宋 飛, 許丹丹, 周慧慧, 麥康森, 徐 瑋, 何 艮
(中國海洋大學(xué)水產(chǎn)動物營養(yǎng)與飼料農(nóng)業(yè)部重點實驗室,海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)
?
肉骨粉部分替代魚粉對大菱鲆幼魚氨基酸應(yīng)答信號通路的影響*
宋 飛, 許丹丹, 周慧慧, 麥康森, 徐 瑋, 何 艮**
(中國海洋大學(xué)水產(chǎn)動物營養(yǎng)與飼料農(nóng)業(yè)部重點實驗室,海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)
為研究肉骨粉部分替代魚粉(添加或不添加晶體氨基酸)對大菱鲆(ScophthalmusmaximusL.)幼魚的氨基酸應(yīng)答(AAR)信號通路中關(guān)鍵調(diào)控因子基因表達(dá)量的影響。設(shè)計了3種等氮等能的飼料:魚粉對照組(FM,60%魚粉),肉骨粉替代組(MBM,肉骨粉替代45%魚粉蛋白),肉骨粉替代添加晶體必需氨基酸組(MBM+AA,肉骨粉替代45%魚粉蛋白,添加晶體必需氨基酸至魚粉組必需氨基酸水平)。實驗選取初始體質(zhì)量(9.01±0.01)g的大菱鲆,分別飽食投喂3種不同的飼料30天,檢測肌肉和腸道中AAR信號通路中關(guān)鍵調(diào)控因子的基因表達(dá)量。研究表明:與FM組相比,MBM組顯著提高了大菱鲆幼魚肌肉中谷氨酰胺合成酶(Asparagine synthesis,ASNS)、轉(zhuǎn)錄激活因子3(Activating transcription factor3, ATF3)、轉(zhuǎn)錄激活因子4(Activating transcription factor4, ATF4)、CCAAT增強子結(jié)合蛋白(CCAAT-enhance binding protein homology protein, CHOP)、發(fā)育和DNA損傷應(yīng)答調(diào)節(jié)因子1(Regulated in development and DNA damage responses 1, REDD1)和真核翻譯起始因子4E結(jié)合蛋白1 (Eukaryotic initiation factor 4E binding protein 1,4E-BP1)表達(dá)量的峰值。在攝食后2h,MBM+AA組的ASNS、ATF3、ATF4、CHOP、REDD1和4E-BP1表達(dá)量峰值與FM組的表達(dá)量峰值無顯著性差異,卻顯著低于MBM組的表達(dá)量峰值。3個處理組肌肉中酵母轉(zhuǎn)錄激活因子2(General control nonderepressible 2, GCN2)的基因表達(dá)量無顯著性差異。同時,與FM組相比,MBM組顯著上調(diào)腸道中GCN2、ASNS、ATF4、CHOP和4E-BP1表達(dá)量的峰值,MBM+AA組對于降低這些基因的表達(dá)量無顯著性效果。研究結(jié)果表明:肉骨粉替代45%魚粉蛋白上調(diào)了肌肉和腸道中AAR信號通路中關(guān)鍵因子的表達(dá),添加晶體氨基酸可以在一定程度上改善肉骨粉替代魚粉對于肌肉中AAR信號通路中關(guān)鍵調(diào)控因子表達(dá)量的上調(diào)作用。
大菱鲆;肉骨粉;魚粉;氨基酸應(yīng)答信號通路;關(guān)鍵調(diào)控因子;基因表達(dá)
近年來,隨著海水魚飼料業(yè)的快速發(fā)展,魚粉作為優(yōu)質(zhì)蛋白源,其價格和產(chǎn)量已顯著的限制了海水魚飼料業(yè)和養(yǎng)殖業(yè)的發(fā)展[1-2]。因此,研究者越來越多的關(guān)注于尋找優(yōu)質(zhì)的植物、動物蛋白源替代魚粉的研究[3-4]。肉骨粉作為一種優(yōu)質(zhì)動物蛋白源,廣泛的應(yīng)用于海水魚飼料中以部分替代魚粉[5-6]。但是與魚粉相比肉骨粉有氨基酸組成不平衡、適口性差和消化率低等缺點,這些因素嚴(yán)重限制了肉骨粉在水產(chǎn)飼料業(yè)中的使用[7]。海水魚類上關(guān)于肉骨粉替代魚粉的研究主要關(guān)注其替代后對魚體生長、魚體組成以及生化相關(guān)指標(biāo)的影響。研究發(fā)現(xiàn),過高比例的肉骨粉替代魚粉能夠顯著的降低魚類生長、魚體營養(yǎng)物質(zhì)積累和擾亂機體代謝水平。然而,對于上述現(xiàn)象的背后的機制研究尚未見報道。
