陳 沛 黃艷青 謝從新 王春芳
(1. 華中農(nóng)業(yè)大學水產(chǎn)學院,淡水水產(chǎn)健康養(yǎng)殖湖北省協(xié)同創(chuàng)新中心,武漢 430070; 2. 中國水產(chǎn)科學研究院東海水產(chǎn)研究所,農(nóng)業(yè)部東海與遠洋漁業(yè)資源開發(fā)利用重點實驗室,上海 200090)
草魚鈉磷協(xié)同轉(zhuǎn)運載體Slc34a2基因的克隆及組織表達分析
陳沛1黃艷青2謝從新1王春芳1
(1. 華中農(nóng)業(yè)大學水產(chǎn)學院,淡水水產(chǎn)健康養(yǎng)殖湖北省協(xié)同創(chuàng)新中心,武漢 430070; 2. 中國水產(chǎn)科學研究院東海水產(chǎn)研究所,農(nóng)業(yè)部東海與遠洋漁業(yè)資源開發(fā)利用重點實驗室,上海 200090)
為了揭示草魚對磷的吸收機制,運用RT-PCR和快速擴增cDNA末端方法,從草魚(Ctenopharyngodon idella)腸中克隆獲得鈉磷協(xié)同轉(zhuǎn)運載體基因Slc34a2,該基因全長為2446 bp,包含了1938 bp的開放閱讀框,47 bp的5′非編碼區(qū)(Untranslated region,UTR)和461 bp的3′UTR,編碼645個氨基酸。草魚SLC34A2蛋白的分子式為C3215H5125N801O902S30,分子量大小為70.39 kD,等電點為5.68,總平均疏水指數(shù)為0.458。對草魚SLC34A2蛋白結(jié)構(gòu)和功能預測分析,發(fā)現(xiàn)SLC34A2蛋白有11個跨膜域,1個半胱氨酸富集區(qū),且N-端在胞外而C-端在胞內(nèi),也在第二個細胞外環(huán)中發(fā)現(xiàn)4個N-糖基化位點。用鄰接法構(gòu)建系統(tǒng)進化樹,發(fā)現(xiàn)草魚Slc34a2基因與硬骨魚類聚類為一支,且草魚SLC34A2蛋白與鯉(Cyprinus carpio)和斑馬魚(Danio rerio) SLC34A2的相似性最高,分別為90.3%和87.0%。實驗采用了實時熒光定量PCR對草魚Slc34a2 mRNA進行組織表達分析,結(jié)果表明Slc34a2 mRNA在組織中廣譜表達,且在腸中表達最高,其次是肝臟、鰓、腎臟、脾臟、皮膚、肌肉、腦和頭腎。實驗為以后研究提高魚對磷的利用和減少磷的排放奠定分子基礎(chǔ)。
草魚;Slc34a2;分子克??;基因表達
磷是核酸(ATP和GTP)、中間代謝(如:蛋白質(zhì)磷酸化、高能轉(zhuǎn)運載體和血液緩沖)、細胞內(nèi)信號通路、細胞增殖(DNA和RNA)、細胞膜的磷脂成分和骨骼結(jié)構(gòu)所必須的一種礦物質(zhì)[1]。目前在商業(yè)飼料中無機磷的添加量普遍較高,大約每噸飼料含有20—25 kg的Ca(H2PO4)2·H2O,且在投喂的飼料中約有10%—20%直接進入水環(huán)境而未被攝取,而在被攝食的飼料中約有40%磷被魚吸收和存儲,剩下60%磷會排入水環(huán)境[2,3]。由于存在魚類對飼料利用率較低、殘餌量較高的情況,這將導致大量的磷排入養(yǎng)殖水體[2,4]。當水域環(huán)境中磷含量過高時,水體很容易發(fā)生富營養(yǎng)化,結(jié)果導致環(huán)境嚴重的污染。
現(xiàn)在很多研究表明通過飼料配方的優(yōu)化和合適的投喂策略可以提高魚體對磷的利用率和減少磷的排放[5—9]。然而,由于飼料成分、水產(chǎn)養(yǎng)殖操作和魚類物種的差異致使傳統(tǒng)的策略對提高磷的利用率有一定的局限性。因此,本文運用RT-PCR和快速擴增cDNA末端(Rapid amplification of cDNA ends,RACE)技術(shù),從草魚(Ctenopharyngodon idella)中獲得了鈉磷協(xié)同轉(zhuǎn)運載體基因Slc34a2,為揭示草魚對磷的吸收機制提供一定的基礎(chǔ)。
魚吸收磷是通過被動擴散和主動轉(zhuǎn)運[2],維持體內(nèi)磷的平衡是通過腸的吸收和腎臟的重吸收[10]。Brichon[11]最早在歐洲鰻鱺(Anguilla anguilla L.)的腸中觀察到了磷的主動轉(zhuǎn)運,并表明了這一轉(zhuǎn)運符合米氏(Michaelis-Menten)動力學。隨后,一個主動協(xié)同轉(zhuǎn)運系統(tǒng)在鯉(Cyprinus carpio)中被發(fā)現(xiàn)[12]。早期研究表明,在腎臟近端小管和小腸,機體對磷的主動吸收主要依靠IIb型鈉磷協(xié)同轉(zhuǎn)運載體(NaPi-IIb,SLC34A2)[13,14]。在哺乳動物中,II型鈉磷協(xié)同轉(zhuǎn)運載體家族(SLC34)有3個成員:NaPi-IIa(SLC34A1)、NaPi-IIb和NaPi-IIc(SLC34A3),其中SLC34A1和SLC34A2分別在腎近端小管和腸道上皮細胞中被發(fā)現(xiàn)[15]。而在魚類中只有1種SLC34,即SLC34A2[16]。但是,到目前為止關(guān)于魚類Slc34a2基因的研究還不多,只在斑馬魚(Danio rerio)[17,18]、虹鱒(Oncorhynchus mykiss)[19]、比目魚(Pseudopleuronectes americanus)[16]、黃顙魚(Pelteobagrus fulvidraco)[20]和其他魚類[21]中獲得了幾條Slc34a2的cDNA全長或部分序列。此外,在這些魚類中都沒有Slc34a2基因詳細的功能描述。草魚作為我國重要的淡水魚類養(yǎng)殖品種之一,具有生長快、飼料蛋白需求低和肉質(zhì)好等優(yōu)點。本文克隆草魚Slc34a2基因全長,研究了其結(jié)構(gòu)和功能的特征,組織表達的分布,為以后研究提高魚對磷的利用和減少磷的排放奠定分子基礎(chǔ)。
