何亮銀, 李 微, 唐小千, 邢 婧, 繩秀珍, 戰(zhàn)文斌
(中國海洋大學水產動物病害與免疫實驗室, 山東 青島 266003)
?
中國對蝦蛋白磷酸酶1催化亞基β基因的克隆表達及特性分析*
何亮銀, 李 微, 唐小千, 邢 婧, 繩秀珍, 戰(zhàn)文斌**
(中國海洋大學水產動物病害與免疫實驗室, 山東 青島 266003)
本論文利用RACE(Rapid-amplification of cDNA ends)技術克隆獲得中國對蝦(Fenneropenaeuschinensis)蛋白磷酸酶1催化亞基β(Protein phosphatase 1 catalytic subunit beta isoform,PP1β)基因cDNA序列全長。該基因全長1 214 bp, 包含一個987 bp的開放閱讀框,編碼328個氨基酸。同源性分析顯示,中國對蝦PP1β氨基酸序列與不同物種PP1β的相似性高達90%~91%,表現出高度保守性。多序列比對結果顯示,不同物種PP1β均含有絲氨酸/蘇氨酸特異性蛋白磷酸酶家族的特征基序GDxHG、GDxVDRG和GNHE。系統進化樹分析顯示,甲殼動物PP1β聚為一大支,中國對蝦PP1β和凡納濱對蝦(Litopenaeusvannamei)聚為一小支。實時熒光定量PCR分析顯示,PP1β在健康的中國對蝦各組織中均有不同程度的表達,其中在性腺中表達最高,血細胞次之。白斑癥病毒(White spot syndrome virus, WSSV)注射感染健康中國對蝦后,血細胞和性腺中PP1β基因均呈上調表達,并在12 h達到峰值,且在血細胞中上調表達更顯著。構建了中國對蝦PP1β基因原核重組表達載體pET28a-PP1β,轉化大腸桿菌后成功誘導表達重組PP1β蛋白(rPP1β),分子量為41 kDa。將親和層析純化的rPP1β免疫BALB/c小鼠制備抗血清,通過制備中國對蝦血細胞滴片,應用間接免疫熒光法檢測PP1β在血細胞中的分布情況,結果顯示,中國對蝦PP1β在血細胞的核區(qū)及細胞質內均有分布。本研究結果為進一步解析中國對蝦PP1β與WSSV感染的相互關系提供了數據。
中國對蝦;蛋白磷酸酶1;基因克?。辉吮磉_;免疫熒光
蛋白磷酸酶(Protein phosphatase)是控制蛋白質去磷酸化的關鍵酶,參與細胞內信號轉導途徑的調控,從而在生物體的生長發(fā)育、新陳代謝、細胞的分裂分化、細胞間通訊、基因表達、離子通道活性和免疫反應等多方面發(fā)揮重要作用[1-3]。根據蛋白磷酸酶作用底物的特異性可將其分為兩大類:絲氨酸/蘇氨酸蛋白磷酸酶和酪氨酸蛋白磷酸酶,其中,根據酶對底物的特異性、對抑制物的敏感程度差異和對不溶離子的需要,真核生物的絲氨酸/蘇氨酸蛋白磷酸酶可分為蛋白磷酸酶1(Protein phosphatase 1,PP1),2A和2B三個主要亞型[4]。
在高等哺乳動物中已有較多報道顯示,宿主細胞的蛋白磷酸酶可以和病毒之間存在密切聯系,參與病毒的轉錄、復制和生命周期調控[5-8]。然而,目前在甲殼動物中蛋白磷酸酶與病毒間的互作研究十分有限,近年來有研究發(fā)現凡納濱對蝦(Litopenaeusvannamei)的一種蛋白磷酸酶被證實可以和白斑癥病毒(White spot syndrome virus,WSSV)開放閱讀框(ORF)427[9]和ORF403[10]編碼蛋白相結合,該酶與已報道物種的PP1催化亞基β(PP1β)具有較高的同源性。中國對蝦(Fenneropenaeuschinensis)廣泛分布于中國黃、渤海,東海和南海也有少量分布,是中國北方沿海地區(qū)重要的海水養(yǎng)殖品種。對蝦白斑病(White spot disease, WSD)自1990年代暴發(fā)以來,已成為全球甲殼動物養(yǎng)殖產業(yè)最主要的威脅,給對蝦養(yǎng)殖產業(yè)造成了重大的經濟損失[11]。本實驗室的前期研究發(fā)現,中國對蝦在感染WSSV后,其血細胞中的蛋白磷酸酶發(fā)生了顯著上調表達[12],推測其可能與WSSV感染之間存在密切關系。
為進一步解析中國對蝦蛋白磷酸酶在WSSV感染之間的關系,本研究克隆并分析了中國對蝦PP1β基因,利用實時熒光定量PCR檢測其在各組織中的表達情況以及對蝦在感染WSSV后該基因的應答表達情況。同時,對中國對蝦PP1β進行了原核重組表達,并制備了重組PP1β蛋白(rPP1β)的多克隆抗體,應用間接免疫熒光技術檢測了PP1β在血細胞中的分布情況。
