史若詩,姚萬軍,郝新才,夏中元,柯昌斌,劉菊英
(1武漢大學(xué)人民醫(yī)院,武漢430000;2湖北醫(yī)藥學(xué)院;3十堰市太和醫(yī)院)
?
王瓜葫蘆素D的提取及其對大鼠乳腺癌細(xì)胞增殖、凋亡和體內(nèi)成瘤作用的影響
史若詩1,姚萬軍2,郝新才2,夏中元1,柯昌斌3,劉菊英3
(1武漢大學(xué)人民醫(yī)院,武漢430000;2湖北醫(yī)藥學(xué)院;3十堰市太和醫(yī)院)
目的從王瓜中提取葫蘆素D,并觀察其對大鼠乳腺癌細(xì)胞增殖、凋亡和體內(nèi)成瘤作用的影響。方法 采用硅膠柱層析、葡聚糖凝膠柱層析,結(jié)合硅膠柱色譜、高效液相色譜法(HPLC)對王瓜果實進行分離純化,運用現(xiàn)代光譜技術(shù)(1H-NMR)對提取化合物(葫蘆素D)的結(jié)構(gòu)進行鑒定。培養(yǎng)大鼠乳腺癌細(xì)胞株Walker256,將細(xì)胞分為實驗1、2、3組和對照組,分別加入2、4、8 μmol/L的葫蘆素D和等量培養(yǎng)液。采用EdU法觀察細(xì)胞增殖情況,TUNEL法觀察凋亡情況。將80只雌性SPF大鼠隨機分為Con組、Sham組、IP-L組和IP-H組,各20只。Sham組、IP-L組和IP-H組取Walker256細(xì)胞制作大鼠乳腺癌骨轉(zhuǎn)移瘤模型,Con組不制作模型;IP-L組經(jīng)腹腔注射0.75 mg/(kg·d)的葫蘆素D,IP-H組經(jīng)腹腔注射1.5 mg/(kg·d)的葫蘆素D,Sham組腹腔注射等量生理鹽水,每天1次,連續(xù)21 d。觀察各組大鼠左側(cè)脛骨組織病理變化,測量脛骨腫瘤瘤體大小,觀察毒性反應(yīng)發(fā)生情況。結(jié)果 從王瓜提取物中分離出1個化合物,鑒定為葫蘆素D。對照組及實驗1、2、3組細(xì)胞增殖抑制率分別為5.32%±4.54%、46.17%±4.87%、57.37%±5.15%、64.61%±5.33%,細(xì)胞凋亡率分別為6.24%±4.31%、35.43%±5.09%、44.79%±4.92%、73.19%±4.86%,組間兩兩相比,P均<0.05。Con組、Sham組、IP-L組、IP-H組大鼠轉(zhuǎn)移瘤代謝體積平均值分別為0、2.1、1.7、1.2 cm3;IP-L組、IP-H組與Sham組相比,P均<0.05;IP-L組與IP-H組相比,P<0.05。Sham組大鼠脛骨骨組織結(jié)構(gòu)紊亂,多處骨皮質(zhì)缺損,骨髓腔內(nèi)可見大量腫瘤細(xì)胞,骨小梁破壞明顯;IP-L組與IP-H組骨質(zhì)破壞較Sham組輕,IP-H組可見部分正常骨髓組織。Con組、Sham組、IP-L組、IP-H組分別有0、0、6、13只大鼠死亡;IP-L組、IP-H組死亡率與Con組、Sham組相比,P均<0.05;IP-L組死亡率與IP-H組相比,P<0.05。結(jié)論 在王瓜中分離得到葫蘆素D,其可抑制大鼠乳腺癌細(xì)胞株Walker256增殖,誘導(dǎo)其凋亡;葫蘆素D對大鼠乳腺癌骨轉(zhuǎn)移瘤有生長抑制作用,但可導(dǎo)致大鼠死亡率增加。
王瓜;葫蘆素D;四環(huán)三萜;大鼠乳腺癌細(xì)胞株;骨轉(zhuǎn)移瘤;動物實驗
