国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

三疣梭子蟹Na+/H+-exchanger基因克隆鑒定及在鹽度脅迫下的表達(dá)分析

2016-11-12 06:40馬金武呂建建高保全
水生生物學(xué)報(bào) 2016年5期
關(guān)鍵詞:梭子蟹鹽度克隆

馬金武 呂建建 劉 萍 高保全 李 健

(1. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所,農(nóng)業(yè)部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室,青島 266071; 2. 上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306; 3. 青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室,海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實(shí)驗(yàn)室,青島 266071)

三疣梭子蟹Na+/H+-exchanger基因克隆鑒定及在鹽度脅迫下的表達(dá)分析

馬金武1,2呂建建1,3劉萍1,3高保全1,3李健1,3

(1. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所,農(nóng)業(yè)部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室,青島 266071; 2. 上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306; 3. 青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室,海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實(shí)驗(yàn)室,青島 266071)

為研究Na+/H+-exchanger基因在三疣梭子蟹(Portunus trituberculatus)鹽度脅迫過程中的功能作用,克隆了三疣梭子蟹Na+/H+-exchanger基因并進(jìn)行表達(dá)分析。結(jié)果顯示,Na+/H+-exchanger基因(GenBank:KU519329)全長(zhǎng)4233 bp,5′和3′非編碼區(qū)(UTR)長(zhǎng)分別為519和753 bp,開放閱讀框(ORF)長(zhǎng)2961 bp。編碼986個(gè)氨基酸,預(yù)測(cè)蛋白質(zhì)分子量和等電點(diǎn)分別為110.8 kD和7.42,具有信號(hào)肽和典型的Na+/H+-exchanger蛋白結(jié)構(gòu)域,含12個(gè)跨膜α螺旋; 三疣梭子蟹Na+/H+-exchanger基因與普通濱蟹(Carcinus maenas)同源性最高,達(dá)到87.2%,系統(tǒng)進(jìn)化分析也顯示該序列與普通濱蟹聚為一支; 表達(dá)分析顯示,三疣梭子蟹Na+/H+-exchanger基因在鰓中表達(dá)量最高; 在低鹽(鹽度5、10和20)脅迫過程中,Na+/H+-exchanger基因在0—12h上調(diào)表達(dá)明顯,在24—168h間表達(dá)量呈下降趨勢(shì); 在高鹽(鹽度50)脅迫初期(0—12h),該基因表達(dá)量相對(duì)穩(wěn)定,之后(24—168h)顯著下調(diào)表達(dá)。研究表明低鹽顯著誘導(dǎo)Na+/H+-exchanger基因的高表達(dá),推測(cè)三疣梭子蟹Na+/H+-exchanger基因在低鹽環(huán)境下發(fā)揮重要的滲透調(diào)節(jié)功能。

三疣梭子蟹;Na+/H+-exchanger;基因克?。畸}度脅迫;表達(dá)分析

三疣梭子蟹(Portunus trituberculatus)隸屬于甲殼綱(Crustacea)、十足目(Decapoda)、梭子蟹科(Portunidae)、梭子蟹屬(Portunus),廣泛分布于我國(guó)南北沿海[1],在日本和朝鮮半島等海域亦有廣泛分布[2,3],可存活于鹽度為13.7—47.7的水環(huán)境中[4],屬?gòu)V鹽性水生甲殼動(dòng)物[1],其生長(zhǎng)快、食用價(jià)值高和養(yǎng)殖利潤(rùn)豐厚等特點(diǎn)使其成為我國(guó)重要的海水捕撈和養(yǎng)殖品種[5]。

