杜站宇,趙家平,宋興超,李雪嬌,吳 瓊,楊 穎,邢秀梅,徐 超*,張林波
(1.吉林農(nóng)業(yè)大學,長春 130118;2.中國農(nóng)業(yè)科學院特產(chǎn)研究所,農(nóng)業(yè)部特種經(jīng)濟動物遺傳育種與繁殖重點實驗室,吉林省特種經(jīng)濟動物分子生物學省部共建國家重點實驗室,長春 130112;3.長春長生生物科技有限責任公司,長春130103)
?
黑素小體在黑色素生成過程中的關鍵作用
杜站宇1,2,趙家平2,宋興超2,李雪嬌3,吳瓊2,楊穎2,邢秀梅2,徐超1,2*,張林波1*
(1.吉林農(nóng)業(yè)大學,長春 130118;2.中國農(nóng)業(yè)科學院特產(chǎn)研究所,農(nóng)業(yè)部特種經(jīng)濟動物遺傳育種與繁殖重點實驗室,吉林省特種經(jīng)濟動物分子生物學省部共建國家重點實驗室,長春 130112;3.長春長生生物科技有限責任公司,長春130103)
黑素小體是真核生物細胞中用于合成和沉積黑色素唯一的細胞器,其功能紊亂將導致人類或哺乳動物的色素相關疾病。黑素小體的發(fā)生(黑素小體的形成、成熟;前黑素小體纖維的形成;黑素小體相關蛋白的轉運)、黑素小體內環(huán)境的穩(wěn)定和黑素小體的轉運都是黑色素合成和沉積必不可少的前提條件。本文將對黑素小體在黑色素生成過程中的關鍵作用進行闡述,以期為哺乳動物黑色素減退機制進一步探索和理解,以及人類白化相關疾病的進一步揭示提供理論參考。
黑素小體;黑素小體的發(fā)生;黑素小體內環(huán)境;黑色素減退
哺乳動物毛發(fā)、皮膚和眼睛中的黑色素是一種復合色素,主要包含黑/棕色的真黑色素和紅/黃色的褐黑色素。黑色素不僅僅為哺乳動物的毛發(fā)、皮膚和眼睛提供豐富的色彩,也為它們的生存提供一定的保護。哺乳動物黑色素的生物合成發(fā)生在表皮細胞、眼黑色素細胞、視網(wǎng)膜色素上皮細胞以及虹膜的黑素小體中,黑色素是在黑素小體產(chǎn)生、聚集并沉積在黑素小體腔內的纖維薄層上[1],黑素小體來源于早期核內體[2-3],在形態(tài)和功能上唯一用來合成和存儲黑色素的溶酶體類細胞器(Lysosomerelated organelle,LRO)[4],是完整的循環(huán)核內體系統(tǒng)[5]。
1.1黑素小體的形成和成熟
根據(jù)所包含的黑色素不同,分為真黑素小體和褐黑素小體。真黑素小體(Eumelanosomes)是橢圓形,有明顯的蛋白質樣纖維基質,是真黑色素在黑素小體成熟早期整齊有序的排列所產(chǎn)生的;而褐黑素小體是圓形,色素表面粗糙,所包含的蛋白多于真黑素小體,無定型的蛋白纖維基質,大多處于運動狀態(tài)[6-7]。早期的真黑素小體可以在透射電鏡下觀察到完整的黑色素纖維堆積所產(chǎn)生的條紋,而褐黑素小體可觀察到的條紋呈現(xiàn)不完全黑化斑點狀[8]。
黑素小體的成熟過程可分為4個階段,第Ⅰ階段為前黑素小體,是含有很多膜腔內囊泡(Intralumenal membrane vesicles,ILVs)具有不定形基質的球狀細胞器;第Ⅱ階段,黑素小體伴隨著囊泡延長,外部形成纖維狀結構,內部產(chǎn)生纖維基質,可檢測到淀粉樣纖維[9];第Ⅲ階段,黑色素合成并存儲在淀粉樣纖維上,導致其變黑增厚;第Ⅳ階段,黑色素繼續(xù)在淀粉樣纖維上合成和沉積直到充滿內部纖維結構[10]。