王瓜為葫蘆科栝樓屬植物王瓜的果實。王瓜具有清熱、生津、消瘀、通乳等功效,臨床主治消渴、黃疸、噎嗝、反胃、經(jīng)閉、乳汁不通、癰腫、慢性咽喉炎等,但其化學(xué)成分和藥理活性鮮有報道[1,2],其活性成分的作用尚未得到進一步證實。葫蘆素是一類葫蘆烷型四環(huán)三萜,多為從葫蘆科植物得到的甜味或苦味物質(zhì)[3],關(guān)于其抗腫瘤、保肝等作用的研究較多[4~7]。70%~80%的晚期乳腺癌患者出現(xiàn)溶骨性骨轉(zhuǎn)移[8],影響患者長期生存率[9]。已有研究[10,11]證實葫蘆素B、E對乳腺癌有一定的抑制作用。本研究從王瓜的果實中首次提取分離出葫蘆素類成分,并觀察其對大鼠乳腺癌細(xì)胞增殖、凋亡和體內(nèi)成瘤作用的影響,現(xiàn)報告如下。
1.1細(xì)胞與動物大鼠乳腺癌細(xì)胞株Walker256由十堰市太和醫(yī)院麻醉與疼痛研究所提供。健康雌性SPF級SD大鼠80只(體質(zhì)量180~200 g),由湖北醫(yī)藥學(xué)院實驗動物中心提供。
1.2葫蘆素D的提取與鑒定 新鮮摘取的王瓜果實1 kg,用90%乙醇50 ℃加熱回流提取3次,合并提取液,減壓回收溶劑得總浸膏約100 g。將總浸膏混懸于水中,分別用石油醚、氯仿、乙酸乙酯、正丁醇萃取,得石油醚部位12 g、氯仿部位13 g、乙酸乙酯部位26 g、正丁醇部位23 g。將乙酸乙酯部位與硅膠(100~200目)按質(zhì)量比1∶2拌樣,200~300目硅膠裝柱,用氯仿/甲醇(25∶1)系統(tǒng)洗脫,得到三個部分(A~C)。C部分經(jīng)硅膠柱色譜分離得到C1、C2、C3。C2過Sephadex LH-20凝膠柱,甲醇洗脫得C2-1、C2-2,其中C2-1部分經(jīng)正相HPLC(8%異丙醇/正己烷)分離純化得化合物1(20 mg)。用核磁共振儀對化合物1(葫蘆素D)結(jié)構(gòu)進行鑒定。
1.3葫蘆素D對細(xì)胞增殖、凋亡的影響觀察
1.3.1細(xì)胞培養(yǎng)與葫蘆素D用法 大鼠Walker256乳腺癌細(xì)胞培養(yǎng)于含10%胎牛血清、青霉素100 IU/mL和鏈霉素100 mg/L的RPMI1640培養(yǎng)液中,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng),取對數(shù)生長期細(xì)胞用于實驗。將細(xì)胞按5×105個/mL接種于12孔培養(yǎng)板中,每孔500 μL(約2.5×105個),將細(xì)胞分為實驗1、2、3組及對照組。實驗1、2、3組分別加入2、4、8 μmol/L的葫蘆素D,對照組加入等體積(含0.5% DMSO)培養(yǎng)液,每個濃度設(shè)置6個復(fù)孔,實驗重復(fù)3次。四組于37 ℃培養(yǎng)24 h后用于實驗。
1.3.2細(xì)胞增殖和凋亡觀察具體操作根據(jù)EdU增殖檢測試劑盒和TUNEL凋亡檢測試劑盒進行。熒光倒置顯微鏡下觀察,低倍鏡(20×)下每個樣本隨機選取5個不同視野,取均值。
1.4葫蘆素D對大鼠乳腺癌骨轉(zhuǎn)移瘤的作用觀察
1.4.1大鼠乳腺癌骨轉(zhuǎn)移瘤模型制備參照文獻[12]方法建立大鼠乳腺癌骨轉(zhuǎn)移瘤模型。將Walker256細(xì)胞(約7.5×105個)緩慢注入左側(cè)脛骨上段,無菌骨蠟封孔。21 d后取左側(cè)脛骨組織進行HE染色,以骨組織破壞嚴(yán)重、骨皮質(zhì)受侵犯、腫瘤組織呈膨脹性或浸潤性生長為模型制作成功。
1.4.2動物分組與葫蘆素D用法將80只大鼠隨機分為Con組、Sham組、IP-L組和IP-H組,每組20只。Sham組、IP-L組、IP-H組按“1.4.1”步驟制作乳腺癌骨轉(zhuǎn)移瘤模型,Con組不制作腫瘤模型;IP-L組和IP-H組分別經(jīng)腹腔注射低劑量[0.75 mg/(kg·d)]和高劑量[1.5 mg/(kg·d)]的葫蘆素D, Sham組腹腔注射等量生理鹽水,每天1次(于早上9:00注射),連續(xù)21 d。實驗過程中對動物的處置均符合《關(guān)于善待實驗動物的指導(dǎo)性意見》。
