国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

環(huán)境毒素對(duì)生物種群影響的隨機(jī)延遲微分方程模型分析

2016-10-13 22:40:09于輝襲楊李艷鳳李欣朱桂英
高師理科學(xué)刊 2016年3期
關(guān)鍵詞:毒素種群噪聲

于輝,襲楊,李艷鳳,李欣,朱桂英

?

環(huán)境毒素對(duì)生物種群影響的隨機(jī)延遲微分方程模型分析

于輝,襲楊,李艷鳳,李欣,朱桂英

(黑龍江八一農(nóng)墾大學(xué) 理學(xué)院,黑龍江 大慶 163319)

在環(huán)境毒素對(duì)生物種群影響的經(jīng)典模型基礎(chǔ)上,引入布朗運(yùn)動(dòng)模擬客觀存在的隨機(jī)干擾因素,且考慮到延遲因素,從而構(gòu)造了環(huán)境毒素對(duì)生物種群影響的隨機(jī)延遲微分方程模型,并證明了該模型全局正解的存在性、隨機(jī)有界性和漸近性質(zhì).

環(huán)境毒素;生物種群;隨機(jī)微分方程;延遲

隨著全球環(huán)境污染的加劇和環(huán)保意識(shí)的提高,通過建立數(shù)學(xué)模型的方法研究空氣污染對(duì)生物種群的影響成為生物數(shù)學(xué)研究的一個(gè)重要內(nèi)容[1].關(guān)于環(huán)境毒素對(duì)生物種群影響模型的研究取得了一定的進(jìn)展[2-5],文獻(xiàn)[6-9]研究環(huán)境毒素對(duì)關(guān)系密切的2個(gè)生物種群影響模型,文獻(xiàn)[10]建立了工業(yè)污染背景下物種的生存狀況模型,文獻(xiàn)[11-12]研究了維被污染生態(tài)系統(tǒng)模型.檢索現(xiàn)有文獻(xiàn)發(fā)現(xiàn),研究環(huán)境毒素對(duì)生物種群影響的模型都是確定性的微分方程.

事實(shí)上,在生態(tài)系統(tǒng)的進(jìn)化發(fā)展過程中,各種形式的隨機(jī)干擾無處不在,如空氣相對(duì)濕度、大氣壓、風(fēng)速、空氣逆溫層、日照、生活及工業(yè)廢氣排放量、植被吸附能力等隨機(jī)因素的變化都會(huì)影響到霧霾的濃度、狀態(tài)、危害性等各方面的不確定性變化以及生物種群的免疫力、出生率和死亡率等不可預(yù)期性結(jié)果[13].

這些因素在現(xiàn)有技術(shù)條件下無法控制,不可忽略且具有隨機(jī)變化性,該類隨機(jī)變化的干擾因素綜合起來可看成是環(huán)境白噪聲(即環(huán)境中各種細(xì)小噪音干擾的綜合.由大數(shù)定律可知,這些常見的各種細(xì)小噪音干擾的綜合將會(huì)服從正態(tài)分布,這種噪音被稱為白噪聲.理想的白噪聲在數(shù)學(xué)中是不存在的,對(duì)白噪聲最好的近似就是用布朗運(yùn)動(dòng)或者維納過程的形式導(dǎo)數(shù)來進(jìn)行模擬).研究表明,環(huán)境白噪聲會(huì)不同程度地影響到增長(zhǎng)率、環(huán)境容納量、競(jìng)爭(zhēng)系數(shù)和其它系統(tǒng)參數(shù)[14-17],而且生物種群個(gè)體數(shù)目往往也沒有達(dá)到近似看成確定性系統(tǒng)的要求,研究過程中若忽略這些隨機(jī)因素的作用,可能會(huì)產(chǎn)生較大的偏差,生態(tài)系統(tǒng)中的隨機(jī)波動(dòng)是明顯而不容忽視的.因此,有必要在確定性微分方程模型的基礎(chǔ)上引入布朗運(yùn)動(dòng)模擬的環(huán)境白噪聲.通常情況下,環(huán)境中砷、鉛和汞等重金屬毒素進(jìn)入生物種群后,只有經(jīng)歷積累、化合作用等過程之后,其危害性才得以體現(xiàn)[18-20].這在時(shí)間上有一定的延遲量[21-24],因而生物種群的生理指標(biāo)及癥狀不僅依賴于當(dāng)前時(shí)刻的狀態(tài),而且依賴于過去某個(gè)時(shí)刻的狀態(tài)或者某個(gè)時(shí)間段內(nèi)的狀態(tài).