黑素小體第Ⅰ、Ⅱ階段,前黑素小體蛋白(Premelanosome protein 17,Pmel17)參與黑素小體纖維的形成,并維持黑素小體內環(huán)境的平衡[2-3],以利于第Ⅲ、Ⅳ階段黑色素的合成和沉積[11-12]。黑素小體第Ⅱ階段,酪氨酸酶類(Tyrosinase,TYR;tyrosinase-related protein-1,TYRP1;DOPAchrome tautomerase,DCT)在第Ⅱ階段末期被轉運進入黑素小體[13],TYR和TYRP1被溶酶體生物合成相關細胞器復合物(Biogenesis of lysosome related organelle complex,BLOC-1/2/3)或接頭蛋白(Adaptor protein,AP-1/3)復合物選擇性轉運到黑素小體[2]。BLOC-1/2/3、AP-1/3的部分亞基蛋白突變或缺失將導致Hermansky-Pudlak綜合征(HPS),呈常染色體隱性遺傳,具有明顯的遺傳異質性,是人類白化病綜合征中的一種[14]。當小體內富含片狀淀粉樣纖維,并不再內吞物質,標志第Ⅱ階段結束[13]。
黑素小體第Ⅲ階段,在黑素小體膜上α-促黑素皮質激素(α-melanocortins,α-MSH)與黑皮質素受體1(Melanocortin-1 receptor MC1R)結合后,上調cAMP水平,激活真黑色素的合成,這一過程在各種酶類(TYR、TYRP1、DCT和Pmel17)催化下將酪氨酸轉化為多巴醌類,并最終生成真黑色素[15]。若Agouti基因編碼的刺豚鼠信號蛋白(Agouti signaling protein,ASIP)高表達,就會與α-MSH競爭性結合MC1R,下調cAMP水平,激活褐黑色素的合成[16]。
1.2Peml17在前黑素小體纖維形成中的作用機制
在黑素小體成熟的過程中,黑素小體纖維的形成需要Pme17的正常轉運及解朊[17],Pmel17在第Ⅰ階段聚集在腔內膜泡(Intralumenal membrane vesicles,ILVs)上,隨著ILVs的伸長逐漸形成淀粉樣纖維,并使ILVs被推送至細胞器的邊緣。在電鏡下可觀察到橢圓形黑素小體內部具有成片狀結構的條紋,這些條紋即是淀粉樣纖維聚集在黑素小體腔內所形成的,是黑素小體主要的結構[18]。成熟的Pmel17主要由Mα片段(NTR、PKD、RPT)和Mβ(TM、CTD)片段組成,經(jīng)前蛋白轉化酶(Proprotein convertases,PCs)和β位點裂解酶(Beta-site APP cleaving enzyme,BACE)同族物BACE2水解,Mα和Mβ片段分開,Mα片段進一步重組成淀粉樣纖維,Mβ片段在γ分泌酶(γ-secretase)的作用下釋放出C末端片段(C-terminal fragment,CTF)[17],詳見圖1。在小鼠上編碼Pmel17蛋白的PMEL基因終止密碼子突變可產(chǎn)生銀色毛表型[19],雞PMEL基因p.R618C變突產(chǎn)生紅褐色羽毛表型[20],馬PMEL基因p.Arg618Cys突變可產(chǎn)生銀色被毛表型[21]等。
1.3BLOC和AP復合體轉運TYR、TYRP1到達黑素小體及其轉運機制
BLOC-1缺陷細胞試驗顯示,TYRP1不能從核內體轉運到黑素小體,大量TYRP1會堆積在核內體液泡和細胞的表面,但TYR的轉運不受影響,大部分TYRP1由BLOC-1來轉運到達黑素小體[33],而大部分TYR由AP-3轉運完成[22-23],且AP-3轉運TYR到達黑素小體的過程獨立于BLOC-1,詳見圖2。BLOC-2的缺陷將導致TYRP1的定位錯誤[14],黑色素細胞中色素減退。BLOC-2作為Rab32和Rab38轉運到黑素小體膜上的效應器[24],能穩(wěn)定轉運蛋白并引導轉運蛋白與成熟黑素小體發(fā)生特異性地相互作用[14]。BLOC-3作為Rab32/38特定的鳥嘌呤核苷酸交換因子,使Rab32/38與GTP結合后被激活參與黑色素合成酶類的轉運[25]。Rab32/38缺陷細胞中,TYR和TYRP1從TGN合成后,很快就會被降解掉,而不能到達黑素小體[26],甚至會導致黑素小體內環(huán)境紊亂,最終不能產(chǎn)生黑色素[27],因此Rab32/38在黑色素合成過程中也發(fā)揮著重要作用。
