張世勇 鐘立強(qiáng) 秦 欽 王明華 潘建林 陳校輝 邊文冀
(1. 江蘇省淡水水產(chǎn)研究所,南京 210017; 2. 江蘇省農(nóng)業(yè)種質(zhì)資源保護(hù)與利用平臺,南京 210014)
斑點(diǎn)叉尾鮰GHRH基因3個(gè)SNPs位點(diǎn)及其單倍型組合與生長性狀的關(guān)聯(lián)分析
張世勇1,2鐘立強(qiáng)1,2秦欽1,2王明華1,2潘建林1,2陳校輝1,2邊文冀1,2
(1. 江蘇省淡水水產(chǎn)研究所,南京 210017; 2. 江蘇省農(nóng)業(yè)種質(zhì)資源保護(hù)與利用平臺,南京 210014)
研究旨在探討生長激素釋放激素基因(Growth hormone-releasing hormone,GHRH)對斑點(diǎn)叉尾鮰(Ictalurus punctatus)生長性狀的影響。采用DNA混池測序法篩選GHRH基因的單核苷酸多態(tài)性(Single nucleotide polymorphisms,SNPs)位點(diǎn),使用SNaPshot法將篩選到的SNPs多態(tài)性位點(diǎn)進(jìn)行分型,并對這些位點(diǎn)進(jìn)行連鎖不平衡和單倍型分析。結(jié)果表明,在GHRH基因內(nèi)含子區(qū)域共檢測到4個(gè)SNPs位點(diǎn),并成功地對3個(gè)位點(diǎn)進(jìn)行了分型,3個(gè)位點(diǎn)間均不存在強(qiáng)連鎖不平衡; 3個(gè)SNPs位點(diǎn)在176尾斑點(diǎn)叉尾鮰中形成了6種有效單倍型。關(guān)聯(lián)分析表明SNP位點(diǎn)g.6301 G>A的AA基因型的體質(zhì)量顯著性地高于AG和GG型(P<0.05),比群體的平均體質(zhì)量高14%。單倍型組合H1/H4和H1/H5個(gè)體的體質(zhì)量和體長極顯著性地高于其他單倍型組合(P<0.01),體質(zhì)量比群體平均體質(zhì)量分別高30%和15%,體長比群體平均體長分別高7%和6%。研究為斑點(diǎn)叉尾鮰生長性狀分子標(biāo)記輔助選育和QTL定位提供了參考依據(jù)。
斑點(diǎn)叉尾鮰;GHRH;SNP;SNaPshot;生長性狀;單倍型分析;關(guān)聯(lián)分析
生長激素釋放激素(Growth hormone-releasing hormone,GHRH)又被稱為生長激素釋放因子,1981年首次從肢端肥大癥病人的胰腺腫瘤組織中分離出來[1]。在哺乳動物中,GHRH最基本的功能是促進(jìn)生長激素(Growth hormone,GH)的合成和分泌[2],除此之外還具有促進(jìn)細(xì)胞的增殖[3]、細(xì)胞分化[4]、免疫調(diào)控[5]、睡眠調(diào)控[6]等功能。魚類GHRH基因最早于2000年從斑馬魚(Danio rerio)中克隆鑒定出來[7],與大多數(shù)哺乳動物相似,魚類GHRH基因具有5個(gè)外顯子。魚類GHRH成熟多肽由27個(gè)氨基酸組成,具有高度的保守性[8],與人類GHRH同源性高達(dá)81.5%。魚類GHRH由下丘腦分泌,然后與垂體GH分泌細(xì)胞表面的生長激素釋放激素受體(Growth hormone-releasing hormone receptor,GHRH-R)結(jié)合,并通過腺甘酸環(huán)化酶/ cAMP/蛋白激酶信號通路和NO/NO合酶信號通路介導(dǎo),從而促使GH分泌細(xì)胞分泌GH[9]。GHRH/ GHRH-R體系已經(jīng)陸續(xù)在一批硬骨魚類中得到證實(shí),包括斑馬魚(Danio rerio)[10]、金魚(Carassius auratus)[10]、石斑魚(Epinephelus coioides)[11]、牙鲆(Paralichthys olivaceus)[12]和半滑舌鰨(Cynoglossus semilaevis)[13]等。
GHRH基因的SNPs多態(tài)性與生長性狀的關(guān)聯(lián)分析在畜牧動物中已經(jīng)有較多的報(bào)道。Baile和Buonomo[14]在奶牛GHRH基因中發(fā)現(xiàn)一種低頻率基因型(AA型)個(gè)體比其他基因型產(chǎn)奶率高30%。Cheong等[15]在朝鮮牛GHRH基因5′端調(diào)控區(qū)發(fā)現(xiàn)SNP位點(diǎn)-4241A> T與屠宰率顯著性相關(guān),類似的現(xiàn)象也在豬中發(fā)現(xiàn)[16]。Franco等[17]檢測出大量SNPs位點(diǎn)與長白豬日增重、脂肪厚度等性狀相關(guān)聯(lián)。魚類其他生長相關(guān)基因的SNP多態(tài)性與生長性狀的關(guān)聯(lián)分析在大西洋鮭(Salmo salar)[18]、亞洲鱸(Lates calcarifer)[19]、鯉(Cyprinus carpio)[20—22]等魚類中已進(jìn)行過大量的研究。然而GHRH基因僅在北極紅點(diǎn)鮭(Salvelinus alpinus)和半滑舌鰨(Cynoglossus semilaevis)中做過此方面研究,2003年Tao和Boulding[23]在北極紅點(diǎn)鮭GHRH基因第四內(nèi)含子上篩選到1個(gè)SNP位點(diǎn)與早期生長的生長率顯著相關(guān); 2015年Guo等[24]利用高通量測序技術(shù)在半滑舌鰨GHRH基因的第二內(nèi)含子上發(fā)現(xiàn)一個(gè)突變位點(diǎn)與多種生長參數(shù)顯著相關(guān)。然而,其他水產(chǎn)動物至今還未見相關(guān)研究報(bào)道。
1.1試驗(yàn)動物