氨基酸應(yīng)答(Amino acid response,AAR)信號通路是生物體內(nèi)一條高度保守的感知體內(nèi)營養(yǎng)缺乏的信號通路[8-9]。當(dāng)營養(yǎng)物質(zhì)缺乏時,機體會激活體內(nèi)的AAR信號通路,從而抑制體內(nèi)整體的蛋白質(zhì)翻譯過程,并激活某些特定的蛋白的表達(dá),例如轉(zhuǎn)錄因子、氨基酸合成和氨基酸轉(zhuǎn)運基因的表達(dá)[10-11]。機體內(nèi)的AAR信號通路的關(guān)鍵基因主要包括酵母轉(zhuǎn)錄激活因子(General control nonderepressible 2,GCN2)、轉(zhuǎn)錄激活因子4(Activating transcription factor4,ATF4)、天冬酰胺合成酶(Asparagine synthesis,ASNS)、轉(zhuǎn)錄激活因3(Activating transcription factor3,ATF3)、CCAAT增強子結(jié)合蛋白(CCAAT-enhance binding proteinhomology protein,CHOP)和發(fā)育和DNA損傷應(yīng)答調(diào)節(jié)因子1(Regulated in development and DNA damage responses 1,REDD1)[12-14]。機體缺乏必需氨基酸情況下會產(chǎn)生大量非負(fù)載tRNA,其能夠與GCN2蛋白結(jié)合從而使GCN2激酶去磷酸化被激活,進而使eIF2α磷酸化使體內(nèi)大部分蛋白質(zhì)合成減少,但是會通過轉(zhuǎn)錄水平促進其下游的轉(zhuǎn)錄因子ATF4的表達(dá),ATF4又與CHOP結(jié)合,激活大量下游基因(ATF3,REDD1,ASNS)的轉(zhuǎn)錄,從而保證機體在饑餓條件下自身穩(wěn)態(tài)[15-16]。在許多哺乳動物上的研究發(fā)現(xiàn),AAR信號通路顯著的受到食物中的營養(yǎng)素組成的影響[17-18],同時AAR信號通路參與了體內(nèi)的多種營養(yǎng)素的代謝調(diào)控過程[19-21]。目前,魚類上關(guān)于營養(yǎng)物質(zhì)對AAR信號通路的影響相對較少。Xu等[22]報道,豆粕替代魚粉能夠顯著激活A(yù)AR信號通路。Wang等[23]研究發(fā)現(xiàn),軍曹魚(Rachycentroncanadum)攝食蛋氨酸缺乏飼料能夠顯著上調(diào)AAR通路相關(guān)基因的表達(dá)。但在魚類上,飼料中肉骨粉替代魚粉對于氨基酸應(yīng)答信號相關(guān)基因表達(dá)的調(diào)控研究還未見報道。
大菱鲆(ScophthalmusmaximusL.)屬于鰈亞目(Pleuronectoidei)菱鲆科(Scophthalmidae)瘤棘鲆屬(Scophthalmus),為中國北方重要的養(yǎng)殖肉食性海水魚[24]。近年關(guān)于魚粉替代的研究已經(jīng)在大菱鲆上進行了廣泛的研究[25-26]。然而,關(guān)于肉骨粉替代魚粉對于大菱鲆AAR信號通路中關(guān)鍵基因表達(dá)的調(diào)控機制尚未見報道。因此,本研究擬通過配制肉骨粉替代魚粉的飼料投喂大菱鲆,以探討飼料肉骨粉替代魚粉對于大菱鲆肌肉和腸道氨基酸應(yīng)答相關(guān)基因表達(dá)的影響,為海水魚新蛋白源開發(fā)和利用提供理論依據(jù)。
1.1 飼料原料和飼料配方
實驗飼料以魚粉、肉骨粉、谷朊粉和小麥粉為主要蛋白源,棕櫚油和大豆卵磷脂為主要的脂肪源,配制3種粗蛋白質(zhì)約50%,總能量約為20 kJ/g的等氮等能的實驗飼料,分別是含有60%魚粉蛋白的全魚粉組(FM),含有33%魚粉蛋白和34.2%肉骨粉蛋白的肉骨粉替代組(MBM)以及含有33%魚粉蛋白和34.2%肉骨粉蛋白,添加晶體氨基酸至魚粉組必需氨基酸水平的肉骨粉替代添加必需氨基酸組(MBM+AA)。實驗飼料配方及常規(guī)營養(yǎng)成分分析見表1,3種實驗飼料氨基酸組成見表2。
實驗原料徹底粉碎后過80目篩,將過篩后的原料按照飼料配方中的比例充分混合均勻后再加入魚油搓勻,再加入適量比例的水分搓勻后制粒。制成的顆粒在45 ℃的烘箱中恒溫烘干12 h,烘干后的飼料顆粒放置在-20 ℃冰箱中備用。
表1 實驗飼料配方和主要營養(yǎng)成分(干物質(zhì))
注:FM:全魚粉對照組;MBM:肉骨粉替代45%魚粉蛋白組;MBM+AA:肉骨粉替代45%魚粉蛋白添加晶體氨基酸至魚粉組必需氨基酸水平組;1氨基酸混合物(g/kg飼料):L-蛋氨酸(包膜氨基酸,90%),2.4;L-賴氨酸(包膜氨基酸,60%),6.1;L-亮氨酸(晶體氨基酸,99.4%),1.6;L-組氨酸(晶體氨基酸,99.1%),0.5;L-蘇氨酸(晶體氨基酸,99.9%)1.3;2礦物質(zhì)預(yù)混料(mg/kg飼料):CoCl2·6H2O(1%),50;CuSO4·5H2O(25%),10;FeSO4·H2O(30%),80;ZnSO4·H2O(34.50%),50;MnSO4·H2O(31.80%),45;MgSO4·7H2O(15%),1200;Na2SeO3(1%),20;碘酸鈣(1%),60;沸石粉,11470;3維生素預(yù)混料(mg/kg飼料):維生素B1(98%),25;維生素B2(80%)45;維生素B6(99%)20;維生素B12(1%)10;維生素K3(51%)10;肌醇(98%)800;泛酸鈣(98%)60;煙酸(99%)200;葉酸(98%)20;生物素(2%)60;維生素A(500000 IU/g)32;維生素D(500000 IU/g)5;維生素E(50%)240;維生素C(35%)2000;抗氧化劑(100%)3;稻殼粉(100%)11470;4誘食劑:甜菜堿∶二甲基-β-丙酸噻亭∶甘氨酸∶丙氨酸∶5-磷酸肌苷=4∶2∶2∶1∶1。