鹽度對(duì)水生甲殼動(dòng)物的生長(zhǎng)發(fā)育和新陳代謝等具有極其重要的影響[6],其主要通過血淋巴滲透壓調(diào)控以適應(yīng)環(huán)境鹽度的變化,且血淋巴滲透壓水平主要取決于對(duì)無機(jī)離子通透性的調(diào)控,其中以Na+和Cl-的調(diào)控最為重要[7—9]。水生甲殼動(dòng)物進(jìn)行滲透壓和離子調(diào)節(jié)的主要器官是鰓[10],且主要在鰓離子轉(zhuǎn)運(yùn)型上皮進(jìn)行[11,12]。其離子轉(zhuǎn)運(yùn)過程主要由離子泵、離子交換器和通道蛋白等共同作用調(diào)控完成[10,13],其中離子交換器Na+/H+-exchanger在Na+的跨膜轉(zhuǎn)運(yùn)過程中具有重要作用。Na+/H+-exchanger通過CA提供的胞質(zhì)內(nèi)高H+梯度,將質(zhì)膜外Na+交換進(jìn)入胞質(zhì)內(nèi),再由基底側(cè)質(zhì)膜上的Na+/K+-ATPase轉(zhuǎn)運(yùn)進(jìn)入基底側(cè)質(zhì)膜外,從而完成鰓上皮細(xì)胞的Na+跨膜轉(zhuǎn)運(yùn)過程,水生甲殼動(dòng)物Na+/H+-exchanger向膜內(nèi)和膜外分別轉(zhuǎn)運(yùn)2 Na+和1 H+[14—17],對(duì)廣鹽性蟹類在低鹽環(huán)境下的Na+攝入具有重要影響。水生甲殼動(dòng)物的滲透壓調(diào)節(jié)方式呈現(xiàn)多樣性,主要包括高滲調(diào)節(jié)型、滲透調(diào)節(jié)隨變型和高滲-低滲調(diào)節(jié)型[10]。Na+/H+-exchanger主要在滲透調(diào)節(jié)隨變型和高滲-低滲調(diào)節(jié)型蟹類中起重要作用,且在高滲調(diào)節(jié)型蟹類中,Na+/H+-exchanger主要在“弱”高滲調(diào)節(jié)型蟹類中調(diào)節(jié)Na+的轉(zhuǎn)運(yùn),“強(qiáng)”高滲調(diào)節(jié)型蟹類中不起作用[10]。本實(shí)驗(yàn)室對(duì)5—50不同鹽度下三疣梭子蟹血清滲透壓和離子含量的變化進(jìn)行了系統(tǒng)研究,結(jié)果表明三疣梭子蟹屬于高滲調(diào)節(jié)型蟹類[18],由于“強(qiáng)”和“弱”高滲調(diào)節(jié)型蟹類的區(qū)分規(guī)則仍不明確,有關(guān)三疣梭子蟹中Na+/H+-exchanger的功能作用需進(jìn)一步分析研究。

目前,對(duì)于十足目甲殼動(dòng)物Na+/H+-exchanger已進(jìn)行諸多研究,但主要側(cè)重于電生理學(xué)方面,分子生物學(xué)方面的研究?jī)H初步開始。1989年第一個(gè)人體細(xì)胞中Na+/H+-exchanger克隆測(cè)序完成,截至目前,Na+/H+-exchanger基因在水生甲殼動(dòng)物中的分子克隆研究進(jìn)展緩慢,僅有4個(gè)物種完成克隆測(cè)序,且僅有普通濱蟹(Carcinus maenas)對(duì)序列特性和表達(dá)情況進(jìn)行了分析報(bào)道,有關(guān)三疣梭子蟹Na+/H+-exchanger對(duì)滲透調(diào)節(jié)作用的研究至今未見報(bào)道。本研究通過實(shí)驗(yàn)室構(gòu)建的三疣梭子蟹轉(zhuǎn)錄組文庫(kù)[19]篩選出Na+/H+-exchanger基因的EST序列,采用RACE技術(shù)克隆獲得該基因全長(zhǎng)cDNA序列并對(duì)該基因及其編碼的氨基酸序列進(jìn)行生物信息學(xué)分析,通過Blast比對(duì)分析該基因氨基酸序列與其他甲殼動(dòng)物的同源性,采用反轉(zhuǎn)錄實(shí)時(shí)定量PCR(RT-qPCR)技術(shù)分析該基因在不同組織及不同鹽度脅迫下的表達(dá)變化。對(duì)廣鹽性甲殼動(dòng)物Na+/H+-exchanger基因的滲透調(diào)節(jié)機(jī)理的研究以及三疣梭子蟹耐低鹽新品系的選育都具有重要意義。