1.1實驗材料
健康的草魚(體重約35—50 g)購自湖北省武漢市白沙洲大市場,試驗前暫養(yǎng)于華中農(nóng)業(yè)大學水產(chǎn)實驗創(chuàng)新中心實驗室內(nèi)1周。實驗期間,每天于8:30 和16:30投喂商品顆粒飼料,并在投喂前換去1/3的水。1周后,隨機抽取5尾草魚,麻醉后分別取皮膚、肌肉、鰓、肝臟、腦、脾臟、腎臟、腸和頭腎組織,放入裝有Trizol(Invitrogen,美國)的2 mL EP管中,并迅速轉(zhuǎn)移到液氮罐中凍存?zhèn)溆谩?/p>
1.2試驗方法
總RNA提取和cDNA合成試驗用的器具經(jīng)過0.1% DEPC(Diethypyro-carbonate,焦碳酸二乙酯)水浸泡過夜、雙蒸水沖洗、高溫高壓滅菌。按照Trizol試劑說明書進行各組織樣品總RNA的提取,分別用Nanodrop 2000C(Thermo Fisher Scientific,美國) 分光光度計和1.5%(w/v) 瓊脂糖凝膠電泳檢測RNA的濃度和完整性。利用SMARTTMRACE cDNA Amplification Kit Advantage?PCR Kit & Polymerase Mix試劑盒(Clontech,美國)合成RACE模板,具體方法參考試劑盒說明書。合成的cDNA都在-20℃保存。
草魚Slc34a2 cDNA全長克隆根據(jù)發(fā)表在NCBI上已知的鯉(Cyprinus carpio,AAG35803.1)、鳑鲏(Tanakia limbata,EU647761.1)和斑馬魚(NP_878297.1)的Slc34a2基因序列,用ClustalW法比對序列并在其保守區(qū)用 Primer Premier 6.0和Oligo7.0軟件設(shè)計1對兼并引物Slc34a2-F和Slc34a2-R(表1)。以草魚腸cDNA為模板,Slc34a2-F和Slc34a2-R為引物進行PCR擴增。25 μL PCR反應體系中含有:2 μLcDNA模板,12.5 μL Premix TaqTM(0.05 U/μL)(TaKaRa,日本)酶,上下游引物各1 μL(10 μmol/L)和8.5 μL雙蒸水。輕彈PCR管底,混勻樣品,瞬時離心。PCR擴增程序:94℃預變性3min;94℃變性30s,56℃退火30s,72℃延伸30s,35個循環(huán);延伸7min。擴增完成后,取5 μL反應產(chǎn)物,在 1.5%(w/v)的瓊脂糖凝膠上以 200 V恒定電壓電泳檢測,對照 2000 bp DNA Marker(TaKaRa)驗證擴增結(jié)果。參照DNA膠回收試劑盒(Invitrogen)說明書回收、純化擴增產(chǎn)物,并連接至pMD19-T載體(TaKaRa),重組質(zhì)粒轉(zhuǎn)化至E.coli DH5α感受態(tài)(TaKaRa),經(jīng)菌落PCR初步鑒定為陽性克隆后由上海生工生物有限公司雙向測序。以草魚腸5′和3′RACEcDNA為模板,根據(jù)RACE 擴增試劑盒說明分別擴增5′端和3′端序列,然后對所得序列進行拼接,獲得其全長cDNA序列。
表1 本文中所用引物序列Tab. 1 Sequences of primers used in the present study
生物信息學分析利用DNAStar中的EdiSeq程序進行開放閱讀框(ORF)的預測與氨基酸翻譯,SeqMan程序進行cDNA的拼接; 應用ProtParam tool(http://www.expasy.org/)對其編碼蛋白質(zhì)的分子量、等電點等基本性質(zhì)進行理論預測; 應用SignalP 4.1 Server(http://www.cbs.dtu.dk/services/ SignalP/)對其進行信號肽預測; 應用TMHMM Server v.2.0(http://www.cbs.dtu.dk/services/ TMHMM/)對蛋白質(zhì)的跨膜區(qū)進行預測; 應用ClustalW軟件對其同源蛋白質(zhì)進行比對分析; 應用MEGA 6.0軟件,分別采用鄰接法(Neighbor-joining)對同源蛋白質(zhì)進行系統(tǒng)進化樹構(gòu)建,利用自展法(Bootstrap)進行1000次重復,對系統(tǒng)樹進行可信度評估,其余參數(shù)為默認。
Slc34a2 mRNA在不同組織中表達分析根據(jù)Slc34a2基因保守區(qū)域設(shè)計特異的定量引物為Slc34a2-qF和Slc34a2-qR(表1),而選取草魚β-actin(DQ211096.1)作為內(nèi)參基因,引物為β-actin-qF和βactin-qR(表1)。cDNA模板利用EASY Dilution(TaKaRa)稀釋10倍后,取其2 μL作為實時熒光定量PCR(qPCR)的模板,用Rotor-Gene Q(QIAGEN,德國)平臺進行實驗。用目的基因和β-actin的cDNA作為模板分別來制備相應的標準曲線[22],然后進行目的基因的定量實驗。20 μL的反應體系包括2 μL cDNA、上,下游引物各0.5 μL(10 μmol/L)、10 μL的SYBR?Premix Ex TaqTMII(2×)(TaKaRa)和7 μL雙蒸水。反應條件為95℃預變性30s; 95℃變性5s,60℃退火20s,72℃延伸20s,35次循環(huán); 然后進行熔解曲線的擴增。標準曲線結(jié)果顯示目的基因和內(nèi)參基因的R2值分別為0.999和0.998,相應的擴增效率(E)為92%和93%。