1.4.3大鼠乳腺癌骨轉(zhuǎn)移瘤體積測算21 d后各組取5只大鼠,實驗前4 h禁食水,麻醉完全后分別于尾靜脈注射約100 μCi放射性示蹤劑18F-FDG,然后將小鼠俯臥位固定于掃描床上,18F-FDG攝取40 min后行10 min PET圖像采集,掃描完成后行8 min CT圖像采集,獲得腫瘤部位融合圖像。
1.4.4骨腫瘤組織病理學(xué)觀察處死各組大鼠,剪下左后肢,仔細(xì)分離出脛骨及周圍少量組織,用甲醛固定,甲酸脫鈣,石蠟包埋并切片,HE染色,光鏡下觀察骨組織細(xì)胞結(jié)構(gòu)變化及骨腫瘤細(xì)胞形態(tài)。
1.4.5大鼠死亡率統(tǒng)計記錄各組大鼠21 d后的死亡數(shù)量。
2.1葫蘆素D鑒定結(jié)果化合物1呈白色粉末狀,易溶于甲醇,化學(xué)結(jié)構(gòu)式見圖1。波譜順序與文獻[13]報道基本一致,此化合物鑒定為葫蘆素D。
圖1 化合物1的化學(xué)結(jié)構(gòu)式
2.2各組細(xì)胞增殖抑制率及凋亡率比較實驗1、2、3組及對照組細(xì)胞的增殖抑制率與凋亡率組間兩兩相比,P均<0.05。見表1。
表1 各組細(xì)胞增殖抑制率及凋亡率比較(%)
注:與對照組相比,*P<0.05;與實驗1組相比,#P<0.05;與實驗2組相比,△P<0.05。
2.3葫蘆素D對大鼠乳腺癌骨轉(zhuǎn)移瘤的作用通過四組大鼠的PET/CT顯像,測定腫瘤的代謝體積。Con組、Sham組、IP-L組、IP-H組大鼠轉(zhuǎn)移瘤代謝體積平均值分別為0、2.1、1.7、1.2 cm3;IP-L組、IP-H與Sham組相比,P均<0.05;IP-L組與IP-H組相比,P<0.05。詳見圖2。Con組大鼠骨髓腔內(nèi)可見正常骨髓組織,骨皮質(zhì)骨小梁均完整;Sham組大鼠脛骨骨組織結(jié)構(gòu)紊亂,多處骨皮質(zhì)缺損,骨髓腔內(nèi)可見大量腫瘤細(xì)胞,核分裂象增多且異型性明顯,骨小梁破壞明顯,部分腫瘤組織向周圍軟組織浸潤;IP-L組、IP-H組較Sham組輕,其中IP-H組可見部分正常骨髓組織。
注:A、B、C分別為Sham組、IP-L組和IP-H組大鼠轉(zhuǎn)移瘤成像;箭頭所指為18F-FDG高攝取的轉(zhuǎn)移瘤組織。
圖2各組骨轉(zhuǎn)移瘤PET-CT圖像
2.4各組大鼠死亡率比較Con組、Sham組、IP-L組、IP-H組分別有0、0、6、13只大鼠死亡;IP-L組、IP-H組死亡率與Con組、Sham組相比,P均<0.05;IP-L組死亡率與IP-H組相比,P<0.05。
國內(nèi)外學(xué)者從王瓜所屬的栝樓屬植物中主要分離出的成分有萜類、黃酮類、甾類、苯丙素類等[14,15]。研究[16]發(fā)現(xiàn),瓜蔞提取物可調(diào)節(jié)心肌缺血再灌注區(qū)域氧化應(yīng)激水平,增強局部超氧化物歧化酶(SOD)活性,從而保護心肌;低濃度的瓜蔞提取物還可通過促進巨噬細(xì)胞生長來抑制宮頸癌HeLa細(xì)胞增殖。王瓜主要分布于我國華東、華中和華南地區(qū),其種子和根均可供藥用,但對其果實的藥理作用了解較少[17,18]。研究[19]發(fā)現(xiàn)王瓜提取物可清除自由基捕獲劑DPPH·,還原Fe3+,具有較強的抗氧化能力。