1 材料與方法

1.1實(shí)驗(yàn)材料與取樣

實(shí)驗(yàn)所用三疣梭子蟹為三疣梭子蟹“黃選1號(hào)”品種,個(gè)體為80日齡蟹[體重為(30±2.25) g]。于山東省昌邑市海豐水產(chǎn)養(yǎng)殖有限責(zé)任公司進(jìn)行實(shí)驗(yàn),實(shí)驗(yàn)前于養(yǎng)殖車間自然海水鹽度下(鹽度30)暫養(yǎng)7d,期間連續(xù)充氣,淘汰活力較差的個(gè)體,每天定時(shí)投喂藍(lán)蛤,換水清污。實(shí)驗(yàn)設(shè)置鹽度5、10、20和50實(shí)驗(yàn)組和自然海水對(duì)照組(鹽度30),每個(gè)鹽度設(shè)3個(gè)平行組,每組90只蟹子,實(shí)驗(yàn)于400 cm×400 cm× 150 cm的水泥池、水深40 cm的水體中進(jìn)行,鹽度50實(shí)驗(yàn)組水體由自然海水與地下鹵水混勻調(diào)制,鹽度5、10和20實(shí)驗(yàn)組水體由自然海水與自來水混勻調(diào)制,實(shí)驗(yàn)前水體充分曝氣,實(shí)驗(yàn)期間的投喂和飼養(yǎng)管理與暫養(yǎng)期相同。各鹽度組分別在實(shí)驗(yàn)第0、3h、6h、9h、12h、24h、48h和72h時(shí)取鰓組織,放于無RNA酶離心管中,標(biāo)記編號(hào)后置于液氮中冷凍保存。

1.2Na+/H+-exchanger基因cDNA全長(zhǎng)克隆

采用Trizol法分別提取鰓組織中的總RNA,采用瓊脂糖凝膠電泳和微量紫外分光光度計(jì)檢測(cè)RNA的完整度和質(zhì)量,使用SMARTTMRACE cDNA Amplification Kit按照說明書要求操作,分別合成3′和5′ RACE的cDNA第一鏈。利用三疣梭子蟹轉(zhuǎn)錄組文庫(kù)中檢索到的Na+/H+-exchanger基因EST序列和Primer Premier 5.0軟件設(shè)計(jì)3′和5′ RACE特異性引物(表1),于生工生物工程(上海)股份有限公司合成。使用TaKaRa LA Taq DNA聚合酶與RACE通用引物UPM、NUP和四條3′和5′ RACE特異性引物進(jìn)行巢式PCR,對(duì)目的基因的3′和5′末端序列進(jìn)行快速擴(kuò)增。利用瓊脂糖凝膠分別檢測(cè)3′ RACE和5′ RACE的擴(kuò)增產(chǎn)物,使用膠回收試劑盒回收目的片段,使用pMD18-T載體和DH5α大腸桿菌感受態(tài)細(xì)胞進(jìn)行連接轉(zhuǎn)化,取陽(yáng)性單克隆進(jìn)行菌落PCR鑒定,目的單克隆菌液送上海桑尼生物技術(shù)有限公司進(jìn)行測(cè)序。

1.3序列分析

使用DNAStar軟件的SeqMan程序進(jìn)行序列拼接得到Na+/H+-exchanger基因cDNA全長(zhǎng),采用ORF Finder進(jìn)行基因開放閱讀框(ORF)預(yù)測(cè),采用Blast程序分析目的基因與其他物種的同源性和一致性,使用DNAMAN軟件進(jìn)行基因編碼氨基酸序列的多重序列比對(duì)。使用ProtParam tool、SMART、TMHMM Server v. 2.0和ProtScale等在線生物信息分析工具對(duì)基因編碼蛋白的基本物理性質(zhì)、結(jié)構(gòu)域、信號(hào)肽、跨膜結(jié)構(gòu)和親、疏水性進(jìn)行預(yù)測(cè)分析,利用MEGA 4.0軟件采用鄰接法構(gòu)建NJ系統(tǒng)進(jìn)化樹。

1.4反轉(zhuǎn)錄實(shí)時(shí)熒光定量PCR(RT-qPCR)