Slc34a2基因相對表達量的數(shù)據(jù)運用2-ΔΔCt方法[23]計算,其數(shù)值用平均值±標準誤(Mean ± SEM)表示。數(shù)據(jù)分別經(jīng)過正態(tài)性檢驗和方差齊性檢驗后,采用SPSS 21.0 軟件進行One-Way方差分析(ANOVA),使用Duncan's multiple-range test進行相對表達分析,P<0.05表示存在顯著性差異。
2.1草魚Slc34a2基因全長cDNA的克隆與序列分析
草魚Slc34a2的cDNA全長為2446 bp(登錄號為KM111528.1),包括1938 bp的開放閱讀框,47 bp的 5′非編碼區(qū)(Untranslated region,UTR),461 bp的3′UTR,poly(A)(多聚腺苷酸)尾巴,1個加尾信號(AATAAA)和1個mRNA不穩(wěn)定基序(ATTTA)。推導草魚SLC34A2蛋白的分子式為C3215H5125N801O902S30、分子量大小為70.39 kD、等電點為5.68、總平均疏水指數(shù)為0.458。通過TMHMM軟件對該蛋白結(jié)構(gòu)域進行預測,結(jié)果發(fā)現(xiàn)了11個跨膜域(Transmembrane domains,TMDs),分別為M1(aa 83—105)、M2(aa 118—140)、M3(aa160—182)、M4(aa 202—224)、M5(aa 342—364)、M6(aa 387—409),M7(aa 414—431)、M8(aa 438—455)、M9(aa 487—465)、M10(aa 508—530)和M11(aa 534—453)(圖1); SLC34A2蛋白的N-端在胞外而C-端在胞內(nèi)(圖1)。
圖1 預測的草魚SLC34A2蛋白的二級結(jié)構(gòu)模型Fig. 1 Predicted secondary structure model of grass carp SLC34A2在第二個細胞外環(huán)中的六邊形表示N-糖基化位點Hexagon in second extracellular loop indicates N-glycosylation sites
2.2SLC34A2氨基酸序列比較分析
通過BLAST 比對10條硬骨魚類的SLC34A2氨基酸序列,結(jié)果發(fā)現(xiàn)草魚SLC34A2氨基酸序列與鯉相似度最高為90.3%、與斑馬魚的相似度為87%,與青鳉(Oryzias latipes,XP_004068374.1)和比目魚(AAB16821.1)相似度分別為72.1%和70.2%,與伯氏樸麗魚(Haplochromis burtoni,XP_005946750.1)、尼羅羅非魚(Oreochromis niloticus,XP_0034479 62.2)、斑馬宮麗魚(Maylandia zebra,XP_004567 970.1)、墨西哥脂鯉(Astyanax mexicanus,XP_ 007239743.1)、黃顙魚(ADM18964.2)的相似度分別為67.7%、67.1%、67.1%、66.5%和64.5%。
多重序列比較發(fā)現(xiàn),在10個硬骨魚類SLC34A2中第一個細胞內(nèi)環(huán)(First intracellular loop,ICL-1)和第三個細胞外環(huán)(Third extracellular loop,ECL-3)非常的保守,而最大的不同是在ECL-2,N-端和C-端的區(qū)域。在草魚SLC34A2蛋白最大的細胞外環(huán)ECL-2中發(fā)現(xiàn)有4個N-連接糖基化位點(N-X-S/T位于N-275,293,301和320); 其中3個N-連接糖基化位點(N-275,293和320)在10個物種間非常的保守,而N-301位點僅僅沒有在青鳉SLC34A2蛋白中發(fā)現(xiàn)。除此之外,在C-端發(fā)現(xiàn)了一段非常保守的半胱氨酸富集區(qū)和PDZ結(jié)合基序X-T-X-L/F。
2.3草魚SLC34A2系統(tǒng)進化樹的構(gòu)建
在NCBI中選取了17種已知或預測的SLC34A2蛋白序列來構(gòu)建系統(tǒng)進化樹,結(jié)果發(fā)現(xiàn)這些SLC34A2蛋白在進化上可分為三大支,在分類地位上分別屬于軟體動物類(Mmolluscs)、哺乳類(Mammals)和硬骨魚類(Bony fishes)(圖2)。草魚SLC 34A2在進化上與鯉親緣關(guān)系最近,與斑馬魚親緣關(guān)系次之。
圖2 SLC34A2氨基酸序列的系統(tǒng)進化樹Fig. 2 The phylogenetic tree of SLC34A2 amino acid sequences Hap. Haplochromis burtoni(XP_005946750.1); Pun. Pundamilia nyererei(XP_005747132.1); May. Maylandia zebra(XP_004567970.1);Ore. Oreochromis niloticus(XP_003447962.2); Ast. Astyanax mexicanus(XP_007239743.1); Pel. Pelteobagrus fulvidraco(ADM18964.2);Cte. Ctenopharyngodon idellus(AIS39798.1); Da. Danio rerio(NP_878297.1); Ps. Pseudopleuronectes americanus(AAB16821.1); Xip. Xiphophorus maculatus(XP_005812800.1); Ory. Oryzias latipes(XP_004068374.1); Myo. Myotis davidii(ELK24687.1); Hom. Homo sapiens(XP_007239743.1); Cyp. Cyprinus carpio(AAG35803.1); Mac. Macaca fascicularis(EHH53597.1); Cr. Crassostrea gigas(EKC36780.1); Apl. Aplysia californica(XP_005107621.1)