本課題組前期從王瓜果實中提取分離出10個化合物,其中乙酸乙酯的C2-1部分經(jīng)鑒定為四環(huán)三萜類化合物,并通過分析結(jié)合文獻數(shù)據(jù)確定該分離成分為葫蘆素D。近年來,葫蘆素類成分的抗腫瘤作用逐漸成為研究熱點[20,21]。研究[22]發(fā)現(xiàn)葫蘆素B可破壞胃癌細(xì)胞的氧化還原平衡,抑制細(xì)胞周期,誘導(dǎo)腫瘤細(xì)胞凋亡。葫蘆素E可呈時間和濃度依賴性地降低細(xì)胞內(nèi)信號傳導(dǎo)與轉(zhuǎn)錄激活因子STAT3磷酸化水平,進而抑制胰腺癌細(xì)胞增殖[23]。關(guān)于葫蘆素D的研究較少,Oh等[18]發(fā)現(xiàn)葫蘆素D是酪氨酸酶的抑制劑,但其是否具有抗腫瘤活性尚不明確[24]。本實驗選取大鼠乳腺癌細(xì)胞株Walker256,給予不同濃度的葫蘆素D處理,發(fā)現(xiàn)對照組及實驗1、2、3組細(xì)胞增殖抑制率和凋亡率依次增高,提示葫蘆素D可誘導(dǎo)細(xì)胞凋亡,且作用呈劑量依賴性。
乳腺癌、胃癌和宮頸癌等惡性腫瘤均可發(fā)生骨轉(zhuǎn)移,其中乳腺癌細(xì)胞是制作骨轉(zhuǎn)移瘤模型最經(jīng)典的細(xì)胞。為進一步明確葫蘆素D在體內(nèi)是否具有抗腫瘤作用,我們選用大鼠乳腺癌細(xì)胞株Walker256建立乳腺癌骨轉(zhuǎn)移瘤大鼠模型,將不同劑量葫蘆素D采用腹腔注射方法給藥,觀察葫蘆素D對大鼠乳腺癌骨轉(zhuǎn)移瘤的作用。本研究結(jié)果顯示,與Sham組相比,IP-L組與IP-H組大鼠脛骨處腫瘤代謝體積縮小,瘤組織侵犯程度減輕,骨質(zhì)破壞有所緩解,且IP-H組可見正常的骨組織形態(tài),說明葫蘆素D在體內(nèi)對腫瘤細(xì)胞有劑量依賴性的生長抑制作用。但我們在統(tǒng)計大鼠死亡率時發(fā)現(xiàn),IP-L組與IP-H組大鼠死亡率明顯高于Sham組和Con組,且高劑量組死亡率高于低劑量組,提示葫蘆素D可能存在較強的毒性作用?!逗纤幬镏尽分性涊d王瓜“有毒”,推測葫蘆素D可能為其毒性成分。
綜上所述,我們在王瓜中分離得到葫蘆素D,葫蘆素D可誘導(dǎo)人乳腺癌細(xì)胞株Walker256發(fā)生凋亡、抑制其增殖,在體內(nèi)對大鼠乳腺癌骨轉(zhuǎn)移瘤亦有生長抑制作用,其可能有一定的抗腫瘤活性。但葫蘆素D可導(dǎo)致大鼠死亡率增加,推測其可能具有毒性作用。上述結(jié)果對指導(dǎo)臨床合理用藥、制定人體攝入安全劑量有重要指導(dǎo)意義。目前葫蘆素D抗腫瘤機制及其參與的信號通路尚未明確,仍需進一步研究。
[1] Chao Z, Shibusawa Y, Yanagida A, et al. Two new triterpenes from the seeds of Trichosanthes cucumeroides[J]. Nat Prod Res, 2005,19(3):211-216.
[2] Kitajima J, Tanaka Y. Studies on the constituents of trichosanthes root. II. Constituents of roots of Trichosanthes cucumeroides Maxim[J]. Yakugaku Zasshi, 1989,109(4):256-264.
[3] Chen JC, Chiu MH, Nie RL, et al. Cucurbitacins and cucurbitane glycosides: structures and biological activities[J]. Nat Prod Rep, 2005,22(3):386-399.