本研究所用斑點(diǎn)叉尾鮰樣本均來自于江蘇省淡水水產(chǎn)研究所祿口試驗(yàn)基地。1997—2004 年從美國引進(jìn)德克薩斯(1997)群體、阿肯色(1999)群體、密西西比(2001)群體、阿肯色(2003)群體和阿肯色(2004)群體共405尾建立育種基礎(chǔ)群體,利用基礎(chǔ)群體進(jìn)行G0代家系構(gòu)建。2013年6月利用G0代家系構(gòu)建G1代家系,為了減小環(huán)境對斑點(diǎn)叉尾鮰生長的影響,苗種培育按照同一標(biāo)準(zhǔn)進(jìn)行,即均一的換水速率、投喂量、養(yǎng)殖密度、充氧量以及水溫。待到家系平均日齡為520d時(shí)掃描記錄存活個(gè)體編號,測量個(gè)體的體質(zhì)量和體長等信息。同時(shí)采集每尾魚的尾鰭組織,95%酒精浸泡,-20℃保存。
1.2基因組DNA提取
斑點(diǎn)叉尾鮰尾鰭DNA的提取使用UNIQ-10柱式動物基因組DNA抽提試劑盒(上海生工生物工程股份有限公司),操作過程按照試劑盒說明進(jìn)行。1%瓊脂糖凝膠電泳檢測DNA提取效果,紫外分光光度計(jì)(Eppendorf,德國)測定DNA樣品濃度。
1.3引物設(shè)計(jì)
根據(jù)GenBank數(shù)據(jù)庫公布的斑點(diǎn)叉尾鮰GHRH全基因序列(FJ882999),使用Primer Premier 5軟件設(shè)計(jì)兩對引物P1和P2。引物P1(F:AACACCGAG CTGCGATTACTC; R:GCCTCGTGACTGTC TGATTGG)主要用于擴(kuò)增第一內(nèi)含子部分序列、第二外顯子、第二內(nèi)含子、第三外顯子、第三內(nèi)含子部分序列; 引物P2(F:AACCAGGCCAGGA TCTGAACAC; R:ACAGTTTGGCTCAGCATT TCTG)主要用于擴(kuò)增第四外顯子、第四內(nèi)含子、第五外顯子。
1.4PCR擴(kuò)增及測序
超臨界流體萃取技術(shù)是現(xiàn)代化工分離中出現(xiàn)的新技術(shù),是現(xiàn)在國家應(yīng)用比較廣泛的技術(shù),超臨界流體萃取技術(shù)具有工藝簡單,無有機(jī)溶劑殘留,操作條件溫和等傳統(tǒng)工藝不可比擬的優(yōu)點(diǎn),在油脂生產(chǎn)中,避免油脂氧化酸敗,而且不存在溶劑殘留,有效的克服壓榨法產(chǎn)率低、精制工藝繁瑣,產(chǎn)品色澤不理想等缺點(diǎn)。
隨機(jī)抽取40尾斑點(diǎn)叉尾鮰DNA樣品,調(diào)整每個(gè)樣品濃度至100 ng/μL,各取1 μL混合構(gòu)建DNA池。以DNA池和20尾個(gè)體基因組DNA為模板,根據(jù)設(shè)計(jì)好的兩對引物進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增使用即用型UtraTaq 酶PCR試劑盒(上海捷瑞生物工程有限公司)。PCR反應(yīng)體系為40 μL:2×UltraTaq Master Mix試劑20 μL,基因組DNA 2 μL,上下游引物(濃度為10 pmol/μL)各2 μL,ddH2O 14 μL。PCR擴(kuò)增條件:94℃預(yù)變性5min; 94℃變性30s,退火30s,72℃延伸60s,30個(gè)循環(huán); 72℃延伸10min。1%瓊脂糖凝膠電泳檢測PCR產(chǎn)物,凝膠成像儀觀察電泳結(jié)果。PCR產(chǎn)物純化以后送至上海生工生物工程股份有限公司,直接使用ABI 3730XL測序儀(ABI,美國)測序。使用chromas軟件觀察測序峰圖,并結(jié)合ClustalX軟件進(jìn)行DNA序列比對來判斷SNP位點(diǎn)的堿基類型。
1.5SNPs分型
使用SNaPshot法對選自斑點(diǎn)叉尾鮰核心選育群體的176尾魚進(jìn)行SNPs位點(diǎn)分型。根據(jù)SNPs位點(diǎn)側(cè)翼序列設(shè)計(jì)擴(kuò)增引物,使擴(kuò)增片段長度為200—500 bp。延伸引物3′端第一個(gè)堿基緊鄰待測SNPs位點(diǎn),Tm值為50℃以上,并且在引物的5′末端加上不同長度的Poly C或Poly T(表1)。
使用Touchdown PCR程序進(jìn)行多重PCR擴(kuò)增,反應(yīng)體系為20 μL:0.8 μL MgCl2(50 mmol/L)、2 μL 10×PCR Buffer(Mg2+free)、0.5 μL Dntp(10 mmol/ L)、混合引物0.5 μL、模板DNA 1 μL、0.5 μL Platinum Taq(5 U)(Invitrogen,英國)和14.2 μL ddH2O。PCR反應(yīng)程序?yàn)椋?5℃預(yù)變性5min;94℃變性15s,60℃退火15s,72℃延伸30s,共11個(gè)循環(huán),每個(gè)循環(huán)退火溫度降低0.5℃; 94℃變性15s,54℃退火15s,72℃延伸30s,共24個(gè)循環(huán); 72℃延伸5min。反應(yīng)后進(jìn)行PCR產(chǎn)物純化,反應(yīng)體系為10 μL:FastAP(Fermentas,美國)0.8 μL,Exo I(Fermentas,美國) 0.2 μL,Exo I buffer 0.7 μL,PCR產(chǎn)物3 μL,H2O 5.3 μL。37℃ 15min,80℃ 15min,純化后進(jìn)行延伸反應(yīng),并預(yù)先混好延伸引物。
表1 用于SNPs分型的擴(kuò)增引物和延伸引物Tab. 1 Amplification primers and extension primers used for Multiplex SNaPshot genotyping