2.4草魚Slc34a2 mRNA在不同組織中的表達
采用了qPCR方法分析了Slc34a2 mRNA在草魚組織中的表達,結(jié)果表明Slc34a2 mRNA在組織中廣譜表達,且在各種組織中有顯著性差異(P<0.05);Slc34a2 mRNA在腸中表達量最高,其次是肝臟、鰓、腎臟、脾臟、皮膚、肌肉、腦和頭腎(圖3)。
圖3 草魚Slc34a2 mRNA在組織中的分布Fig. 3 The expression of Slc34a2 in tissues of grass carp數(shù)據(jù)用平均值±標準誤表示,不同的小寫字母表示有顯著性差異(P<0.05)Values are means ± SEM(n = 3). Bars with different lowercase letters are significantly different(P<0.05)
在哺乳動物中II型鈉磷協(xié)同轉(zhuǎn)運載體家族(SLC34)有3個成員:NaPi-IIa(SLC34A1)、NaPi-IIb(SLC34A2)和NaPi-IIc(SLC34A3),在魚類中SLC34家族只有一個亞型為NaPi-IIb(SLC34A2)[14,15],而在本研究中只獲得了一條編碼645個氨基酸的草魚Slc34a2基因。
3.1草魚SLC34A2蛋白結(jié)構(gòu)分析
先前的研究提出了真核生物SLC34蛋白的二級拓撲學結(jié)構(gòu)應該由8個TMDs組成[13]。然而,F(xiàn)orster等[24]和Lambert等[25]表明哺乳動物的NaPi-IIa蛋白拓撲學結(jié)構(gòu)最可能由8—12個TMDs組成,隨后Radanovic等[10]提出了一個由12個TMDs組成的小鼠(Rattus norvegicus) NaPi-IIa拓撲模型。與哺乳動物不同的是,草魚SLC34A2蛋白是由11個TMDs組成,這點與黃顙魚腸SLC34A2A2蛋白結(jié)構(gòu)相似[20]。草魚SLC34A2蛋白的N-端和C-端分別在胞外和胞內(nèi),且在ECL-2有4個N-糖基化位點。在當前的研究中,N-連接的糖基化位點已經(jīng)被視為SLC34A2蛋白的特征之一[10],并參與頂端膜中Slc34a2基因表達的調(diào)控[26]。也有研究表明,小鼠腸道SLC34A2是一種醇蛋白,且其糖基化與鼠的年齡有一定的關(guān)系[27,28]。
3.2SLC34A2氨基酸序列比較分析
通過序列比較分析了10種硬骨魚的SLC34A2氨基酸序列,結(jié)果發(fā)現(xiàn),ICL-1和ECL-3非常的保守,而主要區(qū)別是位于ECL-2,N-端和C-端區(qū)域。Murer等[15]發(fā)現(xiàn)ICL-1和ECL-3可能是運輸通道的重要功能區(qū)域。SLC34A2蛋白的C-端對調(diào)控膜的運輸和定位有重要的作用[29]。預測草魚SLC34A2氨基酸序列發(fā)現(xiàn)在C-端有一個保守PDZ結(jié)合基序A-T-HL,該基序通過與PDZ蛋白質(zhì)的交互作用來影響膜頂端轉(zhuǎn)運蛋白的表達[30,31]。Forster等[24]在NaPi-IIb蛋白中發(fā)現(xiàn)了半胱氨酸富集區(qū),而在NaPi-IIa和NaPi-IIc中沒有發(fā)現(xiàn)。在NaPi-IIb類型的轉(zhuǎn)運蛋白中,半胱氨酸殘基是非常保守的,且在其他膜蛋白中不存在[32]。氨基酸序列比較分析也表明在硬骨魚NaPi-IIb中半胱氨酸殘基是非常很保守[20]。在非洲爪蟾蜍(Xenopus laevis)的卵母細胞中,半胱氨酸殘基對NaPi-II轉(zhuǎn)運蛋白的功能表達是必須的[32]。Hernando等[33,34]表明NaPi-II轉(zhuǎn)運載體的C-端區(qū)域存在許多能識別不同細胞背景的結(jié)合位點。有趣的是,NaPi-IIb亞型在Madin-Darby狗腎細胞(MDCK)是嚴格限于刷狀緣,而NaPi-IIa分布在頂端和基底膜[34]。為了研究半胱氨酸殘基的作用,McHaffie等[32]通過小鼠NaPi-IIb構(gòu)造體瞬變地和穩(wěn)定地轉(zhuǎn)染到MDCK的實驗,表明了NaPi-IIb構(gòu)造體的半胱氨酸殘基具有棕櫚?;淖饔煤陀绊懟啄さ膫鬟f和分揀的功能,這可能會導致細胞內(nèi)部或頂端膜上物質(zhì)的滯留。綜上所述,我們可以推測在C-端的半胱氨酸富集區(qū)可以作為腸SLC34A2蛋白結(jié)構(gòu)的標志性特征之一。
3.3草魚SLC34A2組織表達