1.1 總RNA提取及cDNA第一鏈的合成
性成熟的健康海捕中國對蝦成蝦購自青島水產品市場,均為雄蝦,體長15~17 cm,經PCR檢測為WSSV陰性[12];按照Zhong等所述方法[13],以血淋巴∶抗凝劑(27 mmol/L sodium citrate, 336 mmol/L NaCl, 115 mmol/L glucose, 9 mmol/L EDTA, pH=4.2)為1∶1的體積比從中國對蝦圍心腔抽取血淋巴,分離血細胞,使用Trizol法提取總RNA,1%瓊脂糖凝膠電泳檢測RNA的完整性,nano-drop測定其濃度和純度,取2 μg總RNA經RT-PCR合成cDNA第一鏈。
1.2PP1β基因的全長克隆
根據凡納濱對蝦、印度跳蟻(Harpegnathossaltator)和佛羅里達弓背蟻(Camponotusfloridanus)的PP1β序列,設計簡并引物PP1β-F1和PP1β-R1(見表1)擴增中國對蝦PP1β保守序列,根據獲得的PP1β保守基因片段設計3’和5’RACE特異性引物PP1β-3’1、PP1β-3’2、PP1β-5’1、PP1β-5’2(見表1),分別與SMART cDNA合成試劑盒(Takara,Japan)內的引物UPM和NUP聯合使用擴增中國對蝦PP1βcDNA的3'和5'端序列。將所得到的3個片段拼接,獲得PP1βcDNA全長,設計引物PP1β-F2和PP1β-R2(見表1)進行基因全長的克隆驗證。PCR擴增條件為:94 ℃ 5 min;94 ℃ 30 s,58 ℃ 40 s,72 ℃ 1 min 30 s,35個循環(huán);72 ℃ 10 min。PCR產物經1%瓊脂糖凝膠電泳檢測,回收純化,連接到pMD-19T載體,轉化感受態(tài)細胞DH5α,利用含氨芐青霉素的LB培養(yǎng)平板進行篩選,PCR檢測陽性菌落后,送上海桑尼生物技術有限公司測序。
1.3PP1β基因的生物信息學分析
利用ORF Finder分析中國對蝦PP1β的開放閱讀框(Open reading frame,ORF)并推導其氨基酸序列,Smart在線軟件(http://smart.embl-heidelberg.de/)預測蛋白功能域,ProtParam tool (http://web.expasy.org/protparam/)分析蛋白等電點與分子量,NetOGlyc 3.1 Server (http:// www.cbs.dtu.dk/services/NetOGlyc-3.1/)和NetPhos 2.0 Server(http://www.cbs.dtu.dk/ services/NetPhos/)分析O-糖基化位點和磷酸化位點。使用BLAST程序進行PP1β的同源性比對,將不同物種的PP1β氨基酸序列通過Clustal X 2.0軟件進行多序列比對分析,用MEGA 4.0軟件進行系統發(fā)生和進化分析,采用鄰位相連法構建系統進化樹。
1.4 實時熒光定量PCR檢測PP1βmRNA的組織分布情況
為檢測PP1βmRNA在中國對蝦各組織中的表達差異,隨機選取3尾健康中國對蝦,取其血細胞、心臟、肝胰腺、腸、性腺、淋巴器官、鰓和肌肉,分別提取各組織總RNA,反轉錄合成cDNA鏈,測定并調整cDNA濃度到一致,以此為模板,以PP1β-F3和PP1β-R3(見表1)為引物擴增目的片段,每個樣品做3個平行,18S rRNA作為內參。PCR擴增條件為:95℃ 2min;95℃ 10s,58℃ 10s,72℃ 20s,45個循環(huán)。根據測得的Ct值,利用2-Ct法計算不同組織中PP1β基因的相對表達量。
1.5 實時熒光定量PCR分析PP1β基因對WSSV感染的應答表達
取凍存于-80℃患白斑綜合征病毒病的中國對蝦的鰓,按照Li等所述方法[12]制備WSSV粗提液并進行病毒濃度的測定,0.01mol/L無菌磷酸鹽緩沖液(PBS, 137mmol/L NaCl, 2.7mmol/L KCl, 8.09 mmol/L Na2HPO4, 1.47mmol/L KH2PO4, pH=7.4)調整WSSV濃度至108拷貝/mL,實驗對蝦分為感染組和對照組,分別注射100μL WSSV 粗提液 (107拷貝)或PBS。各組于感染后0、6、12、24、36、48和72h隨機抽取中國對蝦6尾,收集血細胞和性腺,進行RNA提取和實時熒光定量PCR實驗,具體方法同1.4。利用2-ΔΔCt法計算WSSV感染后對蝦血細胞和性腺組織中PP1β基因的相對表達量的變化情況。