SNPs分型使用ABI SNaPshot Multiplex PCR試劑盒(ABI,美國),反應(yīng)體系為6 μL:Snapshot Mix 1 μL,延伸引物0.1 μL,多重PCR產(chǎn)物2 μL,ddH2O 2.9 μL。反應(yīng)條件為:96℃預(yù)變性1min; 96℃變性10s,52℃退火5s,60℃延伸30s,共30個(gè)循環(huán)。反應(yīng)結(jié)束后加入1U FastAP,37℃ 60min,85℃ 15min進(jìn)行純化。以GeneScan-120Liz Size Standard為內(nèi)標(biāo),取1 μL 產(chǎn)物與9 μL含有Liz的Hi-Di(GS-120Liz∶Hi-Di=1∶200)混合,95℃變性3min,立即冰浴3min 后上測序儀。檢測及分析采用ABI PRISM 3730 XI型自動遺傳分析系統(tǒng)(ABI,美國),并利用Genemapper v4.1軟件進(jìn)行分型。
1.6數(shù)據(jù)分析
使用SHEsis軟件分析GHRH基因SNPs位點(diǎn)的單倍型以及連鎖不平衡。利用R(3.2.1)軟件對試驗(yàn)斑點(diǎn)叉尾鮰SNPs位點(diǎn)的各基因型體質(zhì)量和體長進(jìn)行方差齊性分析(Homogeneity of variance test)和單因素ANOVA(One-way ANOVA)分析。采用均值多重比較(Multiple comparisons of means)方法分析SNPs位點(diǎn)各基因型及其單倍型組合與生長性狀關(guān)聯(lián)程度。統(tǒng)計(jì)分析模型:
式中:Yij為某個(gè)性狀第i個(gè)標(biāo)記第j個(gè)個(gè)體觀測值;μ為實(shí)驗(yàn)觀測所有個(gè)體的平均值(即總體平均值);Gi為第i個(gè)標(biāo)記的效應(yīng)值; eij為對應(yīng)于觀察值的隨機(jī)殘差效應(yīng)。
2.1GHRH基因SNPs位點(diǎn)篩選
利用設(shè)計(jì)的兩對引物對 40尾斑點(diǎn)叉尾鮰構(gòu)建的DNA池以及20尾個(gè)體進(jìn)行PCR擴(kuò)增和測序分析。共篩選出4個(gè)SNPs位點(diǎn),即g.4333 A>G、g.4616 A>C、g.4632 A>T及g.6301 G>A。4個(gè)SNPs位點(diǎn)全部位于內(nèi)含子區(qū)域,其中g(shù).4333 A>G位于第二內(nèi)含子; g.4616 A>C、g.4632 A>T位于第三內(nèi)含子; g.6301 G>A位于第四內(nèi)含子。4個(gè)位點(diǎn)均是雙等位多態(tài)性(Biallelic polymorphisms),轉(zhuǎn)換和顛換各兩個(gè)。
成功分型的3個(gè)SNPs位點(diǎn)遺傳多樣性參數(shù)見表2,觀測雜合度(Observed heterozygosity,Ho)的分布范圍為0.4148—0.6136; 期望雜合度(Expected heterozygosity,He)的分布范圍為0.3674—0.4949,有效等位基因數(shù)(Effective number of alleles,Ne)的分布范圍為1.5781—1.9745。多態(tài)性信息容量(Polymorphism information content,PIC)的分布范圍為0.2992—0.3717,均大于0.25小于0.5,表明3個(gè)SNPs位點(diǎn)具有中等遺傳多樣性。g.4333 A>G和g.6301 G>A顯著地偏離哈迪-溫伯格平衡(Hardy-Weinberg equilibrium,HWE),表明這兩個(gè)位點(diǎn)在群體中具有較高的遺傳變異和選擇壓力。
圖1 GHRH基因4個(gè)SNPs位點(diǎn)所處位置Fig. 1 The localization of four identified SNPs of GHRH gene
表2 斑點(diǎn)叉尾鮰GHRH基因SNPs遺傳多樣性參數(shù)Tab. 2 Diversity parameters of SNPs of GHRH gene in channel catfish
2.2連鎖不平衡和單倍型分析
GHRH基因3個(gè)SNPs位點(diǎn)的連鎖不平衡分析如圖2所示,g.4616 A>C與g.6301 G>A的D′值和r2值顯著性地高于其他兩個(gè)位點(diǎn)之間的D′和r2值:g.4333 A>G與g.4616 A>C的D′值和r2值為0.19和0.01,g.4616 A>C與g.6301 G>A的D′值和r2值為0.99和0.25,g.4333 A>G與g.6301 G>A的D′值和r2值為0.29和0.04。所以g.4333 A>G位點(diǎn)與其他2個(gè)位點(diǎn)間均不存在連鎖不平衡(r2=0或r2≈0),而g.4616 A>C與g.6301 G>A不能滿足D′>0.8且r2>0.33,說明這兩個(gè)SNPs位點(diǎn)間不存在強(qiáng)連鎖不平衡(D′<0.8或r2<0.33)。同時(shí),3個(gè)位點(diǎn)的單倍型分析在表3中列出,本文檢測到GHRH基因的3個(gè)突變位點(diǎn)在176尾斑點(diǎn)叉尾鮰選育群體中形成7種單倍型(理論單倍型數(shù)為8種)。H1(AAA)的頻率最高(32%),H3(ACA)的頻率最低(近似為0)。
圖2 GHRH基因3個(gè)SNPs位點(diǎn)的連鎖不平衡分析(左圖是D′值,右圖是r2值)Fig. 2 D′ values(left) and r2values(right) of pairwise linkage disequilibrium analysis of the GHRH gene
表3 GHRH基因的單倍型分析Tab. 3 Haplotype frequencies in the GHRH gene
2.3SNPs位點(diǎn)及單倍型組合與生長性狀的關(guān)聯(lián)分析