不同種類魚的其他Slc34a2亞型也被報道。通過Northern和qPCR技術(shù),Slc34a2的組織分布在不同魚中展現(xiàn)出不同的結(jié)果。例如,比目魚腸的Slc34a2 mRNA最初觀察到是在大腦、性腺、心臟或腎臟組織中[16,35]。在斑馬魚中,兩種Slc34a2(NaPi-IIb1和NaPi-IIb2)被克隆,NaPi-IIb1在腸、腎臟和眼睛中表達[17],而NaPi-IIb2的表達在其他組織中普遍存在[18]。雖然NaPi-IIb1和NaPi-IIb2的結(jié)構(gòu)相似,但是功能卻不同; NaPi-IIb2對電壓敏感,對Na+和有較高的親和力,但對pH不敏感[17]。在黃顙魚的腸和腎臟中也分別克隆到了不同亞型的Slc34a2,即腸Slc34a2a1和Slc34a2a2,腎Slc34a2b,腸Slc34a2a1和Slc34a2a2主要在腸中表達,其他的組織中表達很低,而腎Slc34a2b主要分布在腎臟中,其次是肌肉和皮膚[20]。在虹鱒中,3個亞型Slc34a2分別在小腸、幽門盲和腎臟中被發(fā)現(xiàn)[36]。而本文通過qPCR表明Slc34a2在多種組織中廣譜表達,且在腸中表達最高,其次是肝臟。Slc34a2在皮膚中表達表明魚可能通過皮膚來吸收水中的無機磷[21,37]。綜上所述,魚類Slc34a2基因(NaPi-IIb)有幾個亞型,而其在組織中的廣泛表達表明了Slc34a2對調(diào)控機體磷酸鹽平衡有著非常重要的作用。
[1]National Research Council(NRC). Nutrient Require-ments of Fish and Shrimp [M]. Washington,DC:National Academy Press. 2011,168—169
[2]Wang C F,Tang Q,Duan M M,et al. Phosphorus absorption and homeostasis regulation in fish [J]. Freshwater Fisheries,2014,44(1):106—111 [王春芳,唐琴,段鳴鳴,等. 魚類磷吸收和磷平衡調(diào)節(jié)的機制及影響因素. 淡水漁業(yè),2014,44(1):106—111]
[3]Sugiura S H,Marchant D D,Kelsey K,et al. Effluent profile of commercially used low-phosphorus fish feeds [J]. Environmental Pollution,2006,140(1):95—101
[4]Tang Q,Wang C,Xie C,et al. Dietary available phosphorus affected growth performance,body composition,and hepatic antioxidant property of juvenile yellow catfish Pelteobagrus fulvidraco [J]. Scientific World Journal,2012,2012(7):987570—987570
[5]Yang Y H,Wang Y Y,Lu Y,et al. Effect of replacing fish meal with soybean meal on growth,feed utilization and nitrogen and phosphorus excretion on rainbow trout(Oncorhynchus mykiss) [J]. Aquaculture International,2011,19(3):405—419
[6]Cho C Y,Bureau D P. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture [J]. Aquaculture Research,2001,32(s1):349—360
[7]Talbot C,Hole R. Fish diets and the control of eutrophication resulting from aquaculture [J]. Journal of Applied Ichthyology,1994,10(4):258—270
[8]Rodehutscord M. Response of rainbow trout(Oncorhynchus mykiss) growing from 50 to 200 g to supplements of dibasic sodium phosphate in a semi-purified diet[J]. Journal of Nutrition,1996,126(1):324—331
[9]Hernández A,Satoh S,Kiron V. Effect of monocalcium phosphate supplementation in a low fish meal diet for rainbow trout based on growth,feed utilization,and total phosphorus loading [J]. Fisheries Science,2005,71(71):817—822
[10]Radanovic T,Gisler S M,Biber J,et al. Topology of the type Ⅱa Na+/P(i) cotransporter [J]. The Journal of Membrane Biology,2006,212(1):41—49
[11]Brichon G. Phosphorus absorption by the intestine of the eel(Anguilla anguillaL). 1. Demonstration and characteristics of in vitro phosphate ion transport in the fresh water eel [J]. Comptes Rendus Des Séances De La Société De Biologie Et De SesFiliales,1973,167(8):1142—1145