1.6PP1β的原核表達與純化
設計分別帶有酶切位點KpnI和Hind Ⅲ的原核表達用引物PP1β-F4和PP1β-R4(見表1),擴增PP1β編碼基因全長。對擴增片段和pET-28a(+)載體分別進行雙酶切,切膠純化,以T4 DNA連接酶連接目的片段和載體,構建重組表達質粒pET-28a-PP1β,轉化至大腸桿菌BL21(DE3)感受態(tài)細胞,隨后將陽性菌株進行測序確認。
挑取陽性重組菌株的單菌落接種至LB液體培養(yǎng)基中(含50μg/mL卡那霉素),37℃,220r/min振蕩培養(yǎng),培養(yǎng)菌液的OD600為0.6時,向菌液中加入1.0mmol/L的異丙基-β-D-硫代半乳糖苷(IPTG)誘導大腸桿菌表達目的蛋白,繼續(xù)振蕩培養(yǎng)4h后,離心收集菌體,加PBS超聲破碎30min,離心取沉淀,利用SDS-PAGE檢測目的蛋白表達情況,以未誘導的菌體總蛋白為對照。將重組菌大量培養(yǎng),離心破碎收集菌體,參照Qiagen鎳瓊脂糖親和層析柱蛋白純化操作步驟,在變性條件下純化以包涵體形式表達的融合蛋白,尿素梯度透析復性,SDS-PAGE 電泳檢測重組PP1β蛋白(r PP1β)純化結果。
表1 中國對蝦 PP1β cDNA全長擴增、實時熒光定量PCR和原核表達所用引物
1.7 鼠抗rPP1β血清的制備
取純化復性后的rPP1β,按照Tang等所述方法[14]分4次免疫購自山東大學實驗動物中心的SPF級BLAB/c小鼠。第3次加強免疫后第7天心臟一次性采血,室溫傾斜放置2h,置于4℃過夜;次日5 000g離心20min得抗血清。間接ELISA方法測得鼠抗rPP1β血清效價。同時,參考Tang等報道的方法[15]利用Western blotting檢測制備鼠抗血清的特異性。
1.8 間接免疫熒光實驗(IIFA)檢測PP1β在血細胞上的定位
用吸有4 ℃預冷抗凝劑的注射器從WSSV感染12 h后的中國對蝦圍心腔抽取血淋巴液,按抗凝劑與血淋巴3∶1 比例混勻,800g離心20min,棄上清;沉淀用抗凝劑重懸,800g離心20min,棄上清;沉淀用PBS重懸,滴于干凈載玻片上,室溫沉降1h,丙酮固定。以制備的鼠抗rPP1β血清為第一抗體,滴加在上述制備的血細胞滴片上,37℃濕盒中孵育45min,以正常鼠血清為陰性對照;PBST(PBS containing 0.05% Tween 20)洗3次,每次5min;以FITC標記的羊抗鼠IgG(Sigma,1∶256)為第二抗體,滴加在血細胞滴片上,37℃濕盒中孵育45min;PBST洗3次,每次5min;甘油封片,熒光顯微鏡下觀察。
1.9 數據處理
所得數據使用SPSS 19.0進行統計分析,采用單因子方差分析及Duncan多重比較處理,以P<0.05作為差異顯著水平。
2.1 中國對蝦PP1β基因序列分析
中國對蝦PP1βcDNA全長及相應的氨基酸序列如圖1所示。中國對蝦PP1β完整的cDNA全長1 214 bp(GenBank登錄號:KF773851),包含一個987 bp的開放閱讀框,編碼328個氨基酸。PP1β編碼蛋白由PP2Ac結構域和低復雜度區(qū)域組成,其理論等電點為5.68,理論分子量為37.6 kDa,氨基酸序列中包含14個磷酸化位點和1個O-糖基化位點。成熟肽中Leu所占比例最高(11.9%),其次是Asp(7.3%)和Gly(7.3%)。5’非編碼區(qū)13 bp,3’非編碼區(qū)214 bp,其中包含1個終止密碼子,1個多聚腺苷酸加尾信號(AATAAA)。
(下劃線:PP2Ac結構域;陰影:低復雜度區(qū)域;方框:多聚腺苷酸加尾信號(AATAAA)。PP2Ac domain was shown with underlines, and low complexity region was shaded in grey. The polyadenylation signals(AATAAA)in the 3’-UTR were also boxed.)