圖1 Pmel17的解朊機制[17]Fig.1 The proteolytic cleavage of Pmel17[17]
圖2 黑素小體蛋白的轉運[23]Fig.2 The transportation of melanosome proteins[23]
驅動蛋白KIF13A(The kinesin-3 motor)可以促進黑素小體相關蛋白的合成,并在循環(huán)核內體的轉運作用下最終與黑素小體的融合[28]。AP-1的一端結合在轉運中間體上,另一端結合驅動蛋白KIF13A并指導它在細胞外圍的循環(huán)核內體結構域到黑素小體膜之間構建微管[28],黑色素細胞中AP-1被干擾后,TYRP1被定位錯誤,黑色素細胞內色素大量減少[29]。BLOC-2指導微管轉運中間體特異性與成熟黑素小體相互作用,維系轉運中間體的穩(wěn)定[14]。在BLOC-1的調控作用下,驅動蛋白KIF13A沿著微管穩(wěn)定遷移,在黑素小體附近釋放出包含有黑素小體相關蛋白的循環(huán)核內體管,循環(huán)核內體管與黑素小體融合,使黑素小體相關蛋白最終到達黑素小體[5]。
2.1OA1基因
OA1基因表達OA1的蛋白主要存在于成熟黑素小體的膜和前黑素小體的內吞溶酶體,是連接細胞內溶酶體和黑素小體的G-蛋白偶聯(lián)受體(G-protein-coupled receptor,GPCR)[30]。對人皮膚黑色素細胞進行免疫熒光檢測顯示OA1是帶有Gαi亞基的異源三聚體(Gαi1、Gαi2、Gαi3),在黑素小體發(fā)育的第Ⅱ階段,OA1激活Gαi3從而阻止膜泡連續(xù)不斷地轉運到黑素小體。OA1基因突變或Gαi3亞型蛋白未被激活,膜泡在第Ⅲ、Ⅳ階段持續(xù)轉運到黑素小體,會使黑素小體變大,表現(xiàn)為小體腔內纖維條紋減少,且黑素色素沉積密集,較正常黑素小體體積大,黑素小體呈球狀體[31]。敲除小鼠OA1基因或者抑制Gαi3亞型蛋白表達都表現(xiàn)出視網(wǎng)膜色素上皮細胞黑素小體變大現(xiàn)象[32]。Pmel17的表達受小眼相關轉錄因子(Microphthalmia-associated transcription factor,Mitf)的調控[33-34],OA1參與了α-MSH-Mitf的信號級聯(lián)反應,在OA1基因突變后,α-MSH將不能長時間維持MITF的高表達,而Pmel17的表達減少使黑素小體中淀粉樣纖維的形成減少[35],才導致黑素小體變大。
2.2OCA2基因
在人類基因組中對應OCA2基因[36](小鼠上Pinkeyeddilute基因)編碼的紅眼色素稀釋蛋白(Pink-eyed dilution protein,P-protein),在黑色素細胞和視網(wǎng)膜色素上皮細胞黑色素生物合成中有著重要作用。在人上,由于HERC2(Hect domain and RCC1-like domain 2)基因存在一個單核苷酸多態(tài)性位點(Single-nucleotide polymorphim,SNP)rs12913832:A>G使人的虹膜呈現(xiàn)藍色,這一位點被證實可以增強OCA2基因的表達[37]。E.coli的研究顯示OCA2蛋白有12個跨膜結構域,相當于一個Na+/H+離子泵,泵出H+維持小體內pH在中性范圍,使TYR發(fā)揮最佳活性從而催化酪氨酸產(chǎn)生真黑色素[38]。