[12]Nakamura Y. Sodium-dependent absorption of inorganic phosphate by the carp intestine [J]. Comparative Biochemistry & Physiology A Comparative Physiology,1985,80(3):437—439
[13]Wagner C A,Hernando N,F(xiàn)orster I C,et al. The SLC34 family of sodium-dependent phosphate transporters [J]. PflügersArchiv-European Journal of Physiology,2014,466(1):139—153
[14]Werner A,Kinne R K. Evolution of the Na-P(i) cotransport systems [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology,2001,280(2):301—312
[15]Murer H,F(xiàn)orster I,Biber J. The sodium phosphate cotransporter family SLC34 [J]. PflügersArchiv-European Journal of Physiology,2004,447(5):763—767
[16]Werner A,Murer H,Kinne R K. Cloning and expression of a renal Na-Pi cotransport system from flounder [J]. American Journal of Physiology-Renal Physiology,1994,267(2):311—317
[17]Nalbant P,Boehmer C,Dehmelt L,et al. Functional characterization of a Na+-phosphate cotransporter(NaPi-Ⅱ)from zebrafish and identification of related transcripts [J]. Journal of Physiology,1999,520(1):79—89
[18]Graham C,Nalbant P,Scholermann B,et al. Characterization of a type Ⅱbsodium-phosphate cotransporter from zebra fish(Danio rerio) kidney [J]. American Journal of Physiology Renal Physiology,2003,284(4):727—736
[19]Sugiura S H,F(xiàn)erraris R P. Contributions of different NaPi cotransporter isoforms to dietary regulation of P transport in the pyloric caeca and intestine of rainbow trout [J]. Journal of Experimental Biology,2004,207(12):2055—2064
[20]Chen P,Tang Q,Wang C. Characterizing and evaluating the expression of the type Ⅱb sodium-dependent phosphate cotransporter(slc34a2) gene and its potential influence on phosphorus utilization efficiency in yellow catfish(Pelteobagrus fulvidraco) [J]. Fish Physiology & Biochemistry,2015,42(1):1—14
[21]Sugiura S. Identification of intestinal phosphate transporters in fishes and shellfishes [J]. Fisheries Science,2009,75(1):99—108
[22]Deer D M,Lampel K A,González-Escalona N. A versatile internal control for use as DNA in real-time PCR and as RNA in real-time reverse transcription PCR assays [J]. Letters in Applied Microbiology,2010,50(4):366—372
[23]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Research,2001,29(9):2002—2007
[24]Forster I C,K?hler K,Biber J,et al. Forging the link between structure and function of electrogenic cotransporters:the renal type Ⅱa Na+/Pi cotransporter as a case study [J]. Progress in Biophysics & Molecular Biology,2002,80(3):69—108