本文在空氣污染的背景下,從隨機(jī)和延遲角度拓展并深化原有生物模型,建立環(huán)境毒素對(duì)生物種群影響的隨機(jī)延遲微分方程模型,并研究所建立模型的隨機(jī)動(dòng)力學(xué)性質(zhì).

1環(huán)境毒素對(duì)生物種群影響的模型

模型方程(1)的矩陣形式為

2全局正解的存在唯一性

將式(6)代入式(5),有

3隨機(jī)有界性

定義[26]任取和初始函數(shù),如果存在正數(shù),使得方程(1)的解滿足

則稱方程(1)具有隨機(jī)有界性.

其中:

這里

由式(12)可知

4隨機(jī)漸近性

定理1~3表明,所建立的環(huán)境毒素對(duì)生物種群影響的模型(1)具有一定的理論可行性.

5結(jié)束語

在環(huán)境毒素對(duì)生物種群影響的確定性模型基礎(chǔ)上,從隨機(jī)和延遲角度拓展并深化原有生物模型,建立環(huán)境毒素對(duì)生物種群影響的隨機(jī)延遲微分方程模型,并研究了所建立模型的全局正解存在性、隨機(jī)有界性和漸近性質(zhì),從而表明了該模型的理論可行性.該類模型既體現(xiàn)了環(huán)境毒素對(duì)生物種群影響的主導(dǎo)因素又包容了隨機(jī)因素的影響和客觀存在的延遲因素,進(jìn)一步描述了環(huán)境毒素對(duì)生物種群的影響,期望為環(huán)境污染的治理提供更合理、更接近實(shí)際狀況的理論依據(jù).

數(shù)學(xué)模型的發(fā)展過程是一個(gè)逐漸客觀地接近事物真相的過程,隨著環(huán)境污染治理技術(shù)和相關(guān)學(xué)科理論的發(fā)展,關(guān)于環(huán)境毒素對(duì)生物種群影響的數(shù)學(xué)模型的建立及其性質(zhì)的探索和研究將有很大的空間.

[1] 欒施.關(guān)于一類治理的單的[D].大連:遼寧師范大學(xué),2012

[2] Hallam T G,Clark C E,Jordon G S.Effects of Toxicants on Populations:a Qualitative Approach II.First Order Kinetics[J].J Math Biol,1983(1):25-37

[3] Hallam T G,De Luna J L.Effects of Toxicants on Populations:a Qualitative Approach III.Environment,F(xiàn)ood Chain Pathway[J].J Theor Biol,1984,109:429-441

[4] Freedman H I,Shukla J B.Models for the effect of toxicant in single-species and predator-prey systems[J].J Math Biol,1991 (1):15-30

[5] Huaping L,Zhien M.The Threshold of Survival for System of Two Species in a Polluted Environment[J].J Math Biol,1991(2): 49-61

[6] Dubey B,Husain J.Modelling the interaction of two biological species in a polluted environment[J].J Math Anal Appl,2000 (246):58-79

[7] Chattopadhyay J.Effect of Toxic Substances on a Two Species Competitive System[J].Ecol Model,1996(84):287-289

[8] Dubey B,Hussain J.A Model for the Allelopathic Effect on Two Competing Species[J].Ecol Model,2000(129):195-207

[9] Shukla J B,Dubey B.Modeling the Depletion and Conservation of Forestry Resources:Effects of Population and Pollution[J].J Math Biol,1997(3):71-94

[10] Dubey B,Dass B.Model for Survival of Species Dependent on Resource in Industrial Environments[J].J Math Ana Appl,1999, (231):374-396

[11] Pan J,Jin Z,Ma Z.Thresholds of Survival for an n-Dimensional Volterra Mutualistic System in a Polluted Environment[J].J Math Anal Appl,2000(252):519-531

[12] Ma Z,Zong W,Luo Z.The Threshold of Survival for an-Dimensional Food Chain Model in a Polluted Environment[J].J Math Anal Appl,1997(210):440-458

[13] Yu X.The Analysis on Affecting Factors of Haze Weather and Prevention[J].Advances in Enviromental Protection,2013(3): 34-37

[14] 王克.隨機(jī)生物系統(tǒng)數(shù)學(xué)模型[M].北京:科學(xué)出版社,2010

[15] May R M.Stability and Complexity in Model Ecosystems[M].New Jersey:Princeton University Press,1973

[16] Lewontin R C,CohenD.On population growth in a randomly varying environment[J].Proceedings National Academy Science, 1969,62(4):1056-1060