對176尾斑點(diǎn)叉尾鮰的體質(zhì)量和體長進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)以“平均數(shù)±標(biāo)準(zhǔn)誤”來表示。體質(zhì)量和體長分別為(280.63±13.21) g和(31.26±0.56) cm。利用R軟件將篩選得到的3個(gè)SNPs位點(diǎn)與測量的斑點(diǎn)叉尾鮰體質(zhì)量和體長進(jìn)行單因素ANOVA 分析并結(jié)合均值多重比較分析得出各有一個(gè)位點(diǎn)與斑點(diǎn)叉尾鮰的體質(zhì)量呈顯著性正相關(guān)和負(fù)相關(guān)(P<0.05)。在位點(diǎn)g.4616 A>C,具有基因型CC型個(gè)體的體質(zhì)量和體長顯著性低于那些具有AA型和AC型個(gè)體(P<0.05),比群體的平均體質(zhì)量低25%;而g.6301 G>A位點(diǎn)的AA基因型的體質(zhì)量顯著性地高于AG和GG型(P<0.05),比群體的平均體質(zhì)量高14%。
GHRH單倍型組合與斑點(diǎn)叉尾鮰生長性狀的關(guān)聯(lián)分析如表4所示,在所有構(gòu)建的單倍型組合中,個(gè)體數(shù)小于10尾的單倍型組合不參與統(tǒng)計(jì)分析和多重比較。分析結(jié)果表明,單倍型組合H1/H4和H1/ H5個(gè)體的體質(zhì)量和體長極顯著性地高于其他單倍型組合(P<0.01),體質(zhì)量比群體平均體質(zhì)量分別高30%和15%,體長比群體平均體長分別高7%和6%。
表4 斑點(diǎn)叉尾鮰GHRH基因SNPs位點(diǎn)與生長性狀的關(guān)聯(lián)分析Tab. 4 Association between SNPs of GHRH and growth traits in channel catfish
He、Ho、Ne和PIC等遺傳參數(shù)常用來評估群體的遺傳多樣性。GHRH基因中的3個(gè)SNPs位點(diǎn)均處于中等多態(tài)性水平,這表明該斑點(diǎn)叉尾鮰核心選育群體保持了較高的遺傳多樣性。期望雜合度(He)反映了基因的一致性,當(dāng)He較低時(shí),基因的多樣性較低; 當(dāng)He>0.5時(shí),表明這個(gè)群體沒有經(jīng)歷選擇壓力,而保持較高的多樣性。在本研究中g(shù).4333 A>G和g.6301 G>A兩個(gè)位點(diǎn)的He值分別為0.4804和0.4949,仍然處于0.5附近且所選群體較小。PIC用來描述種群內(nèi)個(gè)體間的遺傳多性,當(dāng)PIC值大于0.5時(shí)具有高遺傳多樣性,當(dāng)0.25<PIC<0.5時(shí)具有中等的遺傳多樣性,當(dāng)PIC小于0.25時(shí)具有低遺傳多態(tài)性[26]。本文3個(gè)SNPs的PIC值均大于0.25小于0.5,說明該斑點(diǎn)叉尾鮰核心選育群體具有中等遺傳多樣性。g.4333 A>G和g.6301 G>A顯著地偏離哈迪-溫伯格平衡(P<0.01),表明這兩個(gè)位點(diǎn)在群體中具有較高的遺傳變異和選擇壓力。綜上分析,該核心選育群體仍具有較高遺傳多樣性,可以用于后續(xù)的品種選育。
連鎖不平衡常使用參數(shù)D′和r2來評估,D′ >0.8表示兩個(gè)位點(diǎn)處于強(qiáng)連鎖不平衡狀態(tài)[27,28],r2>0.33則可以認(rèn)為這兩個(gè)SNPs是緊密連鎖,作為一個(gè)整體遺傳的[29]。本文中各SNPs位點(diǎn)間均不能滿足D′ >0.8且r2>0.33,所以這些SNPs位點(diǎn)間均不存在強(qiáng)連鎖不平衡(D′<0.8或r2<0.33)或者連鎖不平衡(r2=0或r2≈0),表明它們趨向于相互獨(dú)立遺傳。單倍型分析相較于單個(gè)SNP位點(diǎn)分析,能提供更多的遺傳信息,并且可以反映祖先基因的基因結(jié)構(gòu)[30]。本研究應(yīng)用SHEsis軟件在3個(gè)SNPs位點(diǎn)中,發(fā)現(xiàn)了7種單倍型,其中最高頻率的單倍型是H1(AAA),最低頻率的單倍型H3(ACA)的頻率近似為0,其他5種單倍型頻率均位于10%—20%,因此有效單倍型組合為6種。單倍型AAA可能最早出現(xiàn)在原始的祖先基因中,在進(jìn)化過程中再產(chǎn)生SNP位點(diǎn)突變從而導(dǎo)致其他類型單倍型出現(xiàn)。
本研究在斑點(diǎn)叉尾鮰GHRH基因中共篩選到4個(gè)SNPs位點(diǎn),均位于內(nèi)含子區(qū)域。將篩選到的SNP位點(diǎn)與生長性狀進(jìn)行關(guān)聯(lián)分析,結(jié)果表明在位點(diǎn)g.4616 A>C,具有基因型CC型個(gè)體的體質(zhì)量和體長顯著性低于那些具有AA型和AC型個(gè)體(P<0.05)。鑒于CC型個(gè)體的數(shù)量太少(6尾),因此該位點(diǎn)與生長性狀的關(guān)聯(lián)還有待于后期進(jìn)一步驗(yàn)證。g.6301 G>A位點(diǎn)的AA基因型的體質(zhì)量顯著性地高于AG和GG型(P<0.05)。數(shù)量性狀多是由多種微效基因或是某一基因的多個(gè)位點(diǎn)共同調(diào)控的,所以僅僅分析某一基因中單個(gè)位點(diǎn)的多態(tài)性往往不能準(zhǔn)確得出基因或等位基因與性狀的真實(shí)相關(guān)性,需要同時(shí)對多個(gè)位點(diǎn)的綜合效應(yīng)進(jìn)行探討[31]。因此本研究對GHRH基因3個(gè)SNPs位點(diǎn)進(jìn)行單倍型聯(lián)合分析,除去那些個(gè)體數(shù)少于10尾的單倍型組合,共獲得6組有效的單倍型組合。將單倍型組合與生長性狀進(jìn)行關(guān)聯(lián)分析,結(jié)果表明單倍型組合H1/H4和H1/H5是具有最高均值(無論是體質(zhì)量還是體長)的優(yōu)勢單倍型組合,與其他大部分單倍型組合差異極顯著(P<0.01)。H1/H2和H2/H7是均值最低的單倍型組合,極顯著低于其他大部分單倍型組合(P<0.01)。