OCA2的表達量降低可使黑素小體腔內pH降低,導致TYR活性降低,這可能是黑色素細胞內色素減退的原因[39]。S.Park等[40]通過電鏡觀察發(fā)現(xiàn),下調OCA2的表達,將導致黑素小體形態(tài)、結構、數(shù)量以及黑色素含量顯著減少。控制黑色素瘤細胞增殖的關鍵調控因子TBX2(T-box transcription factor 2)同樣調控黑色素的生物合成,敲除TBX2將增加OCA2的表達量,且生物合成的黑色素含量增多[41]。
2.3SLC24A5基因和SLC45A2基因
在斑馬魚中首先發(fā)現(xiàn)的金色突變基因SLC24A5,可以引起黑色素細胞和視網(wǎng)膜色素上皮細胞的色素減退[42],SLC24A5基因編碼位于黑素小體膜上的離子泵,偶聯(lián)V-ATPase調控黑素小體內的陽離子濃度(Na+、K+、Ca2+和H+)。黑色素瘤基因(Antigen in melanoma,AIM-1,也叫做SLC45A2)編碼膜相關轉運蛋白(Membrane-associated transporter protein,MATP)[43-44],MATP將H+從黑素小體中泵出去,將Na+泵進來;SLC24A5基因編碼的離子泵作用剛好相反,兩者共同調節(jié)黑素小體內環(huán)境的pH[42,45]。敲除MATP不會使黑素小體的形態(tài)改變,黑色素合成相關蛋白的表達也不受影響,但會顯著降低黑素小體內的pH、TYR活性降低、黑色素含量減少[46]。推測這是由于黑素小體內陽離子的數(shù)量是穩(wěn)定的,MATP轉運H+到黑素小體內,Cu2+泵轉運Cu2+到黑素小體內(TYR的活性激活需要Cu2+的參與),MATP被敲除后,黑素小體內的陽離子相對含量增加,能夠激活TYR的Cu2+數(shù)量減少,最后導致TYR的活性下降[46]。在白虎上的研究顯示,由于SLC45A2基因中的錯義突變導致單個氨基酸改變,使褐黑素小體內環(huán)境紊亂阻止了褐黑色素的沉積,但是對真黑色素沉積影響較小,故而產(chǎn)生黑色條紋白底毛色的表型[47]。
黑色素生物合成完成后,成熟的黑素小體要被轉運到角質細胞中進而發(fā)揮作用。目前,黑素小體轉運到角質細胞有4種模型[4,48]:①細胞吞噬模型:角質細胞吞噬掉黑色素細胞中富含黑素小體的末端樹突;②膜融合模型:黑色素細胞生出具膜管狀通道,與角質細胞靠近后融合在一起,黑素小體從管狀通道進入到角質細胞中;③脫落吞噬模型:黑色素細胞中富含黑素小體的膜封閉囊泡,脫落后被角質細胞吞噬掉;④胞外分泌內吞模型:黑色素細胞通過胞外分泌作用釋放帶有黑色素內核的黑素小體到胞外空間,由角質細胞吞噬掉這個帶有黑色素核的黑素小體。
黑素小體在角質細胞中的含量將會直接影響皮膚的顏色,皮膚黑的人黑色素細胞轉入角質細胞的黑素小體的量要比皮膚白的人多[49]。有些游離的細胞器會在結合自噬體釋放的內含物后被溶酶體/液泡降解掉[50],而黑素小體被降解主要是這一因素導致的,這也是不同種族皮膚顏色多樣化的原因[51]。皮膚白的人角質細胞的自噬體活性要高于皮膚黑的人,抑制自噬體減少黑素小體的降解,會使皮膚顏色顯著加黑;而激活自噬體增加黑素小體的降解,就會使皮膚顏色變淺[51]。進一步的研究表明內皮素-1(Endothelin-1,ET-1)的表達有助于黑素小體融合進入角質細胞[52]。