Note:FM: fishmeal diet;MBM: meat and bone meal replaced 45% fishmeal protein diet;MBM+AA: meat and bone meal replaced 45% fishmeal protein and supplemented essential amino acids to match the essential amino acids profile of the FM diet;1Amino acid mixture (g/kgdiet): L-Methionine(Coated amino acid obtained, 90%), 2.4; L-Lysine (Coated amino acid, 60%), 6.1; L-Leucine (Crystalline amino acid, 99.4), 1.6; L- Histidine (Crystalline amino acid, 99.1%), 0.5; L-Threonine (Crystalline amino acid, 99.9%), 1.3;2Mineral premix (mg/kg diet): CoCl2·6H2O (1%), 50; CuSO4·5H2O (25%), 10; FeSO4·H2O (30%), 80; ZnSO4·H2O (34.50%), 50; MnSO4·H2O (31.80%), 45; MgSO4·7H2O (15%), 1200; Sodium selenite (1%), 20; Calcium iodine (1%) 60; Zeolite, 11470;3Vitamin premix (mg/kg diet): thiamin (98%), 25; riboflavin (80%), 45; pyridoxine-HCl (99%), 20; vitamin B12 (1%), 10; vitamin K3 (51%), 10; inositol (98%), 800; pantothenic acid (98%), 60; niacin acid (99%), 200; folic acid (98%), 20; biotin (2%), 60; retinol acetate (500000 IU/g), 32; cholecalciferol (500000 IU/g), 5; alpha-tocopherol (50%), 240; ascorbic acid (35%), 2000; anti-oxidants (oxygen ling grams, 100%), 3; rice husk powder (100%), 11470;4Attractant: Betaine∶ Dimethyl-propiothetin∶ Glycine∶ Alanine∶ inosine5'-phosphate=4∶2∶2∶1∶1.
表2 實驗飼料氨基酸組成(干物質(zhì))
續(xù)表2
氨基酸AminoacidFMMBMMBM+AA非必需氨基酸甘氨酸3.284.174.45天冬氨酸4.263.623.83絲氨酸2.512.232.34脯氨酸2.503.173.23半胱氨酸1.131.171.09酪氨酸1.381.381.15丙氨酸2.983.063.22谷氨酸7.847.297.39總非必需氨基酸??25.8826.0926.71必需/非必需氨基酸比值0.780.730.76
注:FM:全魚粉對照組;MBM:肉骨粉替代45%魚粉蛋白組; MBM+AA:肉骨粉替代45%魚粉蛋白添加晶體氨基酸至魚粉組必需氨基酸水平組。*:所有必需氨基酸量的總和;**:所有非必需氨基酸量的總和。
Note:FM: fishmeal diet;MBM: meat and bone meal replaced 45% fishmeal protein diet;MBM+AA: meat and bone meal replaced 45% fishmeal protein and supplemented essential amino acids to match the essential amino acids profile of the FM diet. *:Represents total EAA;**:Represents total NEAA.