本研究中獲得的與生長性狀顯著關(guān)聯(lián)的SNPs位點(diǎn)位于內(nèi)含子區(qū)域。這主要是因?yàn)閮?nèi)含子序列不具有編碼蛋白質(zhì)的能力,因此受到的選擇壓力較小,相應(yīng)地,突變頻率要高于外顯子,所以容易積累更多的變異?;蚪M中的內(nèi)含子,特別是內(nèi)含子與外顯子相銜接的部分序列在調(diào)控mRNA剪切、轉(zhuǎn)錄和基因表達(dá)方面起著重要的作用[32],有些內(nèi)含子可以參與形成長鏈非編碼RNA(lncRNA)和小RNA(miRNA)[33,34]來調(diào)控基因的表達(dá)。然而本文中的SNP位點(diǎn)具體通過什么機(jī)制參與調(diào)控GHRH基因還有待于進(jìn)一步的研究。
本研究針對GHRH基因的外顯子和部分內(nèi)含子序列在斑點(diǎn)叉尾鮰核心選育群體中檢測到4個(gè)SNPs位點(diǎn),使用SNaPshot法成功對3個(gè)位點(diǎn)在176尾斑點(diǎn)叉尾鮰個(gè)體中成功地進(jìn)行了分型。單倍型分析得到6種有效單倍型以及6種單倍型組合。對SNPs位點(diǎn)及單倍型組合與生長性狀進(jìn)行關(guān)聯(lián)分析表明,SNP位點(diǎn)g.6301 G>A的AA基因型體質(zhì)量顯著性地高于AG和GG型(P<0.05),單倍型組合H1/H4和H1/H5個(gè)體的體質(zhì)量和體長極顯著性地高于其他單倍型組合(P<0.01); H1/H2和H2/H7為生長性狀劣勢單倍型組合,極顯著低于其他大部分單倍型組合(P<0.01)。因此在后續(xù)斑點(diǎn)叉尾鮰選育過程中可以適當(dāng)考慮選留單倍型組合為H1/H4和H1/H5的個(gè)體,淘汰單倍型組合為H1/H2和H2/H7的個(gè)體。本研究為斑點(diǎn)叉尾鮰生長性狀分子標(biāo)記輔助選育和QTL定位提供了參考依據(jù)。
[1]Guillemin R,Brazeau P,Bohlen P,et al. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly [J]. Science,1982,218(4572):585—587
[2]Bloch B,Brazeau P,Ling N,et al. Immunohistochemical detection of growth hormone-releasing factor in brain [J]. Nature,1983,301(2):607—608
[3]Billestrup N,Swanson L W,Vale W. Growth hormonereleasing factor stimulates proliferation of somatotrophs in vitro [J]. Proceedings of the National Academy of Sciences,1986,83(18):6854—6857
[4]Dean C E,Porter T E. Regulation of somatotroph differentiation and growth hormone(GH) secretion by corticosterone and gh-releasing hormone during embryonic development [J]. Endocrinology,1999,140(3):1104—1110
[5]Csaba G. Hormones in the immune system and their possible role. A critical review [J]. Acta Microbiologica et Immunologica Hungarica,2014,61(3):241—260
[6]Liao F,Zhang T J,Mahan T E,et al. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model[J]. Brain,Behavior,and Immunity,2014,47(7):163—171
[7]Fradinger E A,Sherwood N M. Characterization of the gene encoding both growth hormone-releasing hormone(GRF) and pituitary adenylate cyclase-activating polypeptide(PACAP) in the zebrafish [J]. Molecular and Cellular Endocrinology,2000,165(1):211—219
[8]Han L Q,Bai J J,Li S J. Comparison of gene structure,sequence homology and expression pattern of largemouth bass GHRH-LP and GHRH [J]. Acta Hydrobiologica Sinica,2011,35(3):473—481 [韓林強(qiáng),白俊杰,李勝杰.大口黑鱸GHRH-LP和GHRH基因序列同源性、基因結(jié)構(gòu)和時(shí)序表達(dá)研究. 水生生物學(xué)報(bào),2011,35(3):473—481]
[9]Wang B,Qin C,Zhang C,et al. Differential involvement of signaling pathways in the regulation of growth hormone release by somatostatin and growth hormone-releasing hormone in orange-spotted grouper(Epinephelus coioides) [J]. Molecular and Cellular Endocrinology,2014,382(2):851—859