眼皮膚白化病(Oculocutaneous albinism,OCA)的表型特征一般被描述為皮膚、毛發(fā)、眼睛的色素減退癥狀,以及黑色素合成缺陷導致的眼畸形,所涉及基因均與黑素小體相關(在前文已闡述)。人類的所有種族都有患OCA的可能,平均每17 000人就有1人患有OCA[53],目前被廣泛報道的OCA主要有4種類型,分別是由于TYR、OCA2、TYRP1和SLC45A2基因突變所導致的,OCA5還沒有得到確認,近兩年OCA6和OCA7得到確認,分別是由于SLC24A5和C10orf11突變所導致[54]。人類的眼白化病Ⅰ型基因(Ocular albinism type 1,OA1,GPR143)突變導致白化病X-連鎖癥狀,患者的皮膚正常,但存在虹膜半透明、畏光、眼發(fā)育不全以及眼球震顫等眼白化缺陷癥狀[55]。此外,還存在其他白化病綜合征,如Hermansky-Pudlak Syndrome (HPS)和Griscelli syndrome (GS)。其中HPS的9種類型分別由下述基因突變所導致的[54]:HPS1(HPS1)、AP3B1 (HPS2)、HPS3 (HPS3)、HPS4 (HPS4)、HPS5 (HPS5)、HPS6 (HPS6)、DTNBP1 (HPS7)、BLOC1S3 (HPS8)、BLOC1S6 (HPS9)。S.Ammann等[56]指出AP3δ缺陷導致AP-3不穩(wěn)定產(chǎn)生神經(jīng)嚴重紊亂并伴隨免疫缺陷和白化病的癥狀,并將這一病癥確定為HPS10。GS分別由3種不同的基因突變導致的:MYO5A、RAB27A、MLPH。GS1主要表現(xiàn)為神經(jīng)性紊亂;GS2表現(xiàn)為免疫系統(tǒng)缺陷;GS3一般只表現(xiàn)為色素減退而沒有系統(tǒng)性的相關病癥[57]。
黑色素細胞中用于合成和沉積黑色素顆粒的唯一細胞器是黑素小體,來源于早期核內體,也是特殊的溶酶體相關細胞器(LROs),與LROs相關的白化疾病都與黑素小體相關,最典型的是HPS,主要機制是因為HPS相關基因所組成的蛋白亞基突變,BLOC-1/2/3或AP-1/3轉運TYR、TYRP1不能正常到達黑素小體,導致黑色素合成減少甚至缺失。眼白化皮膚病1型和3型是由于TYR、TYRP1突變,酪氨酸不能被TYR、TYRP1催化,在或動物上導致毛發(fā)或皮膚黑色素沉積減少,眼白化皮膚病2、4、6型則是由于黑素小體內環(huán)境的改變。
在黑素小體成熟過程中,Pmel17不能正常轉運和解朊也將導致黑素小體的形態(tài)異常,甚至會缺少能夠使黑色素沉積的基質,其基因突變則可能直接導致某些哺乳動物的淺色被毛。黑素小體的形態(tài)結構依賴于OA1的正常表達,內環(huán)境的穩(wěn)定依賴于離子泵如OCA2、MATP以及SLC24A5所編碼的蛋白對黑素小體內陽離子的調控,黑素小體陽離子種類失衡將影響TYR的活性,TYR是黑色素合成過程中的關鍵酶,TYR活性受到影響會直接導致黑色素的產(chǎn)生受阻。黑色素細胞中黑素小體成熟之后將會被轉入到鄰近的角質細胞中,有關黑素小體到達角質細胞的途徑,已有相關報道證實了“胞外分泌內吞”模型[58]。
人類的白化疾病以及哺乳動物的皮膚/毛發(fā)黑色素減退的原因多種多樣,但是以黑素小體為核心黑素小體的形態(tài)發(fā)生和成熟,黑素小體蛋白的正常轉入,以及穩(wěn)定的內環(huán)境,都是黑色素合成的基礎條件,對黑素小體的正確認識將有助于進一步揭示人類的白化相關疾病,也將為哺乳動物的皮膚/毛發(fā)黑色素減退機制提供理論參考。
[1]RAPOSO G,MARKS M S.The dark side of lysosome-related organelles:specialization of the endocytic pathway for melanosome biogenesis[J].Traffic,2002,3(4):237-248.