1.2 實驗用魚及實驗過程
實驗用魚大菱鲆幼魚購買于山東省海陽市黃海水產(chǎn)有限公司。養(yǎng)殖實驗在山東省海陽市黃海水產(chǎn)公司養(yǎng)殖基地開展,開始實驗前,實驗所用大菱鲆幼魚在養(yǎng)殖系統(tǒng)中暫養(yǎng)2周以適應(yīng)養(yǎng)殖環(huán)境,期間投喂等量混合的3種實驗飼料。暫養(yǎng)后選取規(guī)格均一的大菱鲆幼魚隨機分組,其平均體重為(9.19±0.01)g。實驗每個處理隨機分配3個養(yǎng)殖桶(玻璃纖維,500 L),每桶放置40尾魚。Cai等[27]研究飼料中脂肪水平對大黃魚(Pseudosciaenacrocea)的脂質(zhì)代謝基因的影響和Yuan等[28]探究飼料中脂肪水平對半滑舌鰨(Cynoglossussemilaevis)幼魚脂質(zhì)代謝相關(guān)基因的影響等實驗的養(yǎng)殖周期為30天。依據(jù)Xu等[22]探究豆粕替代魚粉對大菱鲆幼魚營養(yǎng)感知信號通路的影響的實驗周期設(shè)定了本實驗的養(yǎng)殖周期為30天,每天分別在07:00和19:00飽食投喂2次,投喂1 h后記錄剩余的殘餌數(shù)量,并進行換水保證養(yǎng)殖水質(zhì)。養(yǎng)殖期間,水溫為19~22 ℃,鹽度為29~33,PH為7.5~8.0,水溶氧含量為6.0~7.0 mg/L。
1.3 樣品采集
30天養(yǎng)殖實驗結(jié)束后,實驗魚饑餓48 h使魚體代謝達(dá)到穩(wěn)定水平[29],從每個處理中隨機選取6尾魚,即為0 h樣品。所剩的實驗魚再重新投喂各自的飼料至飽食狀態(tài),分別在投喂后2、8和24 h分別隨機取樣,所選取樣的魚都確保充分?jǐn)z食飼料,消化道中充滿食物。腸道是魚類吸收食物中包括氨基酸/蛋白質(zhì)在內(nèi)的營養(yǎng)成分的主要器官[30],飼料氨基酸首先被腸道感知;肌肉是魚體蛋白質(zhì)周轉(zhuǎn)代謝的主要器官[31],氨基酸是組成蛋白質(zhì)的底物,氨基酸應(yīng)答信號通路是負(fù)調(diào)控機體蛋白質(zhì)合成的主要途徑,而肝臟是機體中間代謝的主要器官[32],因此本實驗隨機選取實驗魚放置于冰盤上解剖采取全腸和背肌,迅速將所取得樣品置于液氮中,-80 ℃保存?zhèn)溆谩?/p>
1.4 腸道、肌肉RNA的提取及反轉(zhuǎn)錄
采用Invitrogen公司的Trizol提取腸道和肌肉組織中總RNA,具體的提取過程參考李明珠[33]實驗方法。使用1.2%的瓊脂糖凝膠電泳檢測RNA的完整性,并使用NanoDrop 2000檢測提取RNA的質(zhì)量和濃度。取1μg RNA使用PrimeScript RT reagent Kitwith gDNA Eraser(TAKALA, Japan)進行反轉(zhuǎn)錄,具體步驟按照試劑盒說明書。
1.5 實時熒光定量PCR(qRT-PCR)
以大菱鲆RNA聚合酶II亞基D(RNA polymerase II subunit D, RPSD, GeneBank: DQ848899.1)作為內(nèi)參基因。通過克隆得到CHOP核心序列,根據(jù)已獲得的CHOP部分核心序列設(shè)計特異性定量引物(見表3)。另外根據(jù)已有文獻報道大菱鲆GCN2、ASNS、ATF3、ATF4、REDD1、4E-BP1定量引物(見表3)進行熒光定量PCR實驗[34]。反應(yīng)體系為:12.5 μL 2×SYBR Premix Ex TaqTMII (TAKALA, Japan)、2μL模板cDNA、1 μL特異性引物(上游和下游引物,10 μmol/L)和9.5 μL無菌水,總反應(yīng)體系25μL。反應(yīng)條件:95 ℃ 2 min;95 ℃ 10 s,58 ℃ 10 s,72 ℃ 20 s,40個循環(huán)。在每個循環(huán)后,通過溶解度曲線檢測PCR擴增的特異性。制作梯度稀釋的濃度標(biāo)準(zhǔn)曲線檢測目的基因與內(nèi)參基因的擴增效率是否一致且接近于1,擴增效率計算公式E=10(-1/Slop)-1[35]。本實驗中GCN2、ASNS、ATF3、ATF4、CHOP、REDD1、4E-BP1的擴增效率均于內(nèi)參基因RPSD的擴增效率一致,目的基因的相對表達(dá)量采用2-(△△Ct)方法進行測定[36]。
1.6 數(shù)據(jù)處理與分析
本實驗所有的實驗數(shù)據(jù)使用SPSS 17.0軟件進行雙因素方差分析(two-way ANOVA),實驗數(shù)據(jù)用平均值±標(biāo)準(zhǔn)誤(means±SE)表示,MBM處理組和MBM+AA處理組目的基因表達(dá)量以FM組0 h的數(shù)值作為參照求比值,將FM組0 h的數(shù)值設(shè)為1,得到其他各種不同時間點的各數(shù)值。先將數(shù)據(jù)進行方差齊性檢驗,若數(shù)據(jù)方差不齊,則將數(shù)據(jù)進行平方根(SQRT)轉(zhuǎn)換[22]。然后各處理組間做Tukey’s多重比較,P<0.05表示處理組間差異顯著。
2.1 肌肉中AAR信號通路中關(guān)鍵調(diào)控因子基因表達(dá)變化
如圖1所示,F(xiàn)M、MBM和MBM+AA三個處理組禁食后再投喂都顯著提高了肌肉中GCN2、ASNS、ATF3和ATF4 mRNA表達(dá)量(P<0.05),并且在進食后2~8 h表達(dá)量達(dá)到峰值,但是進食卻顯著降低了CHOP、REDD1和4E-BP1 mRNA的表達(dá)量(P<0.05)。與FM組相比,MBM組顯著上調(diào)了肌肉中ASNS、ATF3、AFT4、CHOP、REDD1和4E-BP1基因峰值的表達(dá)量(P<0.05)。MBM+AA組的ASNS、ATF3、ATF4、CHOP、REDD1和4E-BP1的表達(dá)量的峰值與FM組相比沒有顯著性差異(P>0.05),但是卻顯著低于MBM組的表達(dá)量(P<0.05)。肌肉中GCN2的峰值表達(dá)量在3個處理組間沒有顯著差異(P>0.05)。