[10]Lee L T O,Siu F K Y,Tam J K V,et al. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates [J]. Proceedings of the National Academy of Sciences,2007,104(7):2133—2138
[11]Qian Y,Yan A,Lin H,et al. Molecular characterization of the GHRH/GHRH-R and its effect on GH synthesis and release in orange-spotted grouper(Epinephelus coioides) [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2012,163(2):229—237
[12]Nam B H,Moon J Y,Kim Y O,et al. Molecular and functional analyses of growth hormone-releasing hormone(GHRH) from olive flounder(Paralichthys olivaceus) [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2011,159(2):84—91
[13]Ji X S,Chen S L,Jiang Y L,et al. Growth differences and differential expression analysis of pituitary adenylate cyclase activating polypeptide(PACAP) and growth hormone-releasing hormone(GHRH) between the sexes in half-smooth tongue sole Cynoglossus semilaevis [J]. General and Comparative Endocrinology,2011,170(1):99—109
[14]Baile C A,Buonomo F C. Growth hormone-releasing factor effects on pituitary function,growth,and lactation[J]. Journal of Dairy Science,1987,70(2):467—473
[15]Cheong H S,Yoon D H,Kim L H,et al. Growth hormone-releasing hormone(GHRH) polymorphisms associated with carcass traits of meat in Korean cattle [J]. BMC Genetics,2006,7(1):35
[16]Pierzchala M,Blicharski T,Kuryl J. Growth rate and carcass quality in pigs as related to genotype at loci POU1F1/ RsaI(Pit1/RsaI) and GHRH/AluI [J]. Animal Science Papers and Reports,2003,21(3):159—166
[17]Franco M M,Antunes R C,Silva H D,et al. Association of PIT1,GH and GHRH polymorphisms with performance and carcass traits in Landrace pigs [J]. Journal of Applied Genetics,2005,46(2):195—200
[18]Tsai H Y,Hamilton A,Guy D R,et al. Single nucleotide polymorphisms in the insulin-like growth factor 1(IGF1)gene are associated with growth-related traits in farmed Atlantic salmon [J]. Animal Genetics,2014,45(5):709—715
[19]He X P,Xia J H,Wang C M,et al. Significant associations of polymorphisms in the prolactin gene with growth traits in Asian seabass(Lates calcarifer) [J]. Animal Genetics,2012,43(2):233—236
[20]Feng X,Yu X,Pang M,et al. Molecular characterization and expression of three preprosomatostatin genes and their association with growth in common carp(Cyprinus carpio) [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2015,182(4):37—46