圖1 中國對蝦PP1βcDNA及推導的氨基酸序列
Fig.1 Full length cDNA sequence and deduced amino acid sequences ofF.chinensisPP1β
2.2 中國對蝦PP1β與其他物種的同源性分析
將中國對蝦PP1β的氨基酸序列通過BLAST在線分析顯示,該序列與不同物種的PP1β序列的相似度高達90%~91%,表現出高度保守性。需要指出的是,中國對蝦PP1β氨基酸序列與GenBank中一條C端缺失的凡納濱對蝦PP1β序列完全一致,相似性為100%。多序列比對結果顯示,不同物種的PP1β均含有絲氨酸/蘇氨酸特異性蛋白磷酸酶家族的特征基序GDxHG、GDxVDRG和GNHE(見圖2)。構建的系統進化樹顯示,中國對蝦PP1β與凡納濱對蝦聚為一小支,二者與其他甲殼動物PP1β聚為一大支(見圖3)。
2.3PP1β基因在各組織中的表達
熒光定量PCR檢測結果顯示,PP1βmRNA在健康中國對蝦8種組織中均有不同程度的表達,其中在性腺中的表達量最高,其次是血細胞,然后依次為淋巴器官、腸、鰓、心臟和肝胰腺,在肌肉中的表達量最低(見圖4)。
2.4 WSSV感染后中國對蝦血細胞和性腺中PP1β基因的表達變化
實時熒光定量PCR檢測結果顯示,在WSSV感染后中國對蝦后血細胞和性腺中的PP1β基因均呈顯著性上調表達,在感染后12 h,2個組織中PP1β表達量均達到峰值,其中血細胞中該基因的上調倍數顯著大于性腺中,為(2.71±0.16)倍。峰值過后,PP1β基因的相對表達量在2個組織中均呈現逐漸降低的趨勢但仍高于對照組水平,而與血細胞相比,性腺中的下調較為平緩,2種組織中該基因的相對表達量均于感染后72 h恢復至接近對照組水平(見圖5)。
2.5 中國對蝦PP1β基因的原核表達與抗體特異性分析
SDS-PAGE圖譜顯示,經誘導的含pET28a-PP1β表達質粒的大腸桿菌全蛋白中出現了一條分子量為41 kDa的特異性條帶(見圖6,泳道2),與理論預測值相符,而未經誘導的大腸桿菌沒有出現相應的條帶(見圖6,泳道1)。重組蛋白經鎳瓊脂糖親和層析純化后獲得了條帶單一的高純度rPP1β(見圖6,泳道3)。應用制備的鼠抗rPP1β多克隆抗體結合Western blotting技術分析顯示,多抗能特異性識別分子量為41 kDa的條帶(見圖6,泳道4),而陰性對照組未見條帶(見圖6,泳道5),表明制備的鼠抗rPP1β多克隆抗體特異性良好。
(序列比對所用PP1β物種來源及相應GenBank登錄號如下:太平洋牡蠣(C.gigas), EKC31188;凡納濱對蝦(L.vannamei), AAT37505;印度跳蟻(H.saltator),EFN76901;佛羅里達弓背蟻(C.floridanus),EFN68092;斑馬魚(D.rerio),NP_001004527;熱帶爪蟾(X.tropicalis),CAJ81891;原雞(G.gallus),NP_990453;褐家鼠(R.norvegicus),NP_037197;牛(B.taurus),NP_001029825;人(H.sapiens),NP_996759; “”:相同的氨基酸;“:”和“.”:相似的氨基酸;藍色字體:PP2Ac結構域;陰影:絲氨酸/蘇氨酸特異性蛋白磷酸酶家族的特征基序GDxHG,GDxVDRG和GNHE。GenBank accession number:C.gigas, EKC31188;L.vannamei, AAT37505;H.saltator,EFN76901;C.floridanus,EFN68092;D.rerio,NP_001004527;X.tropicali,CAJ81891;G.gallus,NP_990453;R.norvegicus,NP_037197;B.taurus,NP_001029825;H.sapiens,NP_996759. “” represents the same amino acid, “:” and “.” represent the similar amino acids. The PP2Ac domain was shown in blue font. The conserved catalytic domains which were specific for Ser/Thr phosphatases (GDxHG,GDxVDRG and GNHE) were shaded in gray.)
