劉桂利
?
基于B-樣條的波動方程數值解法
劉桂利
(哈爾濱金融學院 基礎教研部,黑龍江 哈爾濱150036)
利用中的2組均勻B-樣條和,給出波動方程的一種數值解法,并利用這2組B-樣條所構造的擬插值算子討論數值解的誤差估計.得到為基底的數值解比以為基底的數值解要精確的結果.
B-樣條;波動方程;擬插值算子;數值解
1問題的提出
求解如下波動方程邊值問題
對矩型區(qū)域作均勻網格剖分[1-3]:,
2數值方法
由式(5)得
由式(6)得
由式(7)得
由式(8)得
由式(9)得
由式(10)得
由式(11)得
3數值算例
求波動方程邊值問題
[1] 王仁宏.任意剖分下的多元樣條分析(I)[J].中國科學·數學專輯I,1979:215-226
[2] 王仁宏.任意剖分下的多元樣條分析(II)——空間形式[J].高等學校計算數學學報,1980(1):78-81
[3] 王仁宏,施錫泉,羅鐘銥,等.多元樣條函數及其應用[M].北京:科學出版社,1994
[4] 李崇君.特殊三角剖分上的多元樣條及其應用[D].大連:大連理工大學,2004
[5] Lai M J,Schumaker L L.On the approximation power of bivariate splines[J].Adv Comput Math,1998(9):251–279
[6] Boor C.B-form basics in Geometric Modeling:Algorithms and New Trends[M].Philadelphia:SIAM,1987
[7] 廖肇源.樣條函數在微分方程數值解中的若干應用[D].大連:大連理工大學,2006
[8] Awanou G,Lai M J,Wenston P.The multivariate spline method for scattered data fitting and numerical solutions of partial differential equations in:Wavelets and Splines[M].Brentwood:Nashboro Press,2006
The numerical method for solving the wave equation based on B-spline
LIU Gui-li
(Department of Basic Teaching and Research,Harbin Finance University,Harbin 150036,China)
Using the two groups ofanduniform B-spline in the,gave a kind of method of wave equation numerical solution,and used the quasi-interpolation operators of two groups of B-spline to discuss the error estimates of numerical solution.The numerical solution of based onis accurate than numerical solution of based on.
B-spline;wave equation;quasi-interpolation operator;numerical solution
O241.82
A
10.3969/j.issn.1007-9831.2016.03.006
2015-12-05
劉桂利(1978-),女,黑龍江虎林人,講師,碩士,從事計算數學研究.E-mail:guili2005@126.com