[21]Tao W J,Ma L J,Yu J H,et al. SNP loci associated with weight gain on growth hormone receptor genes in Cyprinus carpio var. jian [J]. Acta Hydrobiologica Sinica,2011,35(4):622—629 [陶文靜,馬龍俊,俞菊華,等. 建鯉GHR基因多態(tài)性及與增重相關(guān)的SNP位點(diǎn)的篩選.水生生物學(xué)報(bào),2011,35(4):622—629]
[22]Li H X,Li J L,Tang Y K,et al. Correlation analysis between body weight gain and ODC1 genotypes in Cyprinus carpio var. jian [J]. Acta Hydrobiologica Sinica,2014,38(3):414—421 [李紅霞,李建林,唐永凱,等. 建鯉ODC1基因型與增重的相關(guān)性分析. 水生生物學(xué)報(bào),2014,38(3):414—421]
[23]Tao W J,Boulding E G. Associations between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr(Salvelinus alpinus L.) [J]. Heredity,2003,91(1):60—69
[24]Guo L,Xia J,Yang S,et al. GHRH,PRP-PACAP and GHRHR target sequencing via an ion torrent personal genome machine reveals an association with growth in orange-spotted grouper(Epinephelus coioides) [J]. International Journal of Molecular Sciences,2015,16(11):26137—26150
[25]Luan S,Bian W J,Deng W,et al. Genetic parameters for the growth and survival of the base population in channel catfish(Ictalures punctatus) [J]. Journal of Fisheries of China,2012,36(9):1313—1321 [欒生,邊文冀,鄧偉,等. 斑點(diǎn)叉尾鮰基礎(chǔ)群體生長和存活性狀遺傳參數(shù)估計(jì). 水產(chǎn)學(xué)報(bào),2012,36(9):1313—1321]
[26]Yuan Z,Li J,Li J,et al. SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene [J]. Molecular Biology Reports,2013,40(1):7—12
[27]Hohenlohe P A,Bassham S,Currey M,et al. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes [J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences,2012,367(1587):395—408
[28]Slatkin M. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future [J]. Nature Reviews Genetics,2008,9(6):477—485
[29]de Camargo G M F,Costa R B,Lucia G,et al. Polymorphisms in TOX and NCOA2 genes and their associations with reproductive traits in cattle [J]. Reproduction,F(xiàn)ertility and Development,2015,27(3):523—528
[30]Akey J,Jin L,Xiong M. Haplotypes vs single marker linkage disequilibrium tests:what do we gain [J]?European Journal of Human Genetics,2001,9(4):291—300
[31]Xue Q,Wang J Y,Zhang G X,et al. Polymorphism of melanocortin 3 receptor gene(MC3R) and association analysis between the diplotypes and the carcass traits in Jinghai Yellow chicken [J]. Journal of Agricultural Biotechnology,2015,23(3):344—351 [薛倩,王金玉,張跟喜,等. 黑素皮質(zhì)素受3基因(MC3R) 多態(tài)性及其單倍型組合與京海黃雞屠體性狀的關(guān)聯(lián)分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2015,23(3):344—351]
[32]Nott A,Meislin S H,Moore M J. A quantitative analysis of intron effects on mammalian gene expression [J]. RNA,2003,9(5):607—617
[33]Shi J,Chu W Y,Zhang J S. The functional studies of muscle-specigic microRNAs [J]. Acta Hydrobiologica Sinica,2015,39(6):1224—1230 [石軍,褚武英,張建社.肌肉特異表達(dá)microRNA的功能研究. 水生生物學(xué)報(bào),2015,39(6):1224—1230]