圖2 中國對蝦PP1β氨基酸序列與其他物種的多序列比對
Fig.2 Multiple alignment of the deduced amino acid sequences of PP1β fromF.chinensiswith those from other species
(系統進化樹所用序列除圖2中的11種之外,其他6種包括:獼猴(M.mulatta),NP_001247581;小家鼠(M.musculus),NP_766295;綠海龜(C.mydas),EMP24516;大西洋鮭(S.salar),ACN58678;埃及伊蚊(A.aegypti),XP_001663366;致倦庫蚊(C.quinquefasciatus),XP_001843526。GenBank accession number (not including the ones in Figure 2):M.mulatta, NP_001247581;M.musculus, NP_766295;C.mydas, EMP24516;S.salar, ACN58678;A.aegypti, XP_001663366;C.quinquefasciatus, XP_001843526.)
圖3 不同物種PP1β氨基酸序列系統進化樹
Fig.3 Phylogenetic analysis of the deduced amino acid sequences ofF.chinensisPP1β
(小寫字母表示各組織中PP1β mRNA相對表達量顯著性差異水平(P<0.05)。Different letters indicates significant difference between different tissues (P<0.05).)
圖4PP1βmRNA在中國對蝦不同組織中的分布
Fig.4 Quantitative real-time RT-PCR analysis of tissues distribution ofPP1βtranscripts in healthyF.chinensis
(小寫字母表示感染組對蝦PP1β基因表達量與對照組相比差異顯著(P<0.05)。Different letters indicates significant difference between different tissues (P<0.05).)
圖5 WSSV感染后中國對蝦PP1β基因在血細胞和性腺中的時空表達分析
Fig.5 Expression profiles ofPP1βin hemocytes and gonad ofF.chinensispost WSSV infection
(M:標準分子量蛋白;1:未誘導的重組菌總蛋白;2:誘導后的重組菌總蛋白;3:純化后的重組蛋白,4:鼠抗rPP1β血清與誘導后重組菌總蛋白反應;5:正常鼠血清與誘導后重組菌總蛋白反應。 M: Marker; 1: Total proteins from uninduced bacterial cell lysate; 2: Total proteins from induced bacterial cell lysate; 3: Purified recombinant protein; 4: Antisera against rPP1β reacted with induced bacterial cell proteins; 5: Negative control.)
圖6 PP1β重組蛋白的SDS-PAGE及Western blotting分析
Fig.6 SDS-PAGE and Western blotting analysis of PP1β recombinant protein
2.6 中國對蝦PP1β在血細胞上的定位
IIFA檢測結果顯示,鼠抗rPP1β血清能與中國對蝦血細胞發(fā)生陽性反應,熒光顯微鏡下可見黃綠色熒光信號在血細胞的核區(qū)及細胞質內均有分布(見圖 7B),而以正常小鼠血清作為對照時,未顯示其與血細胞發(fā)生結合,血細胞中無黃綠色熒光信號,血細胞僅被伊文斯蘭襯染為紅色(見圖 7A)。
PP1作為絲氨酸/蘇氨酸蛋白磷酸酶家族中的一員,是一種高度保守的蛋白質,在真菌與哺乳動物間的同源性高達72%[16],本文克隆得到的中國對蝦PP1β基因編碼328個氨基酸,以其氨基酸序列進行BLAST比對,發(fā)現中國對蝦PP1β蛋白與已報道的不同物種的PP1β蛋白序列相似度極高,為90%以上,這一結果證明了PP1β在不同物種間高度保守,與上述報道相一致。不同物種的PP1不僅在序列上極保守,而且在功能方面也具有一定的保守性,有研究指出,在真菌中由PP1突變而引起的表型變化在一定程度上能通過誘導外源哺乳動物的PP1基因從而得到緩解[17-18],由此本文推測,相較真菌而言與哺乳動物在進化上更為接近的對蝦,其PP1分子也具有與高等動物相似的功能,參與到對蝦生命活動調控的各個方面。
在哺乳動物中,蛋白磷酸酶參與生殖細胞的分化、精子移動和減數分裂等過程的調控,其在性腺組織中呈高豐度表達[19-20]。目前,無脊椎動物的蛋白磷酸酶是否具有上述功能還不清楚,但是有報道指出果蠅(Drosophilamelanogaster)體內存在多種特異性的蛋白磷酸酶(PpY-55A,PpN58A,PpD5,PpD6),這些酶在果蠅精巢中表達量極高[21-25]。本文以實時熒光定量PCR法檢測到PP1βmRNA在對蝦性腺中表達量最高,也與上述結論相符合,推測對蝦性腺中的PP1β承擔著與高等動物PP1β相似的功能。PP1β在中國對蝦血細胞中表達量也比較高,并且在WSSV感染后,血細胞中PP1β基因的上調表達程度較性腺中更顯著,這可能是由于血細胞是對蝦免疫功能的主要承擔者[26],PP1β參與了血細胞應答WSSV的反應所致。