圖1 攝食不同飼料對大菱鲆幼魚肌肉中氨基酸應(yīng)答信號通路中關(guān)鍵調(diào)節(jié)因子基因表達(dá)的影響
Fig.1 The key regulators involved in AAR signaling pathway gene expression level in muscle after juvenile turbot fed different diets
2.2 腸道中AAR信號通路中關(guān)鍵因子基因表達(dá)變化
如圖2所示,與禁食相比,大菱鲆攝食3種實驗飼料均顯著促進了腸道中GCN2、ASNS、ATF3、ATF4和CHOP基因的表達(dá)量(P<0.05),且進食2~8 h時基因的表達(dá)量達(dá)到峰值,然而腸道中REDD1和4E-BP1的mRNA表達(dá)量卻隨著投喂時間的增加呈現(xiàn)顯著下降的趨勢(P<0.05)。與FM組相比,MBM組顯著提高GCN2、ASNS、ATF3、ATF4、CHOP和4E-BP1的基因表達(dá)量的峰值(P<0.05)。MBM+AA組調(diào)控AAR信號通路中相關(guān)基因的表達(dá)量與MBM組的變化趨勢相似,MBM+AA組也顯著上調(diào)GCN2、ASNS、ATF3、ATF4、CHOP和4E-BP1的基因表達(dá)量的峰值(P<0.05)。
圖2 攝食不同飼料對大菱鲆幼魚腸道中氨基酸應(yīng)答信號通路中關(guān)鍵調(diào)節(jié)因子基因表達(dá)的影響
Fig.2 The key regulators involved in AAR signaling pathway gene expression level in intestine after juvenile turbot fed different diets
AAR信號通路是機體應(yīng)對氨基酸等營養(yǎng)不平衡的極端環(huán)境時啟動的一條主要信號通路[37]。生物體的生長發(fā)育過程中不斷的處于外界營養(yǎng)和能量環(huán)境的變化中,生物體通過這條信號通路維持機體在變化的環(huán)境中自身穩(wěn)定[20,38]。本研究投喂大菱鲆不同實驗飼料后發(fā)現(xiàn),腸道和肌肉AAR信號通路相關(guān)基因表達(dá)均隨著投喂時間顯著變化。肌肉中GCN2、ATF4、ATF3、CHOP和ASNS的基因表達(dá)均在大菱鲆攝食飼料后隨時間呈現(xiàn)出先升高后下降的趨勢,并于2~8 h達(dá)到表達(dá)量峰值。而肌肉中REDD1和4EBP-1的表達(dá)量則在禁食時顯著高于攝食后的表達(dá)量。腸道中的AAR相關(guān)基因的表達(dá)量在饑餓再投喂后,隨著進食時間的變化具有相似的變化趨勢。機體內(nèi)相關(guān)基因的表達(dá)受到攝食時間的影響。在虹鱒中的研究結(jié)果表明,血漿中游離氨基酸的含量顯著受到進食時間的影響,這與本實驗的研究結(jié)果一致[39]。本實驗研究發(fā)現(xiàn),大菱鲆攝食不同實驗飼料后,氨基酸應(yīng)答基因表達(dá)的出現(xiàn)的峰值時間均相同,在豆粕替代魚粉的實驗中發(fā)現(xiàn),大菱鲆攝食后其氨基酸轉(zhuǎn)運載體和糖類、脂類代謝基因表達(dá)出現(xiàn)峰值的時間均沒有受到攝食飼料成分的影響[22]。這在一定程度上說明了食物的營養(yǎng)組成對于大菱鲆營養(yǎng)感知基因表達(dá)周期性變化沒有顯著的調(diào)控作用。
魚類攝食食物并感知食物中的營養(yǎng)組成首先從腸道開始,食物在腸道中被消化酶消化后進入腸道細(xì)胞,后轉(zhuǎn)運到機體其他組織細(xì)胞中參與多種營養(yǎng)物質(zhì)的代謝過程。研究表明,腸道不僅是機體消化和吸收的主要場所,也是機體感知營養(yǎng)變化的主要器官[22,30],而肌肉則是魚類營養(yǎng)物質(zhì)的沉積和儲存最重要的器官[31]。本研究發(fā)現(xiàn),大菱鲆攝食不同實驗飼料顯著影響腸道和肌肉中AAR信號通路中關(guān)鍵因子的表達(dá),大菱鲆攝食MBM組飼料后,其肌肉和腸道中AAR信號通路中相關(guān)基因(ATF4、ATF3、CHOP和ASNS)表達(dá)相較于攝食FM組均顯著的上調(diào),而相比于大菱鲆攝食MBM組飼料,攝食MBM+AA組飼料其肌肉中AAR信號通路中相關(guān)基因表達(dá)顯著降低,但是腸道中相關(guān)基因的表達(dá)卻沒有顯著降低的變化。這一實驗結(jié)果與豆粕替代魚粉對大菱鲆AAR信號通路的研究結(jié)果一致[22]。在軍曹魚的研究中發(fā)現(xiàn),攝食缺乏蛋氨酸的飼料時其AAR信號通路被顯著激活[23]。本研究分析MBM組實驗飼料的氨基酸組成發(fā)現(xiàn),肉骨替代魚粉后蛋氨酸、賴氨酸和蘇氨酸的含量低于FM組,添加晶體氨基酸處理組的飼料必需氨基酸組成與FM組沒有顯著性差異,可以下調(diào)肌肉中AAR信號通路中關(guān)鍵調(diào)控因子的表達(dá)使之與FM組沒有顯著差異,但是未能降低AAR信號通路中關(guān)鍵調(diào)控因子在腸道中的表達(dá),這表明肉骨粉替代魚粉后造成肌肉和腸道成氨基酸應(yīng)答基因表達(dá)上調(diào)作用,在一定程度上是由其替代魚粉后造成食物中缺乏必需氨基酸造成的。然而,添加晶體氨基酸并未能夠完全抑制AAR信號通路相關(guān)基因表達(dá),這可能是由于晶體氨基酸吸收不同步造成機體同樣出現(xiàn)一定程度的氨基酸缺乏現(xiàn)象[40]。