采用Trizol法提取各鹽度組三疣梭子蟹鰓組織的總RNA,使用TaKaRa PrimeScript RT reagent Kit進(jìn)行反轉(zhuǎn)錄合成cDNA。根據(jù)已獲得的三疣梭子蟹Na+/H+-exchanger基因cDNA全長(zhǎng)序列,利用Primer Premier 5.0軟件設(shè)計(jì)熒光定量引物,內(nèi)參選擇RPL8[20](表1),于生工生物工程(上海)股份有限公司合成。使用ABI 7500 Real Time PCR儀和TaKaRa SYBR Premix Ex Taq Ⅱ試劑對(duì)三疣梭子蟹各組織及鹽度脅迫下基因的表達(dá)情況進(jìn)行分析。反應(yīng)體系采用TaKaRa SYBR Premix Ex Taq Ⅱ說明書中20 μL體系標(biāo)準(zhǔn),PCR反應(yīng)程序?yàn)椋?5℃ 30s;95℃ 5s,60℃ 34s,40 個(gè)循環(huán); 95℃ 15s,60℃ 1min,95℃ 15s。Na+/H+-exchanger基因的相對(duì)表達(dá)分析采用2-ΔΔCt法,數(shù)據(jù)處理使用SPSS 17.0軟件進(jìn)行單因素方差分析(One-Way ANOVA)和Duncan檢驗(yàn),利用Origin Pro 9.0對(duì)統(tǒng)計(jì)結(jié)果進(jìn)行作圖,P<0.05表示具有顯著差異性。

表1 實(shí)驗(yàn)用PCR引物序列Tab. 1 Primer used in the study

2 結(jié)果

2.1Na+/H+-exchanger基因cDNA全長(zhǎng)克隆及序列分析

三疣梭子蟹Na+/H+-exchanger基因cDNA全長(zhǎng)4233 bp,GenBank登錄號(hào)為KU519329,其5′和3′端非編碼區(qū)分別為:519和753 bp,開放閱讀框(ORF)長(zhǎng)2961 bp。ORF編碼氨基酸986個(gè),預(yù)測(cè)蛋白的分子式和分子量分別為C4987H7829N1349O1432S40和110.8 kD,理論等電點(diǎn)為7.42。Blast對(duì)比分析表明,Na+/H+-exchanger基因編碼氨基酸序列與普通濱蟹、麥龍螯蝦(Cherax cainii)、天空藍(lán)魔蝦(Cherax destructor)和紅螯螯蝦(Cherax quadricarinatus)的同源性分別為87.2%、58.5%、58.2%和57.8%。通過氨基酸序列多重比對(duì)分析表明,Na+/H+-exchanger氨基酸序列在60—650氨基酸區(qū)段內(nèi)保守性較高。SMART分析預(yù)測(cè)表明該基因編碼蛋白結(jié)構(gòu)域包括:Na+/H+-exchanger蛋白結(jié)構(gòu)域(84—486aa)、信號(hào)肽(0—19aa)和3個(gè)低復(fù)雜結(jié)構(gòu)(26—37aa、890—903aa和926—937aa)。TMHMM和ProtScale在線工具分析表明,Na+/H+-exchanger基因編碼蛋白質(zhì)結(jié)構(gòu)中含有12個(gè)跨膜結(jié)構(gòu)域,主要分布于0—500氨基酸區(qū)段,該區(qū)段內(nèi)親、疏水性氨基酸均有分布,500—986氨基酸編碼蛋白無跨膜區(qū)段,位于膜內(nèi),呈親水性。

利用MEGA 4.0軟件構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹分析表明,脊椎動(dòng)物和無脊椎動(dòng)物Na+/H+-exchanger遺傳進(jìn)化距離較遠(yuǎn),埃及伊蚊等昆蟲類聚為一支,三疣梭子蟹同普通濱蟹親緣關(guān)系最近并同麥龍螯蝦等聚為一支(圖1)。

圖1 Na+/H+-exchanger氨基酸序列NJ系統(tǒng)進(jìn)化樹Fig. 1 The Neighbor-Joining Phylogenetic tree for amino acid sequences of Na+/H+-exchanger

2.2Na+/H+-exchanger基因的組織表達(dá)分布和不同鹽度脅迫下的表達(dá)分析

利用RT-qPCR分析了三疣梭子蟹Na+/H+-exchanger基因在不同組織中的表達(dá)分布情況,結(jié)果顯示,三疣梭子蟹Na+/H+-exchanger基因在鰓中表達(dá)量最高并顯著高于其他組織(P<0.05),腸表達(dá)量次之,其他組織表達(dá)量極低且肌肉組織中幾乎不表達(dá)(圖2)。

圖2 三疣梭子蟹不同組織中Na+/H+-exchanger基因的表達(dá)Fig. 2 Expression of Na+/H+-exchanger gene in different tissues of P. trituberculatus