(A:血細胞與正常鼠血清反應;B:血細胞與鼠抗PP1β重組蛋白血清反應。A:Normal sera reacted with the haemocytes; B: Antisera against rPP1β reacted with the haemocytes.)
圖7 PP1β在血細胞上的定位
Fig.7 Localization of PP1β in Chinese shrimp haemocytes by IIFA
在真核細胞內,幾乎所有的信號轉導過程都是通過由蛋白激酶和蛋白磷酸酶催化的磷酸化和去磷酸化作用來調節(jié)的。因此,蛋白磷酸酶被認為廣泛分布于細胞的核區(qū)及細胞質內[27]。本文對PP1β重組蛋白進行了純化,獲得了純度較高的目的蛋白,此純化產物經簡單的透析和凍干后,直接作為抗原免疫小鼠獲得抗血清,免疫印跡實驗證實制備的抗血清可與rPP1β發(fā)生特異性結合反應,顯示其具有較好的特異性,應用間接免疫熒光實驗檢測發(fā)現PP1β存在于中國對蝦血細胞的核區(qū)及細胞質內,該結果與上述觀點相吻合,推測對蝦PP1β與其他高等真核生物類似,在介導胞內信號轉導等重要生物學過程中發(fā)揮著重要作用。
[1] Klumpp S, Krieglstein J. Serine/threonine protein phosphatases in apoptosis [J]. Current Opinion in Pharmacology, 2002, 2(4): 458-462.
[2] Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes[J]. Physiological Reviews, 2000, 80(1): 173-210.
[3] Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response[J]. Nature Reviews Immunology, 2005, 5(1): 43-57.
[4] 王柏婧, 謝秀杰, 魏群. Ⅰ 型蛋白磷酸酶研究進展[J]. 微生物學報, 2008, 48(2): 269-273.
Wang B J, Xie X J, Wei Q. Advances of protein phosphatase-1-A Review[J]. Acta Microbiologica Sinica, 2008, 48(2): 269-273.
[5] Tallóczy Z, Virgin H W, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1[J]. Autophagy, 2006, 2(1):24-29.
[6] Ammosova T, Jerebtsova M, Beullens M, et al. Nuclear protein phosphatase-1 regulates HIV-1 transcription[J]. Journal of Biological Chemistry, 2003, 278(34): 32189-32194.
[7] Ilinykh P A, Tigabu B, Ivanov A, et al. Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription[J]. Journal of Biological Chemistry, 2014, 289(33): 22723-22738.
[8] Zhang F, Moon A, Childs K, et al. The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2α and inhibits CHOP induction but is dispensable for these activities during virus infection[J]. Journal of Virology, 2010, 84(20): 10681-10689.
[9] Lu L, Kwang J. Identification of a novel shrimp protein phosphatase and its association with latency-related ORF427 of white spot syndrome virus[J]. FEBS Lett, 2004, 577(1-2): 141-146.
[10] He F, Kwang J. Identification and characterization of a new E3 ubiquitin ligase in white spot syndrome virus involved in virus latency[J]. Virology Journal, 2008, 5: 151.