[4] Yang L, Wu S, Zhang Q, et al. 23, 24-Dihydrocucurbitacin B induces G2/M cell-cycle arrest and mitochondria-dependent apoptosis in human breast cancer cells (Bcap37)[J]. Cancer Lett, 2007,256(2):267-278.
[5] Ma G, Luo W, Lu J, et al. Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells[J]. Chem Biol Interact, 2016,253:1-9.
[6] Shukla S, Sinha S, Khan S, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/beta-catenin signaling axis[J]. Sci Rep, 2016,6:21860.
[7] Wu YL, Zhang YJ, Yao YL, et al. Cucurbitacin E ameliorates hepatic fibrosis in vivo and in vitro through activation of AMPK and blocking mTOR-dependent signaling pathway[J]. Toxicol Lett, 2016,258:147-158.
[8] Weilbaecher KN, Guise TA, Mccauley LK. Cancer to bone: a fatal attraction[J]. Nat Rev Cancer, 2011,11(6):411-425.
[9] Bidwell BN, Slaney CY, Withana NP, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape[J]. Nat Med, 2012,18(8):1224-1231.
[10] Sinha S, Khan S, Shukla S, et al. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis[J]. Int J Biochem Cell Biol, 2016,77(Pt A):41-56.
[11] Kong Y, Chen J, Zhou Z, et al. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer[J]. PLoS One, 2014,9(7):e103760.
[12] Medhurst SJ, Walker K, Bowes M, et al. A rat model of bone cancer pain[J]. Pain, 2002,96(1-2):129-140.
[13] Fujita S, Kasai R, Ohtani K, et al. Dammarane glycosides from aerial part of Neoalsomitra integrifoliola[J]. Phytochemistry, 1995,39(3):591-602.
[14] Dat NT, Jin X, Hong YS, et al. An isoaurone and other constituents from Trichosanthes kirilowii seeds inhibit hypoxia-inducible factor-1 and nuclear factor-kappaB[J]. J Nat Prod, 2010,73(6):1167-1169.
[15] Moon SS, Rahman AA, Kim JY, et al. Hanultarin, a cytotoxic lignan as an inhibitor of actin cytoskeleton polymerization from the seeds of Trichosanthes kirilowii[J]. Bioorg Med Chem, 2008,16(15):7264-7269.
[16] 劉金娜,溫春秀,劉銘,等.瓜蔞的化學(xué)成分和藥理活性研究進展[J].中藥材,2013,36(5):843-848.
[17] 馬媛媛,蔣璐鷺,李婕,等. 王瓜養(yǎng)生價值淺談[J]. 安徽農(nóng)業(yè)科學(xué),2013,41(10):4320-4321.
[18] Oh H, Mun YJ, Im SJ, et al. Cucurbitacins from Trichosanthes kirilowii as the inhibitory components on tyrosinase activity and melanin synthesis of B16/F10 melanoma cells[J]. Planta Med, 2002,68(9):832-833.
[19] 潘喬丹,黃元河,董妹靈,等.王瓜的微波-超聲波聯(lián)合提取工藝優(yōu)選及抗氧化活性考察[J]. 中國實驗方劑學(xué)雜志,2013,19(18):30-32.
[20] 張萌,邊志剛,何平. 葫蘆素B對人胃癌BGC-823細(xì)胞增殖及凋亡的影響[J]. 實用藥物與臨床,2016,19(5):548-552.
[21] 楊艷,溫艷惠,郭海梅,等. 葫蘆素E對非小細(xì)胞肺癌細(xì)胞的生長抑制作用[J]. 現(xiàn)代腫瘤醫(yī)學(xué),2015,23(16):2261-2264.
[22] Deng C, Zhang B, Zhang S, et al. Low nanomolar concentrations of Cucurbitacin-I induces G2/M phase arrest and apoptosis by perturbing redox homeostasis in gastric cancer cells in vitro and in vivo[J]. Cell Death Dis, 2016,7:e2106.
[23] Sun C, Zhang M, Shan X, et al. Inhibitory effect of cucurbitacin E on pancreatic cancer cells growth via STAT3 signaling[J]. J Cancer Res Clin Oncol, 2010,136(4):603-610.