經(jīng)過鹽度脅迫后,對(duì)三疣梭子蟹鰓組織中Na+/H+-exchanger基因表達(dá)情況進(jìn)行分析表明,對(duì)照組在0—168h內(nèi)表達(dá)量無顯著變化。低鹽(鹽度5、10和20)組中Na+/H+-exchanger基因在0—12h上調(diào)表達(dá)明顯,其中鹽度5實(shí)驗(yàn)組表達(dá)量顯著高于其他組(P<0.05),在24—168h表達(dá)量整體呈下降趨勢(shì),鹽度5實(shí)驗(yàn)組在120h表達(dá)量出現(xiàn)小幅上調(diào),鹽度10實(shí)驗(yàn)組在72h表達(dá)量有較大增長(zhǎng),其他時(shí)間表達(dá)量與對(duì)照組持平或低于對(duì)照組,鹽度20實(shí)驗(yàn)組除48h表達(dá)量與對(duì)照組持平外,其他時(shí)間表達(dá)量均低于對(duì)照組。高鹽(鹽度50)組Na+/H+-exchanger基因表達(dá)量在0—12h同對(duì)照組相對(duì)持平,在24—168h內(nèi)表達(dá)量降低并顯著低于對(duì)照組(P<0.05)(圖3)。

圖3 鹽度脅迫下三疣梭子蟹Na+/H+-exchanger基因在鰓中的表達(dá)情況Fig. 3 Expression of Na+/H+-exchanger gene in P. trituberculatus gill tissue under salinity stress

3 討論

Na+/H+-exchanger在脊椎動(dòng)物中的研究起步較早,主要側(cè)重于體內(nèi)離子平衡、酸堿平衡和細(xì)胞體積調(diào)節(jié)等方面[21]。Towle等[17]克隆了第一個(gè)甲殼動(dòng)物Na+/H+-exchanger基因,其研究表明普通濱蟹Na+/H+-exchanger基因編碼673個(gè)氨基酸,序列多重比對(duì)分析表明普通濱蟹Na+/H+-exchanger基因同脊椎動(dòng)物的幾個(gè)亞型均不相關(guān)。麥龍螯蝦、天空藍(lán)魔蝦和紅螯螯蝦的Na+/H+-exchanger基因cDNA全長(zhǎng)已獲得,且研究發(fā)現(xiàn)其Na+/H+-exchanger基因與鹽度調(diào)節(jié)相關(guān),但并未對(duì)序列特性等進(jìn)行相關(guān)報(bào)道[22,23]。

本研究通過RACE技術(shù)首次克隆得到三疣梭子蟹Na+/H+-exchanger基因cDNA全長(zhǎng),預(yù)測(cè)編碼蛋白986個(gè),氨基酸序列多重比對(duì)和Blast分析表明三疣梭子蟹同普通濱蟹同源性最高,達(dá)到87.2%,這一結(jié)論印證了三疣梭子蟹同普通濱蟹同屬梭子蟹科且具有相似生存環(huán)境和生活習(xí)性的特點(diǎn),與Péqueux[7]提出的地域分布對(duì)生物滲透調(diào)節(jié)能力具有重要影響的結(jié)論一致。與NCBI數(shù)據(jù)庫(kù)中氨基酸序列的比對(duì)分析表明甲殼動(dòng)物Na+/H+-exchanger基因還未進(jìn)行基因分型,因此三疣梭子蟹Na+/H+-exchanger基因的分型工作有待進(jìn)一步研究。SMART在線結(jié)構(gòu)域預(yù)測(cè)分析發(fā)現(xiàn)該基因具有典型的Na+/H+-exchanger蛋白結(jié)構(gòu)域(84—486aa),充分證明該基因?yàn)槿嗨笞有種a+/H+-exchanger基因。TMHMM和ProtScale在線工具預(yù)測(cè)表明0—500氨基酸區(qū)段具有12個(gè)跨膜α螺旋,與三疣梭子蟹Na+/H+-exchanger蛋白結(jié)構(gòu)域重疊,且該區(qū)段內(nèi)親疏水性氨基酸均有分布,推測(cè)該區(qū)段可能與離子的跨膜轉(zhuǎn)運(yùn)功能相關(guān)[17,21]。系統(tǒng)進(jìn)化分析表明,三疣梭子蟹Na+/H+-exchanger符合遺傳進(jìn)化規(guī)律。