[11] Stentiford G D, Oidtmann B, Scott A, et al. Crustacean diseases in European legislation: Implications for importing and exporting nations[J]. Aquaculture, 2010, 306: 27-34.
[12] Li W, Tang X Q, Xing J, et al. Proteomic analysis of differently expressed proteins inFenneropenaeuschinensishemocytes upon white spot syndrome virus infection[J]. Plos One, 2014, 9(2): 89962.
[13] Zhong R J, Tang X Q, Zhan W B, et al. Expression kinetics of β-integrin in Chinese shrimp (Fenneropenaeuschinensis) hemocytes following infection with white spot syndrome virus[J]. Fish and Shellfish Immunology, 2013, 35: 539-545.
[14] 唐小千, 戰(zhàn)文斌, 周麗, 等. 6種海洋致病性弧菌36 kDa外膜蛋白特性分析[J]. 中國海洋大學學報(自然科學版), 2009, 39(2):197-202.
Tang X Q, Zhan W B, Zhou L, et al. Characterization of 36 kDa Outer Membrane Proteins of Six PathogenicVibrioSpecies[J]. Periodical of Ocean University of China, 2009, 39(2):197-202.
[15] Tang X Q, Wang X L, Zhan W B. An integrin β subunit of Chinese shrimpFenneropenaeuschinensisinvolved in WSSV infection[J]. Aquaculture, 2012, 368: 1-9.
[16] Ceulemans H, Stalmans W, Bollen M. Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution[J]. Bioessays, 2002, 24(4):371-381.
[17] Doonan J H, MacKintosh C, Osmani S, et al. A cDNA encoding rabbit muscle protein phosphatase 1 alpha complements the Aspergillus cell cycle mutation, bimG11[J]. Journal of Biological Chemistry, 1991, 266(28):18889-18894.
[18] Sangrador A, Andrés I, Eguiraun A, et al. Growth arrest of Schizosaccharomyces pombe following overexpression of mouse type 1 protein phosphatases[J]. Molecular and General Genetics, 1998, 259(5): 449-456.
[19] Nakamura K, Shima H, Watanabe M, et al. Molecular cloning and characterization of a novel dual-specificity protein phosphatase possibly involved in spermatogenesis[J]. Biochemical Journal, 1999, 344(3): 819-825.
[20] Smith G D, Wolf D P, Trautman K C, et al. Primate sperm contain protein phosphatase 1, a biochemical mediator of motility[J]. Biology of Reproduction, 1996, 54(3): 719-727.
[21] Arbeitman M N, Furlong E M, Imam F, et al. Gene expression during the life cycle ofDrosophilamelanogaster[J]. Science, 2002, 297: 2270-2275.
[22] Armstrong C G, Mann D J, Berndt N, et al.DrosophilaPPY, a novel male specific protein serine/threonine phosphatase localized in somatic cells of the testis[J]. Journal of Cell Science, 1995, 108: 3367-3375.
[23] Armstrong C G, Dombradi V, Mann D J, et al. Cloning of a novel testis specific protein serine/threonine phosphatase, PPN 58A, fromDrosophilamelanogaster[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1998, 1399: 234-238.
[24] Chintapalli V R, Wang J, Dow J A. Using FlyAtlas to identify betterDrosophilamelanogastermodels of human disease[J]. Nature Genetics, 2007, 39: 715-720.
[25] Vibranovszki M D, Lopes H F, Karr T L, et al. Stagespecific expression profiling ofDrosophilaspermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes[J]. PLoS Genetic, 2009, 5: 1000731.
[26] Johansson M W, Keyser P, Sritunyalucksana K, et al. Crustacean haemocytes and haematopoiesis[J]. Aquaculture, 2000, 191: 45-52.
[27] Mao H, Rosenthal K S. An N-terminal arginine-rich cluster and a proline-alanine-threonine repeat region determine the cellular localization of the herpes simplex virus type 1 ICP34. 5 protein and its ligand, protein phosphatase 1[J]. Journal of Biological Chemistry, 2002, 277(13): 11423-11431.