[24] 郭夢鴻,孫玉琦,劉影,等. 葫蘆科植物藥材中葫蘆素類成分的含量差異[J]. 中國醫(yī)院藥學(xué)雜志,2015,35(17):1554-1558.
Extraction of cucurbitacin D from Trichosanthes cucumeroides and its effects on proliferation, apoptosis and tumorigenesis of rat breast cancer cells
SHIRuoshi1,YAOWanjun,HAOXincai,XIAZhongyuan,KEChangbin,LIUJuying
(1RenminHospitalofWuhanUniversity,Wuhan430000,China)
Objective To extract cucurbitacin D from Trichosanthes cucumeroides and to observe its effects on proliferation, apoptosis and tumorigenesis of rat breast cancer cells. MethodsThe fruit of Trichosanthes cucumeroides was extracted with ethanol. The solution was isolated and purified by silica and Sephadex LH-20 column chromatography, as well as silica gel column chromatography and high performance liquid chromatography (HPLC). The structures of the compounds were identified by the modern spectrum technology (1H-NMR). The rat breast cancer cell line Walker256 was divided into the experiment groups 1, 2, 3 and the control group, which was respectively treated with 2, 4, 8 μmol/L cucurbitacin D and nutrient solution for 24 h. EdU and TUNEL methods were performed to detect the proliferation and antitumor activities. Mouse models of bone metastasis were established in SPF rats. The 80 rats were randomly divided into four groups, 20 in each group: the blank control group (Con group without any treatment), the bone metastasis in the left leg group (Sham group, treated with normal saline), the bone metastasis and low-dose injection of cucurbitacin D in the left leg group〔IP-L group, 0.75mg/(kg·d)〕 and high-dose injection of cucurbitacin D in the left leg group 〔IP-H, 1.5 mg/( kg·d)〕. They were all treated once a day and for 21 d in these three groups. Histopathological changes on the rat left side of the tibia were observed in each group, and we measured the tibia tumor size and observed toxicity reaction. Results One tetracyclic triterpenoid was isolated and identified as cucurbitacin D from Trichosanthes cucumeroides. The proliferation inhibition rates of the control group and experimental groups 1,2 and 3 were 5.32%±4.54%, 46.17%±4.87%, 57.37%±5.15% and 64.61%±5.33%, respectively. The apoptotic rates were 6.24%±4.31%, 35.43%±5.09%, 44.79%±4.92% and 73.19%±4.86%, respectively. Significant differences were found between every two groups, allP<0.05. The average metabolic tumour volume of the Con group, Sham group, IP-L group and IP-H group was 0, 2.1, 1.7 and 1.2 cm3. There were significant differences between IP-L, IP-H groups and Sham group, between IP-L group and IP-H group (allP<0.05). The tibia of Sham group showed the disorder structure and incomplete bony cortex. Tumor cells assembled in the marrow cavity with the obviously destroyed of bone trabecula.The degree of Sham group was higher than IP-L group and IP-H group. Part of the normal bone marrow tissues were found in the IP-H group. The mortality of IP-L and IP-H groups were 6 and 13, and significant difference was found in the mortality between IP-L, IP-H groups and Con, Sham groups, between IP-L group and IP-H groups (P<0.05). ConclusionsCucurbitacin D is isolated from Trichosanthes cucumeroides. It can inhibit the proliferation of rat breast cancer cell line Walker256 and induce its apoptosis. Cucurbitacin D can inhibit the growth of metastatic tumor of bone, but can also lead to death in rats.
Trichosanthes cucumeroides; cucurbitacin D; tetracyclic triterpenoids; rat breast cancer cell line; bone metastasis; animal experiment
湖北省自然科學(xué)基金資助項目(2015CFC807);湖北醫(yī)藥學(xué)院研究生啟動金資助項目(2014QDJZR05);鄖陽醫(yī)學(xué)院優(yōu)秀中青年科技創(chuàng)新團隊資助計劃項目(2008CXG05)。
史若詩(1991-),女,在讀碩士研究生,主要研究方向為圍術(shù)期器官保護與疼痛。E-mail: srsmoyanrufeng@sina.com
簡介:劉菊英(1962-),女,博士,教授,主任醫(yī)師,主要研究方向為圍術(shù)期器官保護。E-mail: liu6119@163.com
10.3969/j.issn.1002-266X.2016.31.006
R28
A
1002-266X(2016)31-0020-04
2016-02-25)