡, 崔志文, 李雅麗, 李衛(wèi)芬, 余東游. 鼠李糖乳桿菌對(duì)巨噬細(xì)胞先天性免疫應(yīng)答的調(diào)節(jié)作用. 中國農(nóng)業(yè)科學(xué), 2012, 45(8): 1621-1626.
HUANG Q, HUANG Y, CUI Z W, LI Y L, LI W F, YU D Y. Modulation ofon innate immune responses in macrophages.2012, 45(8): 1621-1626. (in Chinese)
[26] 王繼英, 王彥平, 郭建鳳, 王懷中, 林松, 張印, 武英. 仔豬外周血中內(nèi)參基因的篩選及細(xì)胞因子和受體的表達(dá)水平. 中國農(nóng)業(yè)科學(xué), 2015, 48(7): 1437-1444.
WANG J Y, WANG Y P, GUO J F, WANG H Z, LIN S, ZHANG Y, WU Y. Selection of reference genes and determination of cytokines and receptor mRNA expression in peripheral blood of piglets.2015, 48(7): 1437-1444. (in Chinese)
[27] CAUTHEN A N, SWAYNE D E, SEKELLICK M J, MARCUS P I, SUAREZ D L. Amelioration of influenza virus pathogenesis in chickens attributed to the enhanced interferon-inducing capacity of a virus with a truncated ns1 gene.2007, 81(4): 1838-1847.
[28] NIU M, HAN Y, LI W. Baculovirus up-regulates antiviral systems and induces protection against infectious bronchitis virus challenge in neonatal chicken.2008, 8(12): 1609-1615.
[29] PEI J, SEKELLICK M J, MARCUS P I, CHOI I S, COLLISSON E W. Chicken interferon type i inhibits infectious bronchitis virus replication and associated respiratory illness.2001, 21(12):1071-1077.
[30] HE H, GENOVESE K J, KOGUT M H. Modulation of chicken macrophage effector function by th1/th2 cytokines.2011, 53:363-369.
[31] FLESCH I E, HESS J H, HUANG S, AGUET M, ROTHE J, BLUETHMANN H, KAUFMANN S H. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha.1995, 181(5):1615-1621.
[32] FINKELMAN F, KATONA I, MOSMANN T R, COFFMAN R L. Ifn-gamma regulates the isotypes of ig secreted during in vivo humoral immune responses.1988, 140(4): 1022-1027.
[33] CHEESEMAN J H, KAISER M G, CIRACI C, KAISER P, LAMONT S J. Breed effect on early cytokine mrna expression in spleen and cecum of chickens with and without salmonella enteritidis infection.2007, 31(1): 52-60.
[34] BACON L D, HUNTER D B, ZHANG H M, BRAND K, ETCHES R. Retrospective evidence that the mhc (b haplotype) of chickens influences genetic resistance to attenuated infectious bronchitis vaccine strains in chickens.2004, 33(6):605-609.
[35] ZINKERNAGEL R. On cross-priming of mhc class i-specific ctl: Rule or exception?2002, 32(9): 2385-2392.
(責(zé)任編輯 林鑒非)
Breeding of Disease Resistant Dwarf Chickens by Phagocytic Ability
MA Hui1, HAN Hong-bing2, NING Zhong-hua2, LIAN Zheng-xing2
(1College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050;2College of Animal Science and Technology, China Agricultural University, Beijing 100193)
【Objective】Monocytes-macrophages play an important role in the immune system. The effect of selection for monocytes-macrophages phagocytosis on infectious bronchitis virus (IBV) resistance in generation 1 (G1) of dwarf chickens was studied. 【Method】The phagocytic index (PI) of 500 dwarf chickens (400 hens and 100 cocks) of generation 0 (G0) was tested at 290 d of age, and then the chickens were divided into high and low PI groups (HPIG and LPIG). 2′2 mating combinations were conducted: HPIG ♂′HPIG ♀, LPIG ♂′HPIG ♀, HPIG ♂′LPIG ♀, LPIG ♂′LPIG ♀. Four hundred G1 chickens (half in sex) equally from 4 mating groups were selected to IBV challenge at 1 d, 360 of which were artificially inoculated with allantoic fluid containing IBV M41 virus, while 40 as a control. Chickens were observed for 14 d and deaths were recorded. Paraffin sections were made and stained by hematoxylin-eosin (H. E.). Antibody titers of the survival chickens at 15 d were measured by the red cell agglutination inhibition test (HI). Twelve G1 chickens at 20 w equally from high and low PI groups were selected. Monocytes- macrophages were isolated and cultured, then challenged with Poly I:C. Expression of mRNA of cytokines and major histocompatibility complex (MHC) were tested by quantitative real-time PCR. 【Result】Phagocytic ability of heterologous erythrocytes were different significantly in G0. G1 chickens were incubated according to mating groups according to PI of G0. Results of challenge in G1 showed that the mortality rate (33.3±0.05)% of progeny from HPIG ♂′HPIG ♀ were significantly lower than that of progeny from LPIG ♂′LPIG ♀(55.6±0.05)%. Mortality rates of progeny from LPIG ♂′HPIG ♀ and HPIG ♂′LPIG ♀were (43.3±0.05)% and (47.8±0.05)% respectively. Effect of hens on the offspring was greater than cocks. The mortality rate of progeny from HPIG ♀ was (38.3±0.04)%, which was significantly lower than that of progeny from LPIG ♀(51.7±0.04)%. Chickens showed clinical symptoms of cough, shortness of breath, loss of appetite and depression after challenged with IBV M41 for 3 d. Typical damages on the trachea and kidney of dead and sick chickens could be seen through H. E. staining. Epithelial cells appeared necrosis and empty bubble degeneration in tracheal, respectively. The control group showed no clinical symptoms and pathological changes. The antibody titers of 198 surviving challenged individuals showed that antibody titer of progeny from HPIG ♀ (8.45±0.07) was significantly higher than that of progeny from LPIG ♀(8.10±0.08). Expressions of IFN γ and IL-1β of high phagocytic chickens (progeny of HPIG ♀) was 5.14 times (<0.05) and 2.41 times (<0.05) higher than the low phagocytic chickens (progeny of LPIG ♀). Expression of MHC Ⅰ of high phagocytic chickens was significantly higher than that of low phagocytic chickens, while expression of MHCⅡ was not significant. 【Conclusion】The experiment was performed with four mating combinations according to phagocytic index of monocytes-macrophages. Mortality rate of progeny of HPIG ♀ was significantly lower than that of progeny of LPIG ♀ after challenge, while the antibody titer and the expression of cytokines (IFN γ and IL-1β) and MHC Ⅰ were significantly higher. The results showed that the progeny of HPIG ♀ was more resistant to IBV than progeny of LPIG ♀. Therefore, the phagocytic ability of monocytes-macrophages could be an indicator for breeding IBV resistant lines.
monocyte; macrophage; phagocytosis; disease resistance; dwarf chicken
2016-01-07;接受日期:2016-10-10
國家“973”基礎(chǔ)研究計(jì)劃(2006CB102100)、國家自然科學(xué)基金(30471234)、甘肅省青年科技基金計(jì)劃(1310RJYA018)
麻慧,Tel:13893208829;E-mail:caumah@163.com。通信作者連正興,Tel:010-62732463;E-mail:lianzhx@cau.edu.cn