[34]Zhu X,Hu Y,Wang K Z,et al. The expressional characterization of miR-222 in mandarin fish(Siniperca chuatsi)[J]. Acta Hydrobiologica Sinica,2015,39(2):315—320[朱鑫,胡毅,王開卓,等. 翹嘴鱖miR-222的表達(dá)特征.水生生物學(xué)報(bào),2015,39(2):315—320]
THREE SNPS POLYMORPHISM OF GROWTH HORMONE-RELEASING HORMONE GENE(GHRH) AND ASSOCIATION ANALYSIS WITH GROWTH TRAITS IN CHANNEL CATFISH
ZHANG Shi-Yong1,2,ZHONG Li-Qiang1,2,QIN Qin1,2,WANG Ming-Hua1,2,PAN Jian-Lin1,2,CHEN Xiao-Hui1,2and BIAN Wen-Ji1,2
(1. Freshwater Fisheries Research Institute of Jiangsu Province,Nanjing 210017,China; 2. The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm,Nanjing 210014,China)
This study assessed the effects of growth hormone-releasing hormone(GHRH) gene on channel catfish(Ictalurus punctatus) growth traits by identifying SNPs of GHRH gene by The Pooled DNA sequencing using 176 individuals from core breeding population of channel catfish by multiplex SNaPshot genotyping method and analyzing the associations between growth traits with genotypes and diplotypes of GHRH SNPs. Four SNPs(g.4333 A>G,g.4616 A>C,g.4632A>T and g.6301 G>A) were identified in intron,and three of them were genotyped successfully,and there were no strong LD between the SNPs. Six haplotypes and six diplotypes were found in these 176 channel catfish. Association analysis between these SNPs and growth traits showed that the individual with genotype AA of the mutation g.6301 G>A had significantly higher body mass and body length than those with genotype GG and AG(P<0.05);H1/H4 and H1/H5 of six diplotypes had the highest body mass and body length,which were significantly(P<0.01)higher than those of the other diplotypes. This study provide basic knowledge for marker-assisted breeding and QTL of growth traits of channel catfish.
Ictalures punctatus; GHRH; SNP; SNaPshot; Growth traits; Haplotype; Association
Q953
A
1000-3207(2016)05-0886-08
10.7541/2016.114
2015-10-29;
2016-04-15
國家科技支撐計(jì)劃(2012BAD26B03-04); 江蘇省科技支撐計(jì)劃(BE2013445); 江蘇省農(nóng)業(yè)科技自主創(chuàng)新基金[CX(15)1013]; 江蘇省水產(chǎn)三新工程項(xiàng)目(Y2014-25); 江蘇省六大人才高峰項(xiàng)目(2014-NY-008)資助 [Supported by the National Key Technology R & D Program of China(2012BAD26B03-04); Science and Technology Support Program of Jiangsu Province(BE2013445);Independent Innovation on Agriculture Science and Technology of Jiangsu Province [CX(15)1013]; the Project of Human Resources and Social Security of Jiangsu Province(2014-NY-008)]
張世勇(1987—),男,安徽六安人; 碩士; 研究方向?yàn)樗a(chǎn)動物遺傳育種。E-mail:shiyongzhang@hotmail.com
陳校輝,副研究員,E-mail:cxiaohui416@hotmail.com; 邊文冀,研究員,E-mail:js6060@sina.com