[2]RAPOSO G,MARKS M S.Melanosomes--dark organelles enlighten endosomal membrane transport[J].NatRevMolCellBiol,2007,8(10):786-797.
[3]SITARAM A,MARKS M S.Mechanisms of protein delivery to melanosomes in pigment cells[J].Physiology(Bethesda),2012,27(2):85-99.
[4]MARKS M S,SEABRA M C.The melanosome:membrane dynamics in black and white[J].NatRevMolCellBiol,2001,2(10):738-748.
[5]DELEVOYE C,HEILIGENSTEIN X,RIPOLL L,et al.BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes[J].CurrBiol,2016,26(1):1-13.
[6]THUREAU P,ZIARELLI F,THéVAND A,et al.Probing the motional behavior of eumelanin and pheomelanin with solid-state NMR spectroscopy:new insights into the pigment properties[J].Chemistry,2012,18(34):10689-10700.
[7]WOLNICKA-GLUBISZ A,PECIO A,PODKOWA D,et al.Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia:Anura:Pipidae)[J].ExpDermatol,2012,21(7):537-540.
[8]LIU-SMITH F,POE C,F(xiàn)ARMER P J,et al.Amyloids,melanins and oxidative stress in melanomagenesis[J].ExpDermatol,2015,24(3):171-174.
[9]BERSON J F,THEOS A C,HARPER D C,et al.Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis[J].JCellBiol,2003,161(3):521-533.
[10]HOASHI T,MULLER J,VIEIRA W D,et al.The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers[J].JBiolChem,2006,281(30):21198-21208.
[11]RAPOSO G,TENZA D,MURPHY D M,et al.Distinct protein sorting and localization to premelanosomes,melanosomes,and lysosomes in pigmented melanocytic cells[J].JCellBiol,2001,152(4):809-824.
[12]SCHMUTZ S M,DREGER D L.Interaction of MC1R and PMEL alleles on solid coat colors in Highland cattle[J].AnimGenet,2013,44(1):9-13.
[13]HELLSTR?M A R,WATT B,F(xiàn)ARD S S,et al.Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation[J].PLoSGenet,2011,7(9):e1002285.
[14]DENNIS M K,MANTEGAZZA A R,SNIR O L,et al.BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery[J].JCellBiol,2015,209(4):563-577.
[15]KOBAYASHI T,URABE K,WINDER A,et al.Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis[J].EMBOJ,1994,13(24):5818-5825.
[16]JIANG Y,ZHANG S,XU J,et al.Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp[J].PLoSOne,2014,9(9):e108200.
[17]WATT B,VAN NIEL G,RAPOSO G,et al.PMEL:a pigment cell-specific model for functional amyloid formation[J].PigmentCellMelanomaRes,2013,26(3):300-315.
[18]HURBAIN I,GEERTS W J,BOUDIER T,et al.Electron tomography of early melanosomes:implications for melanogenesis and the generation of fibrillar amyloid sheets[J].ProcNatlAcadSciUSA,2008,105(50):19726-19731.
[19]MARTINEZ-ESPARZA M,JIMéNEZ-CERVANTES C,BENNETT D C,et al.The mouse silver locus encodes a single transcript truncated by the silver mutation[J].MammGenome,1999,10(12):1168-1171.
[20]KERJE S,SHARMA P,GUNNARSSON U,et al.The Dominant white,Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene[J].Genetics,2004,168(3):1507-1518.
[21]BRUNBERG E,ANDERSSON L,COTHRAN G,et al.A missense mutation in PMEL17 is associated with the Silver coat color in the horse[J].BMCGenet,2006,7:46.
[22]SITARAM A,DENNIS M K,CHAUDHURI R,et al.Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes[J].MolBiolCell,2012,23(16):3178-3192.
[23]SETTY S R,TENZA D,TRUSCHEL S T,et al.BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles[J].MolBiolCell,2007,18(3):768-780.
[24]BULTEMA J J,AMBROSIO A L,BUREK C L,et al.BLOC-2,AP-3,and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles[J].JBiolChem,2012,287(23):19550-19563.
[25]GERONDOPOULOS A,LANGEMEYER L,LIANG J R,et al.BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor[J].CurrBiol,2012,22(22):2135-2139.