TOR信號通路是機體內(nèi)調(diào)控營養(yǎng)代謝的核心通路[41],最近的研究發(fā)現(xiàn)AAR信號通路能夠感知機體氨基酸變化進一步調(diào)控TOR信號通路[13]。研究表明,REDD1在AAR信號通路調(diào)控TOR信號通路的過程中發(fā)揮著聯(lián)接的作用,激活的AAR上調(diào)REDD1的表達(dá),其能夠使TOR上游的關(guān)鍵復(fù)合體TSC1與TSC2分開,從而抑制了mTOR的活性[42-43]。本研究發(fā)現(xiàn),REDD1的基因表達(dá)量在肉骨粉替代組顯著的上調(diào)。同時分析TOR信號通路關(guān)鍵下游分子4E-BP1發(fā)現(xiàn)在MBM組中4E-BP1的基因表達(dá)量顯著的上調(diào),這在一定程度上表明肉骨粉替代組能夠抑制TOR的活性。這也與在豆粕替代魚粉在大菱鲆上的研究相[22]。因此,基于以上結(jié)果推測肉骨粉替代魚粉后可能能夠通過AAR通路影響TOR信號通路的活性。
綜上所述,本研究表明肉骨粉替代45%魚粉蛋白顯著上調(diào)大菱鲆肌肉和腸道中AAR信號通路中相關(guān)基因表達(dá),當(dāng)添加晶體氨基酸至魚粉組水平時,可以在一定程度上改善這一現(xiàn)象。肉骨粉替代魚粉也可一定程度上通過AAR信號通路進一步實現(xiàn)了對TOR信號通路的調(diào)控作用。這些研究結(jié)果,將有利于我們深入理解肉食性海水魚類對不同蛋白源響應(yīng)機制,為開發(fā)新型蛋白源提供理論依據(jù)。
[1] Gatlin D M, Barrows F T, Brown P, et al. Expanding the utilization of sustainable plant products in aquafeeds:A review[J]. Aquaculture Research, 2007, 38(6): 551-579.
[2] 曹霞, 曹瑾玲. 魚粉的研究現(xiàn)狀及展望[J]. 農(nóng)產(chǎn)品加工: 創(chuàng)新版 (中), 2011(4): 69-75.
Cao X, Cao J. Research status and prospects of fish powder [J]. Agricultural Products Processing, Innovation, 2011(4): 69-75.
[3] Wang Y, Guo J , Bureau D P, et al. Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibeamiichthioides)[J]. Aquaculture, 2006, 252(2): 476-83.
[4] 劉運正, 何艮, 麥康森, 等. 新型復(fù)合動植物蛋白源部分替代魚粉對大菱鲆幼魚生長和肉質(zhì)的影響[J]. 中國海洋大學(xué)學(xué)報 (自然科學(xué)版), 2016, 46(1): 33-39.
Liu Y Z, He G, Mai K S, et al. Effect of partial replacement of dietary fishmeal with an animal and plant protein mixture on the growth performance and muscle texyure of juvenile turbot (ScophthalmusmaximusL.) [J]. Periodical of Ocean University of China(Natural Science), 2016, 46(1): 33-39.
[5] Kikuchi K, Sato T, Furuta T, et al. Use of meat and bone meal as a protein source in the diet of juvenile Japanese flounder[J]. Fisheries Science, 1997, 63(1): 29-32.
[6] Zhang S, Xie S, Zhu X, et al. Meat and bone meal replacement in diets for juvenile gibel carp (Carassiusauratusgibelio): Effects on growth performance, phosphorus and nitrogen loading[J]. Aquaculture Nutrition, 2006, 12(5): 353-362.
[7] Hardy R W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal[J]. Aquaculture Research, 2010, 41(5): 770-776.
[8] Bunpo P, Dudley A, Cundiff J K, et al. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase[J]. Journal of Biological Chemistry, 2009, 284(47): 32742-34279.
[9] Paddonjones D, Sheffieldmoore M, Zhang X J, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly[J]. American Journal of Physiology Endocrinology & Metabolism, 2004, 286(3): 321-328.