責任編輯 朱寶象
Cloning, Expression and Characterization of Protein Phosphatase 1 Catalytic Subunit Beta Isoform in ShrimpFenneropenaeuschinensis
HE Liang-Yin, LI Wei, TANG Xiao-Qian, XING Jing, SHENG Xiu-Zhen, ZHAN Wen-Bin
(Laboratory of Pathology and Immunology of Aquatic Animals,Ocean University of China,Qingdao 266003,China)
Protein phosphatase 1 (PP1) of host cells was documented to play a crucial role in virus infection in mammals, participating in the transcription, replication and life cycle regulation of virus. PP1 in hemocytes ofFenneropenaeuschinensiswas up-regulated significantly after WSSV infection as was demonstrated in our previous work, which indicated that PP1 ofF.chinensiswas involved in WSSV infection. To further illustrate the role of PP1 in WSSV infection, in present work, protein phosphatase 1 catalytic subunit beta isoform (PP1β) gene ofF.chinensiswas cloned and sequenced by rapid amplification of cDNA ends approaches (RACE). The full-length cDNA sequence ofPP1βgene was 1,214 bp, and contained an open reading frame (ORF) of 987 bp that encoded for a polypeptide of 328 amino acids. Homology comparison showed that PP1β ofF.chinensisshared 90%~91% amino acids with thst of other species, indicating the high conservation ofPP1βgene. Multiple sequence alignment was performed using the ClustalW Multiple Alignment program. It was demonstrated that all amino acid sequences of PP1β from various species contained three conserved catalytic domains which were specific for Ser/Thr phosphatases, GDxHG,GDxVDRG and GNHE. A neighbor-joining (NJ) tree was constructed based on the protein sequences of PP1β from 17 species by the NJ algorithm using MEGA 4.0 software package and Clustal X using α-lactalbumin as outgroup. The result showed thatF.chinensiswas clustered withL.vannamei, and PP1β of crustaceans gathered in one branch. By quantitative real-time RT-PCR,PP1βgene mRNA was observed in all the eight tissues of healthyF.chinensis, with the high transcription level in gonad and hemocytes. The high transcription level ofPP1βgene in gonad suggested that PP1β possibly involved in germ cell differentiation and spermatogenesis as was reported in mammals. Moreover, the gene in the above two tissues was up-regulated after WSSV infection, with the peak value found at 12 h, while the fold change ofPP1βgene transcript abundance in hemocytes was higher than that in gonad. The higher transcription level ofPP1βgene observed in hemocytes suggested that PP1β might play an important role in resistance to WSSV infection. ThePP1βgene ORF was cloned into pET-28a expression plasmid and the recombinant plasmid was transformed intoE.coliBL21 (DE3). SDS-PAGE analysis showed that the molecular weight of recombinant protein was 41 kDa. Subsequently, rPP1β was purified by using affinity chromatography, and the polyclonal antibody against rPP1β was produced by immunizing mouse. The localization of PP1β inF.chinensishaemocytes was determined by indirect immunofluorescence assay (IIFA). The results showed that PP1β was synthesized in cell nucleus and cytoplasm, which implied that PP1β might mediate kinds of biological processes such as the signal transduction inF.chinensis. Overall, this study provided important data for illustrating the relationship betweenF.chinensisPP1β and WSSV infection.
Fenneropenaeuschinensis; protein phosphatase 1 catalytic subunit beta isoform; gene cloning; prokaryotic expression; immunofluorescence
國家重點基礎研究發(fā)展規(guī)劃項目 (2012CB114405);“泰山學者特聘專家”項目;青島海洋科學與技術國家實驗室鰲山科技創(chuàng)新計劃項目(2015ASKJ01);山東省科技發(fā)展計劃項目(2014GNC111015);山東省自主創(chuàng)新及成果轉化專項項目(2014ZZCX06205)資助
2016-01-27;
2016-04-21
何亮銀(1987-),男,博士生,主要從事水產動物病害與免疫學研究。
** 通訊作者: E-mail:wbzhan@ouc.edu.cn
S91
A
1672-5174(2016)11-073-09
10.16441/j.cnki.hdxb.20160024
何亮銀, 李微, 唐小千, 等. 中國對蝦蛋白磷酸酶1催化亞基β基因的克隆表達及特性分析[J]. 中國海洋大學學報(自然科學版), 2016, 46(11): 73-81.
HE Liang-Yin, LI Wei, TANG Xiao-Qian, et al. Cloning, expression and characterization of protein phosphatase 1 catalytic subunit beta isoform in shrimpFenneropenaeuschinensis[J]. Periodical of Ocean University of China, 2016, 46(11): 73-81.
Supported by National Basic Research Program of China(2012CB114405); “Taishan Scholar Program of Shangdong Province”; The Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology(2015ASKJ01); Science and technology development project of Shandong Province(2014GNC111015); Independent innovation and achievement transformation project in Shandong Province(2014ZZCX06205)