利用RT-qPCR分析表明三疣梭子蟹Na+/H+-exchanger基因的表達(dá)具有組織特異性,與普通濱蟹Na+/H+-exchanger基因的研究結(jié)果一致[17],推測(cè)梭子蟹科甲殼動(dòng)物Na+/H+-exchanger基因在鹽度適應(yīng)過程中主要在鰓組織中特異性表達(dá)。根據(jù)鹽度脅迫過程中各實(shí)驗(yàn)組和對(duì)照組三疣梭子蟹鰓組織中Na+/H+-exchanger基因的表達(dá)規(guī)律及特點(diǎn),推測(cè)三疣梭子蟹Na+/H+-exchanger基因在鹽度適應(yīng)過程中主要在低鹽環(huán)境下起作用,在高鹽環(huán)境中作用不明顯。鹽度5實(shí)驗(yàn)組在0—24h內(nèi)表達(dá)量顯著高于鹽度10和20實(shí)驗(yàn)組,推測(cè)低鹽環(huán)境對(duì)Na+/H+-exchanger基因的表達(dá)具有促進(jìn)作用,Na+/H+-exchanger基因在極低鹽度環(huán)境下的作用更加明顯。鹽度5、10和20實(shí)驗(yàn)組在24—168h表達(dá)量出現(xiàn)再次上調(diào),推測(cè)是由于滲透壓調(diào)控后期需要Na+/H+-exchanger基因的再表達(dá)以補(bǔ)充前期損失Na+/H+-exchanger,與滲透壓水平的維持有關(guān),鹽度5、10和20實(shí)驗(yàn)組在24—168h的部分時(shí)間表達(dá)量低于對(duì)照組,推測(cè)是因?yàn)榍捌贜a+/H+-exchanger基因的高表達(dá)已滿足滲透調(diào)節(jié)作用,高表達(dá)的Na+/H+-exchanger可能對(duì)Na+/ H+-exchanger基因的轉(zhuǎn)錄水平具有負(fù)反饋?zhàn)饔?。鹽度50實(shí)驗(yàn)組基因表達(dá)量在24—168h內(nèi)表達(dá)量顯著低于對(duì)照組,推測(cè)是因?yàn)楦啕}度對(duì)基因表達(dá)產(chǎn)生抑制。

通過對(duì)三疣梭子蟹Na+/H+-exchanger基因的克隆、鑒定以及表達(dá)分析,初步明確了該基因的序列特征及其在鹽度適應(yīng)過程中的生理作用,為水生甲殼動(dòng)物Na+/H+-exchanger基因分子方面的研究和三疣梭子蟹耐低鹽新品系的選育提供了一定理論參考。

[1]Sun Y M,Song Z L,Yan R S,et al. Preliminary study on the growth of Portunus trituberculatus [J]. Acta Ecologica Sinica,1984,4(1):57—64 [孫穎民,宋志樂,嚴(yán)瑞深,等. 三疣梭子蟹生長(zhǎng)的初步研究. 生態(tài)學(xué)報(bào),1984,4(1):57—64]

[2]Li J,Liu P,Gao B Q,et al. The new variety of Portunus trituberculatus “Huangxuan No.1” [J]. Progress in Fishery Sciences,2013,34(5):51—57 [李健,劉萍,高保全,等. 三疣梭子蟹新品種“黃選1號(hào)”的選育. 漁業(yè)科學(xué)進(jìn)展,2013,34(5):51—57]

[3]Yu J H,Pan L Q. Prokaryotic expression of C-type lectin like-domain protein gene of Portunus tritubrculatus and activity analysis of recombinant protein [J]. Progress in Fishery Sciences,2013,34(5):58—63 [于金紅,潘魯青.三疣梭子蟹C-型凝集素的原核表達(dá)和活性檢測(cè). 漁業(yè)科學(xué)進(jìn)展,2013,34(5):58—63]

[4]Sui Y N,Gao B Q,Liu P,et al. The tolerance to and optimal salinity for growth in swimming crab Portunus trituberculatus “Huangxuan No. 1” [J]. Journal of Dalian Ocean University,2012,27(5):398—401 [隋延鳴,高保全,劉萍,等. 三疣梭子蟹“黃選1號(hào)”鹽度耐受性及適宜生長(zhǎng)鹽度分析. 大連海洋大學(xué)學(xué)報(bào),2012,27(5):398—401]

[5]Wang C,Jiang L X,Wang R J,et al. Effect of abrupt and gradual changes in salinity on development and feeding in juvenile swimming crab(Portunus trituberculatus) [J]. Fisheries Science,2010,29(9):510—514 [王沖,姜令緒,王仁杰,等. 鹽度驟變和漸變對(duì)三疣梭子蟹幼蟹發(fā)育和攝食的影響. 水產(chǎn)科學(xué),2010,29(9):510—514]