[25]Lambert G,Traebert M,Hernando N,et al. Studies on the topology of the renal type Ⅱ NaPi-cotransporter [J]. Pflügers Archiv-European Journal of Physiology,1999,437(6):972—978
[26]Hayes G,Busch A,L?tscher M,et al. Role of N-linked glycosylation in rat renal Na/Pi-cotransport [J]. Journal of Biological Chemistry,1994,269(39):24143—24149
[27]Arima K,Collins J F,Hines E R,et al. Molecular cloning of murine sodium-phosphate cotransporter type Ⅱb(Na/Pi-Ⅱb) gene promoter and characterization of gene structure 1 [J]. Biochimica et Biophysica Acta-Gene Structure and Expression,2000,1494:149—154
[28]Arima K,Hines E R,Kiela P R,et al. Glucocorticoid regulation and glycosylation of mouse intestinal type Ⅱb Na-Pi cotransporter during ontogeny [J].American Journal of Physiology Gastrointestinal and Liver Physiology,2002,283(2):426—434
[29]Murer H,Hernando N,F(xiàn)orster L,et al. Molecular mechanisms in proximal tubular and small intestinal phosphate reabsorption(Plenary Lecture) [J]. Molecular Membrane Biology,2001,18(1):3—11
[30]Fanning A S,Anderson J M. Protein-protein interactions:PDZ domain networks [J]. Current Biology,1996,6(11):1385—1388
[31]Gisler S M,Stagljar I,Traebert M,et al. Interaction of the type Ⅱa Na/Pi cotransporter with PDZ proteins [J]. Journal of Biological Chemistry,2001,276(12):9206—9213
[32]Mchaffie G S,Graham C,Kohl B,et al. The role of an intracellular cysteine stretch in the sorting of the type ⅡNa/phosphate cotransporter [J]. Biochimica et Biophysica Acta-Biomembranes,2007,1768(9):2099—2106
[33]Hernando N,Karim-Jimenez Z,Biber J,et al. Molecular determinants for apical expression and regulatory membrane retrieval of the type Ⅱa Na/Pi cotransporter [J]. Kidney International,2001,60(2):431—435
[34]Hernando N,Sheikh S,Karim-Jimenez Z,et al. Asymmetrical targeting of type Ⅱ Na-P(i) cotransporters in renal and intestinal epithelial cell lines [J]. American Journal of Physiology Renal Physiology,2000,278(3):361—368
[35]Kohl B,Herter P,Hülseweh B,et al. Na-Pi cotransport in flounder:same transport system in kidney and intestine[J]. American Journal of Physiology Renal Physiology,1996,270(6):937—944
[36]Sugiura S H,Kelsey K,F(xiàn)erraris R P. Molecular and conventional responses of large rainbow trout to dietary phosphorus restriction [J]. Journal of Comparative Physiology B,2007,177(4):461—472
[37]M?bjerg N,Werner A,Hansen S M,et al. Physiological and molecular mechanisms of inorganic phosphate handling in the toad Bufobufo [J]. PflügersArchiv-European Journal of Physiology,2007,454(1):101—113
