母易,于昊天,張德存
(海軍航空工程學(xué)院基礎(chǔ)部,山東煙臺264001)
一類p次方型差分系統(tǒng)解的性態(tài)研究
母易,于昊天,張德存
(海軍航空工程學(xué)院基礎(chǔ)部,山東煙臺264001)
文章研究了一類p次方型差分系統(tǒng)解的性態(tài)。運用數(shù)學(xué)歸納法、極限思想研究了0<a≤1,a>1時系統(tǒng)解的性態(tài),證明了系統(tǒng)全局吸引子、有界持久性、非振動解的收斂性等有關(guān)結(jié)論。
差分系統(tǒng);子列;極限
文獻[5-6]在解決了這一猜想的基礎(chǔ)上,進一步思考,證明了解的持久性、振動性等相關(guān)問題。近年來,有關(guān)差分系統(tǒng)的研究逐漸引起了越來越多的人的關(guān)注,參見文獻[7-14]。文獻[15-18]在研究差分系統(tǒng)時運用了極限思想、不等式、數(shù)學(xué)歸納法等方法,值得本文借鑒。受上述文獻的啟發(fā),本文研究差分系統(tǒng):
運用迭代、極限的性質(zhì)以及子列等知識,研究了該差分系統(tǒng)的全局吸引子、有界持久性、振動性等解的性態(tài)。
證明:由平衡點的定義得:
引理證畢。
引理2:若1<p<2,則對于任意的y>0,有yp-1-y-1<0。
證明:設(shè)f(y)=yp-1-y-1,對f(y)求導(dǎo)數(shù)有
引理證畢。
引理3:若a≤1、p>1且x-1≥y0、y-1≥x0,則系統(tǒng)(1)的正解滿足x-1≥y0>x1>y2>x3>y4>…、y-1≥x0>y1>x2>y3>x4>…且。
證明:由系統(tǒng)(1)有:
因此,
顯然,x-1≥y0>x1>y2>x3>y4>…,y-1≥x0>y1>x2>y3>x4>…。
由引理1可知m=n=0。
引理證畢。
定理1:若a≤1,1<p<2,則平衡點xˉ=yˉ=0是系統(tǒng)(1)的全局吸引子。
假設(shè)x-1<y0≤x1≤y2≤x3≤y4≤…且y-1<x0≤y1≤x2≤y3≤x4≤…。
由系統(tǒng)(1)有:
由引理2有:
因為x-1<y0≤x1≤y2≤x3≤y4≤…且y-1<x0≤y1≤x2≤y3≤x4≤…。
所以,當(dāng)n為奇數(shù)時:
將式(2)分子中的xn-1,式(3)分子中的yn-1分別用式(1)替換,從而將式(2)、(3)變形,得:。即數(shù)列的偶數(shù)項是有界的。
這與引理1矛盾。
n為偶數(shù)時同理可證。
所以,x-1<y0≤x1≤y2≤x3≤y4≤…不成立,y-1<x0≤y1≤x2≤y3≤x4≤…也不成立。
即:一定存在M、L(假設(shè)M、L為奇數(shù),M、L為偶數(shù)的情況類似可證),使得xM>yM+1、yL>yL+1。
定理證畢。
定理2:若a>1,1<p<2,則系統(tǒng)(1)的所有正解都是有界持久的。
由系統(tǒng)(1)有:
由引理2有:
由引理2有:
根據(jù)式(4)~(7),由數(shù)學(xué)歸納法可知:
下面證明是不可能的,即的情況類似可證)。
由不等式(8)、(9)可知:
由式(10)、(11)可知:k是大于1的整數(shù)。
由系統(tǒng)(1)有:
由數(shù)學(xué)歸納法可知:
由系統(tǒng)(1)有:
由數(shù)學(xué)歸納法可知:
因此,當(dāng)n2>n1時,xn2+1>yn2。
取M=max{n2,n3},則當(dāng)M>n1時,xM+1>yM,yM+1>xM。
所以數(shù)列{xn}的奇數(shù)項和偶數(shù)項都是單調(diào)增加的,數(shù)列{yn}的奇數(shù)項和偶數(shù)項也都是單調(diào)增加的。這與矛盾。
綜上,系統(tǒng)(1)的所有正解都是有界持久的。
定理3:若a>1,1<p<2,則系統(tǒng)(1)的所有非振動解都收斂到平衡點xˉ=yˉ=a-1。
由系統(tǒng)(1)有:
由數(shù)學(xué)歸納法可知,當(dāng)n>n4時
。
取M=max{n5,n6},則當(dāng)M>n4時,xM+1<yM,yM+1<xM。
所以,數(shù)列{xn}的奇數(shù)項和偶數(shù)項都是單調(diào)減少的,數(shù)列{yn}的奇數(shù)項和偶數(shù)項也都是單調(diào)減少的,且xn>、yn>。根據(jù)單調(diào)遞減有下界的數(shù)列必有極限可知:。
定理證畢。
[1]KOCIC V L,LADAS G.Global behavior of nonlinear difference equations of higher order with applications[M]. Dordrecht,Netherlands:Kluwer Academic Publishers,1993:155-159.