[6]Zhou S L,Jiang N C,Lu J P,et al. Progress of the study on osmotic regulation in crustacean Ⅰ. The gill's structure and function and its' concerned factors [J]. Donghai Marine Science,2001,19(1):44—51 [周雙林,姜乃澄,盧建平,等. 甲殼動(dòng)物滲透壓調(diào)節(jié)的研究進(jìn)展Ⅰ. 鰓的結(jié)構(gòu)與功能及其影響因子. 東海海洋,2001,19(1):44—51]

[7]Péqueux A. Osmotic regulation in crustaceans [J]. Journal of Crustacean Biology,1995,15(1):51—60

[8]Zhao L,Long X W,Wu X G,et al. Effects of water salinity on osmoregulation and physiological metabolism of adult male Chinese mitten crab Eriocheir sinensis [J]. Acta Hydrobiologica Sinica,2016,40(1):27—34 [趙磊,龍曉文,吳旭干,等. 水體鹽度對(duì)中華絨螯蟹成體雄蟹滲透壓調(diào)節(jié)和生理代謝的影響. 水生生物學(xué)報(bào),2016,40(1):27—34]

[9]Morris S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans[J]. The Journal of Experimental Biology,2001,204(Pt5):979—989

[10]Mcnamara J C,F(xiàn)aria S C. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea:A review [J]. Journal of Comparative Physiology B,2012,182(8):997—1014

[11]Freire C A,Onken H,McNamara J C. A structure-function analysis of ion transport in crustacean gills and excretory organs [J]. Comparative Biochemistry and Physiology,A:Comparative Physiology,2008,151(3):272—304

[12]Onken H,Riestenpatt S. NaCl absorption across split gill lamellae of hyperregulating crabs:Transport mechanisms and their regulation [J]. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology,1998,119(119):883—893

[13]Kirschner L B. The mechanism of sodium chloride uptake in hyperregulating aquatic animals [J]. Journal of Experimental Biology,2004,207(9):1439—1452

[14]Shetlar R E,Towle D W. Electrogenic sodium-proton exchange in membrane vesicles from crab(Carcinus maenas) gill [J]. American Journal of Physiology,1989,257(4Pt2):R924—R931

[15]Burnett L E,Towle D W. Sodium ion uptake by perfusedgills of the blue crab Callinectes sapidus:effects of ouabain and amiloride [J]. Journal of Experimental Biology,1990,149(1):293—305

[16]Lucu ?edomil. Ion transport in gill epithelium of aquatic Crustacea [J]. Journal of Experimental Zoology,1993,265(4):378—386

[17]Towle D W,Rushton M E,Heidysch D,et al. Sodium/proton antiporter in the euryhaline crab Carcinus maenas:molecular cloning,expression and tissue distribution [J]. Journal of Experimental Biology,1997,200(Pt6):1003—1014

[18]Ma J W,Lü J J,Liu P,et al. Effects of abrupt salinity stress on serum osmolarity and ion concentration of“Huangxuan No.1” Portunus trituberculatus [J]. Progress in Fishery Sciences,2016,37(1):58—62 [馬金武,呂建建,劉萍,等. 急性鹽度脅迫對(duì)三疣梭子蟹(Portunus trituberculatus)“黃選1號(hào)”血清滲透壓及離子含量的影響. 漁業(yè)科學(xué)進(jìn)展,2016,37(1):58—62]

[19]Lü J J,Liu P,Wang Y,et al. Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation [J]. PloS One,2013,8(12):1—15

[20]Xu Q H,Liu Y. Gene expression profiles of the swimming crab Portunus trituberculatus exposed to salinity stress [J]. Marine Biology,2011,158(10):2161—2172

[21]Bianchini L Pousségur J. Molecular structure and regulation of vertebrate Na+/H+exchangers [J]. Journal of Experimental Biology,1994,196(6):337—345

[22]Ali M Y,Pavasovic A,Amin S,et al. Comparative analysis of gill transcriptomes of two freshwater crayfish,Cherax cainii and C. destructor [J]. Marine Genomics,2015,22:11—13

[23]Ali M Y,Pavasovic A,Mather P B,et al. Analysis,characterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus [J]. Gene,2015,564(2):176—187