MOLECULAR CHARACTERIZATION AND TISSUE DISTRIBUTION OF SODIUM-DEPENDENT PHOSPHATE COTRANSPORTER GENE(SLC34A2) IN GRASS CARP CTENOPHARYNGODON IDELLA
CHEN Pei1,HUANG Yan-Qing2,XIE Cong-Xin1and WANG Chun-Fang1
(1. Freshwater Aquaculture Collaborative Innovation Center of Hubei Province,the College of Fisheries,Huazhong Agricultural University,Wuhan 430070,China; 2. Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization,Ministry of Agriculture,East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Shanghai 200090,China)
To reveal the mechanism of grass carp(Ctenopharyngodon idella) on absorbing phosphate,a sodium-dependent phosphate cotransporter gene(Slc34a2) was cloned from grass carp intestine. The full-length cDNA of Slc34a2 was consisted of 2446 bp with a 1938 bp open reading frame,a 47 bp 5′UTR(untranslated region) and a 461 bp 3′UTR,which encoded 645 amino acids with an estimated formula of C3215H5125N801O902S30that has 70.39 kD molecular weight,a 5.68 isoelectric point,and 0.458 grand average of hydropathicity. The putative grass carp SLC34A2 protein had eleven membrane-spanning domains with the extracellular N-termini and intracellular C-termini and acysteinerich region in C-termini domain as well as four N-glycosylation sites in second extracellular loop. The phylogenetic tree based onneighbor-joining method revealed that the SLC34A2 of grass carp was clustered with other teleost fish. The deduced amino acid sequence showed 90.3% and 87.0% sequence identity to Cyprinus carpio and Danio rerio,respectively. The highest level of Slc34a2 mRNA was in the intestine,followed by the liver,gill,kidney,spleen,skin,muscle,brain and head-kidney. Through cloning the full-length of Slc34a2 grass carp,this paper studied the characteristics of SLC34A2 structure,function and tissues distribution for laying the molecular foundation for further efforts to improve phosphate utilization and minimize the excretion of phosphorus.
Grass carp; Slc34a2; Molecular characterization; Gene expression
S965.1;Q344+.1
A
1000-3207(2016)05-0879-07
10.7541/2016.113
2015-08-31;
2016-01-06
國家自然科學基金(31172421); 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項基金(CARS-46)資助 [Supported by the National Natural Science Foundation of China(31172421); the Earmarked Fund for China Agriculture Research System(CARS-46)]
陳沛(1990—),男,湖北監(jiān)利人; 碩士研究生; 主要研究方向為分子營養(yǎng)學。E-mail:chenpei879368301@126.com
王春芳(1975—),主要研究方向為魚類營養(yǎng)與環(huán)境。E-mail:cfwang@mail.hzau.edu.cn