[26]WASMEIER C,ROMAO M,PLOWRIGHT L,et al.Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes[J].JCellBiol,2006,175(2):271-281.
[27]LOPES V S,WASMEIER C,SEABRA M C,et al.Melanosome maturation defect in Rab38-deficient retinal pigment epithelium results in instability of immature melanosomes during transient melanogenesis[J].MolBiolCell,2007,18(10):3914-3927.
[28]DELEVOYE C,HURBAIN I,TENZA D,et al.AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis[J].JCellBiol,2009,187(2):247-264.
[29]THEOS A C,TENZA D,MARTINA J A,et al.Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes[J].MolBiolCell,2005,16(11):5356-5372.
[30]STALEVA L,ORLOW S J.Ocular albinism 1 protein:trafficking and function when expressed in Saccharomyces cerevisiae[J].ExpEyeRes,2006,82(2):311-318.
[31]CAMAND O,BOUTBOUL S,ARBOGAST L,et al.Mutational analysis of the OA1 gene in ocular albinism[J].OphthalmicGenet,2003,24(3):167-173.
[32]YOUNG A,JIANG M,WANG Y,et al.Specific interaction of Gαi3 with the Oa1 G-protein coupled receptor controls the size and density of melanosomes in retinal pigment epithelium[J].PLoSOne,2011,6(9):e24376.
[33]BAXTER L L,PAVAN W J.Pmel17 expression is Mitf-dependent and reveals cranial melanoblast migration during murine development[J].GeneExprPatterns, 2003,3(6):703-707.
[34]VACHTENHEIM J,BOROVANSKY J.“Transcription physiology” of pigment formation in melanocytes:central role of MITF[J].ExpDermatol,2010,19(7):617-627.
[35]FALLETTA P,BAGNATO P,BONO M,et al. Melanosome-autonomous regulation of size and number:the OA1 receptor sustains PMEL expression[J].PigmentCellMelanomaRes,2014,27(4):565-579.
[36]STURM R A,TEASDALE R D,BOX N F.Human pigmentation genes:identification,structure and consequences of polymorphic variation[J].Gene,2001,277(1):49-62.
[37]EIBERG H,TROELSEN J,NIELSEN M,et al.Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within theHERC2 gene inhibiting OCA2 expression[J].HumGenet,2008,123(2):177-187.
[38]ANCANS J,HOOGDUIJN M J,THODY A J.Melanosomal pH,pink locus protein and their roles in melanogenesis[J].JInvestDermatol,2001,117(1):158-159.
[39]BELLONO N W,ESCOBAR I E,LEFKOVITH A J,et al.An intracellular anion channel critical for pigmentation[J].Elife,2014,3:e04543.
[40]PARK S,MORYA V K,NGUYEN D H,et al.Unrevealing the role of P-protein on melanosome biology and structure,using siRNA-mediated down regulation of OCA2[J].MolCellBiochem,2015,403(1-2):61-71.
[41]CHEN Y,PAN L,SU Z,et al.The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2[J].MolCellBiochem,2016,415(1-2):103-109.
[42]LAMASON R L,MOHIDEEN M A,MEST J R,et al.SLC24A5,a putative cation exchanger,affects pigmentation in zebrafish and humans[J].Science,2005,310(5755):1782-1786.
[43]GRAF J,VOISEY J,HUGHES I,et al.Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation[J].HumMutat,2007,28(7):710-717.
[44]NEWTON J M,COHEN-BARAK O,HAGIWARA N,et al.Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism,OCA4[J].AmJHumGenet,2001,69(5):981-988.
[45]DOOLEY C M,SCHWARZ H,MUELLER K P,et al.Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish,providing a mechanism for human pigment evolution and disease[J].PigmentCellMelanomaRes,2013,26(2):205-217.
[46]BIN B H,BHIN J,YANG S H,et al.Membrane-associated transporter protein (MATP) regulates melanosomal pH and influences tyrosinase activity[J].PLoSOne,2015,10(6):e0129273.
[47]XU X,DONG G X,HU X S,et al.The genetic basis of white tigers[J].CurrBiol,2013,23(11):1031-1035.