NA+/H+-EXCHANGER IN SWIMMING CRAB(PORTUNUS TRITUBERCULATUS):CLONING,CHARACTERIZATION AND MRNA EXPRESSION UNDER SALINITY STRESS

MA Jin-Wu1,2,Lü Jian-Jian1,3,LIU Ping1,3,GAO Bao-Quan1,3and LI Jian1,3
(1. Key Laboratory of Sustainable Development of Marine Fisheries,Ministry of Agriculture,Yellow Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Qingdao 266071,China; 2. College of Fisheries and Life Science,Shanghai Ocean University,Shanghai 201306,China; 3. Laboratory for Marine Fisheries and Aquaculture,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266071,China)

Na+/H+-exchanger is a membrane-associated enzyme responsible for the active transport of Na+and H+ions across cell membranes and generating chemical and electrical gradients. It plays an important role in salinity adaptation process of aquatic crustacean. The swimming crab(Portunus trituberculatus) distributes widely in the coastal waters of Japan,Korean and China,which is a commercially important marine crab in China. Growth,development and immunity of the crab are significantly affected by salinity variation. In order to investigate the function of Na+/H+-exchanger in P. trituberculatus under salinity stress,Na+/H+-exchanger cDNA(GenBank:KU519329) was cloned from gill tissue of P. trituberculatus by RACE(rapid-amplification of cDNA ends). The full-length of Na+/H+-exchanger cDNA was 4 233 bp(base pairs) including a 519 bp 5′-untranslated region(UTR),a 2961 bp ORF(open reading frame)and a 753 bp 3′-UTR. The ORF encoded 986 amino acids with calculated molecular weight 110.8 kD and theoretical isoelectric point 7.42. Comparison with homologous proteins showed that the deduced Na+/H+-exchanger sequence has the highest sequence identity to Carcinus maenas(87.2%),and the two sequences were clustered into one group by phylogenetic analysis. Typical domains including one signal peptide,one Na+/H+-exchanger domain and twelve transmembrane alpha helixes were found in amino acid sequence of Na+/H+-exchanger. Results of RT-qPCR showed that P. trituberculatus Na+/H+-exchanger was the highest expressed in gill. During salinity stress,the expression of Na+/H+-exchanger of gill in low salinity groups(5,10 and 20) increased significantly during 0—12h. Subsequently,the expression was down-regulated during 24—168h. The expression of Na+/H+-exchanger in gill in high salinity group(50) was almost no change compared to control group during 0—12h,and the expression level significantly decreased compared with the control group during 24—168h. Low salinity significantly induced the expression of Na+/H+-exchanger gene,suggesting that Na+/H+-exchanger of P. trituberculatus plays a vital role mainly in low salt conditions in the process of salinity adaptation.

Portunus trituberculatus; Na+/H+-exchanger; Gene cloning; Salinity stress; Expression analysis

S965.1

A

1000-3207(2016)05-0902-06

10.7541/2016.116

2016-01-29;

2016-04-21

國(guó)家自然科學(xué)基金面上項(xiàng)目(41576147,41306177); 2015年泰山領(lǐng)軍人才工程高效生態(tài)農(nóng)業(yè)創(chuàng)新類計(jì)劃(LJNY2015002); 青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室鰲山科技創(chuàng)新計(jì)劃項(xiàng)目(2015ASKJ02)資助 [Supported by the National Natural Science Foundation of China(Grant No. 41576147 and 41306177); the Project of Taishan Scholars Leading Talent(LJNY2015002); The Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology(No. 2015ASKJ02)]

馬金武(1990—),男,山東臨沂人; 碩士研究生; 主要從事三疣梭子蟹遺傳育種工作。E-mail:1007431629@qq.com

劉萍,研究員; E-mail:liuping@ysfri.ac.cn

猜你喜歡
梭子蟹鹽度克隆
克隆狼
浙江:誕生首批體細(xì)胞克隆豬
“中國(guó)梭子蟹之鄉(xiāng)”尋味之旅
蒸梭子蟹多加[1味]特別鮮
反季養(yǎng)螃蟹仨月凈賺500萬元
玩轉(zhuǎn)梭子蟹
抗BP5-KLH多克隆抗體的制備及鑒定
鹽度和pH對(duì)細(xì)角螺耗氧率和排氨率的影響
鹽度脅迫對(duì)入侵生物福壽螺的急性毒性效應(yīng)
適用于高鹽度和致密巖層驅(qū)油的表面活性劑