[17] Levins R.The effect of random variations of different types on population growth[J].Proceedings National Academy Science,1969, 62(4):1061-1065

[18] Hallam T G,Clark C E,Lassiter R R.Effects of Toxicants on Populations:a Qualitative Approach I Equilibrium Enviromental Exposure[J].Ecol Model,1983(18):291-304

[19] F Misra A K, Kusum Lata, Shukla J B. Effects of population and population pressure on forest resources and their conservation: a modeling study[J].Environment,Development and Sustainability,2014,16(2):361-374

[20] Li X,Jiang D.Population Dynamical Behavior of Lotka-Volterra System under Regime Switching[J].J Comput Appl Math,2009 (232):427-448

[21] Bocharov G A,Rihan F A.Numerical Modelling in Biosciences using delay differential equations[J].J Comput Appl Math,2000 (125):183-199

[22] Kuang Y.Delay Differntial equations with Applications in Population Dynamics[M].Newyork:Academic Press Inc,1993:1-10

[23] Mao X, Matasov A, Piunovsiy A B. Stochastic Differnetial Delay Equations with Markovian Switching[J].Bernoulli,2000,6(1): 73-90

[24] Chen G T,Li T C.Stability of Stochastic Delay SIR Model[J].Stochastics and Dynamics,2009(9):231-252

[25] Mao X.Lasalle-type theorems for stochastic differential delay equations[J].Journal of Mathematical Analysis and Applications, 1999,236(2):350-369

[26] 劉蒙.隨機(jī)種群模型若干性質(zhì)的研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2012

技計(jì)劃項(xiàng)目(szdfy-2015-48)——環(huán)境毒素對(duì)生物種群影響的隨機(jī)模型研究;大慶哲學(xué)社會(huì)科學(xué)規(guī)劃研究項(xiàng)目——大慶產(chǎn)業(yè)轉(zhuǎn)型模式的分析及其隨機(jī)模型的構(gòu)建


Model analysis of stochastic delay differential equations for the effect of environmental toxin to species population

YU Hui,XI Yang,LI Yan-feng,LI Xin,ZHU Gui-ying

(School of Science,Heilongjiang Bayi Agricultural University,Daqing 163319,China)

On the basis of the classical models of the effect of environmental toxin to species population,the model of stochastic delay differential equations for the effect of environmental toxin to species population was constructed in the presence of Brown motion to simulate the objective stochastic factors and in consideration of the delay.The existence of the global positive solutions,stochastic boundedness and the asymptotic property was then given for such model.

environmental toxin;species population;stochastic differential equation;delay

O211.63∶Q-332

A

10.3969/j.issn.1007-9831.2016.03.002

2015-12-01

黑龍江八一農(nóng)墾大學(xué)學(xué)成、引進(jìn)人才科研啟動(dòng)計(jì)劃項(xiàng)目(XDB2014-16)——隨機(jī)微分方程的數(shù)值解法及其應(yīng)用;大慶市指導(dǎo)性科

于輝(1979-),女,山東鄆城人,講師,博士,從事隨機(jī)微分方程研究.E-mail:yuhui163@163.com

猜你喜歡
毒素種群噪聲
山西省發(fā)現(xiàn)刺五加種群分布
What Makes You Tired
一類具有毒素的非均勻chemostat模型正解的存在性和唯一性
噪聲可退化且依賴于狀態(tài)和分布的平均場(chǎng)博弈
中華蜂種群急劇萎縮的生態(tài)人類學(xué)探討
紅土地(2018年7期)2018-09-26 03:07:38
毒蘑菇中毒素的研究進(jìn)展
控制噪聲有妙法
嚴(yán)苛標(biāo)準(zhǔn)方能清洗校園“毒素”
一種基于白噪聲響應(yīng)的隨機(jī)載荷譜識(shí)別方法
車內(nèi)噪聲傳遞率建模及計(jì)算
林口县| 和林格尔县| 扎兰屯市| 周宁县| 盐山县| 炉霍县| 浦城县| 辛集市| 平凉市| 井冈山市| 勐海县| 唐山市| 社旗县| 秦安县| 娄底市| 类乌齐县| 津南区| 白城市| 晋城| 务川| 聂拉木县| 天水市| 喜德县| 新安县| 兴化市| 临城县| 乌拉特后旗| 太仓市| 临武县| 南城县| 巴南区| 枞阳县| 孟村| 长岛县| 碌曲县| 宁德市| 图们市| 南华县| 麟游县| 乐至县| 九龙坡区|