[48]SINGH S K,KURFURST R,NIZARD C,et al.Melanin transfer in human skin cells is mediated by filopodia--a model for homotypic and heterotypic lysosome-related organelle transfer[J].FASEBJ,2010,24(10):3756-3769.
[49]MONTAGNA W,CARLISLE K.The architecture of black and white facial skin[J].JAmAcadDermatol,1991,24(6 Pt 1):929-937.
[50]SEGLEN P O,BOHLEY P.Autophagy and other vacuolar protein degradation mechanisms[J].Experientia,1992,48(2):158-172.
[51]MURASE D,HACHIYA A,TAKANO K,et al.Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes[J].JInvestDermatol,2013,133(10):2416-2424.
[52]MURASE D,HACHIYA A,KIKUCHI-ONOE M,et al.Cooperation of endothelin-1 signaling with melanosomes plays a role in developing and/or maintaining human skin hyperpigmentation[J].BiolOpen,2015,4(10):1213-1221.
[53]GR?NSKOV K,BR?NDUM-NIELSEN K,LORENZ B,et al.Clinical utility gene card for:Oculocutaneous albinism[J].EurJHumGenet,2014,22(8).545-551.
[54]MONTOLIU L,GR?NSKOV K,WEI A H,et al.Increasing the complexity:new genes and new types of albinism[J].PigmentCellMelanomaRes,2014,27(1):11-18.
[55]CORTESE K,GIORDANO F,SURACE E M,et al.The ocular albinism type 1 (OA1) gene controls melanosome maturation and size[J].InvestOphthalmolVisSci,2005,46(12):4358-4364.
[56]AMMANN S,SCHULZ A,KRGELOH-MANN I,et al.Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome[J].Blood,2016,127(8):997-1006.
[57]JINDAL R,SHIRAZI N.A 15-year-old boy with silvery white hair,hepatosplenomegaly,and pancytopenia[J].IntJDermatol,2015,54(4):393-395.
[58]TARAFDER A K,BOLASCO G,CORREIA M S,et al.Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis[J].JInvestDermatol,2014,134(4):1056-1066.
(編輯程金華)
The Key Role of Melanosomes in Melanin Production
DU Zhan-yu1.2,ZHAO Jia-ping2,SONG Xing-chao2,LI Xue-jiao3,WU Qiong2,YANG Ying2,XING Xiu-mei2,XU Chao2*,ZHANG Lin-bo1*
(1.JilinAgriculturalUniversity,Changchun130118,China;2.KeyLaboratoryofSpecialEconomicAnimalGeneticBreedingandReproduction,MinistryofAgriculture,StateKeyLaboratoryofSpecialEconomicAnimalMolecularBiology,InstituteofSpecialAnimalandPlantScience,ChineseAcademyofAgriculturalSciences,Changchun130112,China;3.ChangchunChangshengBiotechnologyCo.Ltd.,Changchun130103,China)
The melanosomes are the only organelles which synthesize and deposit melanin in eukaryotic cells.The dysfunction of melanosomes will lead to pigment related diseases in human or mammalian.Biogenesis of melanosomes (melanosome formation and maturation,the premelanosome fiber formation and melanosome protein transportation),the balance of melanosome internal environment and melanosome transportation are essential prerequisite for melanin synthesis and deposition.To review the parameters of melanosomes will be helpful to further understand the result of hypopigmentation in mammalian,revealing the human albinism related diseases and providing a theoretical reference.
melanosome;melanin biosynthesis;internal environment of melanosome;hypopigmentation
10.11843/j.issn.0366-6964.2016.08.002
2016-03-22
吉林省科技發(fā)展計劃(20130206029NY);中國農(nóng)業(yè)科學院科技創(chuàng)新工程(ASTIP-ISAPS01);特種動物種質資源共享平臺
杜站宇(1990-),吉林人,男,碩士生,主要從事生物化學與分子生物學研究,E-mail: 735712137@qq.com
徐超,助理研究員,主要從事特種動物種質資源與遺傳育種研究,E-mail:xuchao@caas.cn;張林波,教授,主要從事生物化學與分子免疫學研究,E-mail:cczlb@163.com
S811
A
0366-6964(2016)08-1531-08