[2]ZHANG D C,SHI B,GAI M J.On the rational recursive sequence[J].Indian Journal of Pure and Applied Mathematics,2001,32:657-663.
[3]王麗英.時滯差分方程解的部分性態(tài)研究[D].煙臺:海軍航空工程學(xué)院,2008. WANG LIYING.Research on the solutions of delay difference equations[D].Yantai:Naval Aeronautical and Astronautical University,2008.(in Chinese)
[4]KULENOVI? M R S,LADAS G.Dynamics of second order rational difference equations with open problems and conjectures[M].Boca Raton,F(xiàn)lorida,Chapman& Hall/CRC,2002:75.
[5]張德存,王麗英,紀(jì)文強,等.一類寄生蟲模型解的性態(tài)研究[J].中國科學(xué):數(shù)學(xué),2013,43(9):893-898. ZHANG DECUN,WANG LIYING,JI WENQIANG,et al.Study on the May's host parasitoid model[J].Scientia Sinica Mathematica,2013,43(9):893-898.(in Chinese)
[6]李曉寶.離散動力系統(tǒng)中幾類差分方程解的性態(tài)研究[D].煙臺:海軍航空工程學(xué)院,2014. LI XIAOBAO.On the behavior of the solutions of several equations in discrete dynamical systems[D].Yantai:Naval Aeronautical and Astronautical University,2014.(in Chinese)
[7]CAMOUZIS E,PAPASCHINOPOULOS G.Global asymptotic behavior of positive solutions on the system of rationaldifferenceequationsxn+1=1+xnyn-m,yn+1=1+ynxn-m[J].Applied Mathematics Letters,2004,17:733-737.
[8]YU ZHANG,YANG XIAOFAN,DAVID J EVANS,et al. Onthenonlineardifferenceequationsystem xn+1=A+yn-mxn,yn+1=A+xn-myn[J].Computers and Matehmatics withApplications,2007,53:1561-1566.
[9]YANG XIAOFAN,LIU YAOXIN,BAI SEN.On the system of high order rational difference equations[J].Applied Mathematics and Computation, 2005,171:853-856.
[10]STEVO STEVI?.On a solvable rational system of difference equations[J].Applied Mathematics and Computation,2012,219:2896-2908.
[11]CINAR C.On the positive solutions of the difference equation system[J].Applied Mathematics and Computation,2004,158:303-305.
[12]AHMET YASAR OZBAN.On the system of rational difference equations[J].Applied Mathematics and Computation,2007,188:833-837.
[13]PAPASCHINOPOULOS G,SCHINAS C J.On a system of two nonlinear difference equations[J].Journal of MathematicalAnalysis andApplications,1998,219:415-426.
[14]紀(jì)文強.幾類差分方程、差分系統(tǒng)解的性態(tài)研究[D].煙臺:海軍航空工程學(xué)院,2013. JI WENQIANG.On the behavior of the solution of several difference equations and the difference systems[D]. Yantai:Naval Aeronautical and Astronautical University,2013.
[15]LI XIAOBA,ZHANG DECUN,JI WENQIANG,et al. On the system of higher order rational difference equations[J].Far East Journal of Applied Mathematics,2014,89:29-39.
[16]ZHANG DECUN,JI WENQIANG,WANG LIYING,et al.On the behavior of positive solutions of a difference equations system[J].Applied Mathematics,2013,4:13-18.
[17]JI WENQIANG,ZHANG DECUN,WANG LIYING.Dynamics and behaviors of a third-order system of difference equation[J].Mathematical Sciences,2013,7:34.
[18]ZHANG DECUN,MU YI,WANG LIYING.On ak+2 type difference system[J].Far East Journal of Applied Mathematics,2016,94:89-104.
Research on the Characteristics of Solution of ap-times Difference System
MU Yi,YU Haotian,ZHANG Decun
(Department of Basic Sciences,NAAU,Yantai Shandong 264001,China)
In this paper,a p-times difference systemwas studied.The method of induction and limitation was applied to study the characteristics of solution of the system with0<a≤1,a>1.Furthermore,some conclusions were gotten about global attractor,permanent,non-oscillatory solution.
difference system;subsequence;limitation
O241.84
A
1673-1522(2016)03-0390-05DOI:10.7682/j.issn.1673-1522.2016.03.016
2016-03-05;
2016-04-15
母易(1992-),男,碩士生。