[10] Dudek S M, Semenkovich C F. Essential amino acids regulate fatty acid synthase expression through an uncharged transfer RNA-dependent mechanism[J]. Journal of Biological Chemistry, 1995, 270(49): 29323-29329.
[11] Dever T E, Feng L, Wek R C, et al. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast[J]. Cell, 1992, 68(3): 585-596.
[12] Su N, Kilberg M S. C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene[J]. Journal of Biological Chemistry, 2008, 283(50): 35106-35117.
[13] Jin H O, Seo S K, Woo S H, et al. Activating transcription factor 4 and CCAAT/enhancer-binding protein-β negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress[J]. Free Radical Biology and Medicine, 2009, 46(8): 1158-1167.
[14] Kilberg M S, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation[J]. Trends in Endocrinology & Metabolism, 2009, 20(9): 436-443.
[15] Jiang H Y, Wek S A, McGrath B C, et al. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response[J]. Molecular and Cellular Biology, 2004, 24(3): 1365-1377.
[16] Chaveroux C, Jousse C, Cherasse Y, et al. Identification of a novel amino acid response pathway triggering ATF2 phosphorylation in mammals[J]. Molecular & Cellular Biology, 2009, 29(29): 6515-6526.
[17] Kilberg M, Pan Y X, Chen H, et al. Nutritional control of gene expression: how mammalian cells respond to amino acid limitation[J]. Annual Review of Nutrition, 2005, (25): 59-85.
[18] Dever T E, Hinnebusch A G. GCN2 Whets the Appetite for Amino Acids[J]. Molecular Cell, 2005, 18(2): 141-142.
[19] Deval C, Chaveroux CMaurin A C, Cherasse Y, et al. Amino acid limitation regulates the expression of genes involved in several specific biological processes through GCN2-dependent and GCN2-independent pathways[J]. Febs Journal, 2009, 276(3): 707-718.
[20] Ye J, Kumanova M, Hart L S, et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation[J]. The EMBO Journal, 2010, 29(12): 2082-2096.
[21] 許丹丹, 何艮. 氨基酸感知與代謝調(diào)控的研究進展[J]. 動物營養(yǎng)學(xué)報, 2015, 27(2): 342-351.
Xu D D, He G. Advances in Amino Acid Sensing and Metabolic regulation[J]. Chinese Journal of Animal Nutrition, 2015, 27(2): 342-351.
[22] Xu D, He G, Mai K, et al. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (ScophthalmusmaximusL.)[J]. British Journal of Nutrition, 2016, 115(3): 379-388.
[23] Wang Z, Mai K, Xu W, et al. Dietary methionine level influences growth and lipid metabolism via GCN2 pathway in cobia (Rachycentroncanadum)[J]. Aquaculture, 2016, 454: 148-156.
[24] Fournier V, Huelvan C, Desbruyeres E. Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psettamaxima)[J]. Aquaculture, 2004, 236(1-4): 451-465.
[25] Wang Q, He G, Mai K, et al. Fishmeal replacement by mixed plant proteins and maggot meal on growth performance, target of rapamycin signalling and metabolism in juvenile turbot (ScophthalmusmaximusL.)[J]. Aquaculture Nutrition, 2015, 22:752-758. doi: 10. 1111/anu. 12296.
[26] Liu Y, He G, Wang Q, et al. Hydroxyproline supplementation on the performances of high plant protein source based diets in turbot (ScophthalmusmaximusL.)[J]. Aquaculture, 2014, 433: 476-480.
[27] Cai Z, Feng S, Xiang X, et al. Effects of dietary phospholipid on lipase activity, antioxidant capacity and lipid metabolism-related gene expression in large yellow croaker larvae (Larimichthyscrocea) [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2016, 201: 46-52.
[28] Yuan Y, Li S, Zhang L, et al. Influence of dietary lipid on growth performance and some lipogenesis-related gene expression of tongue sole (Cynoglossussemilaevis) larvae [J/OL]. Aquaculture Research, 2016. http://xueshu.baidu.com/s?wd=paperuri%3A%28d78d3930175de9b3932c1bc0f518b283%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1111%2Fare.12921%2Fabstract&ie=utf-8&sc_us=1426607 0529549240273. DOI:10.1111/are.12921.
[29] Seiliez I, Panserat S, Lansard M, et al. Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2011, 300(3): 733-743.
[30] Ravindran R, Loebbermann J, Nakaya H I, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation[J]. Nature, 2016, 531(7595): 523-527.
[31] Mente E, Deguara S, Santos M B, et al. White muscle free amino acid concentrations following feeding a maize gluten dietary protein in Atlantic salmon (SalmosalarL.)[J]. Aquaculture, 2003, 225(1): 133-147.
[32] Furné M, García-Gallego M, Hidalgo M C, et al. Effect of dietary macronutrient proportion on intermediate metabolism and oxidative status in sturgeon (Acipensernaccarii) and trout (Oncorhynchusmykiss) [J]. Comparative Study Fish Physiology & Biochemistry, 2016, 42:1237-1248.
[33] 李明珠. 皺紋盤鮑 Δ5 脂肪酸去飽和酶研究[D]. 青島: 中國海洋大學(xué), 2013.
Li M Z. Research of Δ5 Fatty Acyl Desaturase in Abalone,HaliotisdiscushannaiIno[D]. Qingdao: Ocean University of China, 2013.
[34] Xu D, He G, Mai K, et al. Effect of fish meal replacement by plant protein blend onamino acid concentration, transportation, and metabolismin juvenile turbot (ScophthalmusmaximusL.) [J]. Aquaculture Nutrition, 2016,(待刊).
[35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
[36] Yao C L, Kong P, Wang Z Y, et al. Molecular cloning and expression of MyD88 in large yellow croaker,Pseudosciaenacrocea[J]. Fish & Shellfish Immunology, 2009, 26(2): 249-255.
[37] Zhang P, McGrath BC, Reinert J, et al. The GCN2 eIF2α kinase is required for adaptation to amino acid deprivation in mice[J]. Molecular and Cellular Biology, 2002, 22(19): 6681-6688.
[38] Wek S A, Zhu S, Wek R C. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids[J]. Molecular & Cellular Biology, 1995, 15(8): 4497-4506.
[39] Yamamoto T, Unuma T, Akiyama T. Postprandial changes in plasma free amino acid concentrations of rainbow trout fed diets containing different protein sources[J]. Fisheries Science, 1998, 64(3): 474-481.
[40] Schuhmacher A, Wax C, Gropp J M. Plasma amino acids in rainbow trout (Oncorhynchusmykiss) fed intact protein or a crystalline amino acid diet[J]. Aquaculture, 1997, 151(1): 15-28.
[41] Bd H J, Manning. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis[J]. Trends in Endocrinology & Metabolism, 2011, 22(3): 94-102.
[42] Ellisen L W. Growth control under stress: mTOR regulation through the REDD1-TSC pathway[J]. Cell Cycle, 2005, 4(11): 1500-1502.
[43] Brugarolas J, Lei K, Hurley R L, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex[J]. Genes & Development, 2004, 18(23): 2893-2904.
責(zé)任編輯 朱寶象
Influence of Fishmeal Replacement with Meat and Bone Meal on Amino Acid Response Signaling Pathway of Juvenile Turbot (ScophthalmusmaximusL.)
SONG Fei, XU Dan-Dan, ZHOU Hui-Hui, MAI Kang-Sen, XU Wei, HE Gen
(1.The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; 2.The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China)
The objective of this study was to evaluate the effect of fishmeal(FM) replacement with meat and bone meal (MBM) balanced with or without essential aminoacids (EAA) on the amino acid response (AAR) signaling pathway in juvenile turbot,ScophthalmusmaximusL. Fish (9.01±0.01)g were fed with three isonitrogenous and isoenergetic diets including 60% FM (FM diet); 45% FM replaced by MBM diet (MBM diet) and MBM diet supplemented with EAAs to match the EAA profile of FM diet (MBM+AA diet) for 30 days. Results showed that compared with the FM diet, MBM diet significantly up-regulated the gene expression peak levels of asparagine synthesis (ASNS), activating transcription factor3 (ATF3), activating transcription factor4(ATF4), CCAAT-enhance binding proteinhomology protein(CHOP), regulated in development and DNA damage responses 1 (REDD1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) in muscle. There were no difference between the MBM+AA diet and FM diet on the genes expression level of ASNS, ATF3, ATF4, CHOP, REDD1and 4E-BP1 at 2h after re-feeding. The MBM+AA diet and FM diet significantly down-regulated the expression of these genes in comparison with MBM diet. There was no significant difference on the expression of general control nonderepressible 2(GCN2) among the three diets. Similarly, in intestine, MBM diet significantly increased the gene expression peak level of GCN2, ASNS, ATF4, CHOP and 4E-BP1 in comparison with FM diet. Added EAA had no effect to decrease these genes expression level. In conclusion, 45% FM replaced by MBM diet up-regulated the gene expression level of the key regulators involved in AAR signaling pathway, and supplemented EAA had an effect to ameliorate MBM replacement deficiency to some extent.
turbot; meat and bone meal; fishmeal; amino acid response signaling pathway; key regulators; gene expression
國家自然科學(xué)基金項目(31222055,31572627);國家重點基礎(chǔ)研究發(fā)展計劃項目(2014CB138602)資助
2016-06-28;
2016-08-05
宋 飛(1989-),女,博士生,從事水產(chǎn)動物蛋白質(zhì)代謝研究。E-mail: sophioe@163.com
** 通訊作者:E-mail:hegen@ouc.edu.cn
S963
A
1672-5174(2016)11-117-10
10.16441/j.cnki.hdxb.20160239
宋飛, 許丹丹, 周慧慧, 等. 肉骨粉部分替代魚粉對大菱鲆幼魚氨基酸應(yīng)答信號通路的影響[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2016, 46(11): 117-126.
SONG Fei, XU Dan-Dan, ZHOU Hui-Hui, et al. Influence of fishmeal replacement with meat and bone meal on amino acid response signaling pathway of juvenile turbot (ScophthalmusmaximusL.)[J]. Periodical of Ocean University of China, 2016, 46(11): 117-126.
Supported by the National Nature Science Foundation of China (31222055,31572627); National Program on Key Basic Research Projects (2014CB138602)