姚春發(fā) 滿亭惠 包耀宗
(鋼鐵研究總院工程用鋼所,北京 100081)
終鍛溫度對Nb-V-Ti微合金非調(diào)質(zhì)鋼顯微組織和沖擊韌性的影響
姚春發(fā) 滿亭惠 包耀宗
(鋼鐵研究總院工程用鋼所,北京 100081)
對比研究了經(jīng)控鍛-控冷處理的V-Ti和Nb-V-Ti微合金非調(diào)質(zhì)鋼的顯微組織和力學(xué)性能。結(jié)果表明,Nb-V-Ti復(fù)合微合金化和控鍛-控冷處理能有效細(xì)化組織,改善珠光體形態(tài),促進(jìn)V(C,N)相析出,提高非調(diào)質(zhì)鋼的沖擊韌性。添加Nb顯著提高抗奧氏體晶粒粗化溫度,使細(xì)小碳氮化物彌散分布。與傳統(tǒng)控鍛-控冷工藝相比,850~900℃再結(jié)晶-未再結(jié)晶控鍛-控冷工藝,使珠光體片碎化及部分球化,是導(dǎo)致V-Nb-Ti非調(diào)質(zhì)鋼沖擊韌性提高的主要原因。
微合金非調(diào)質(zhì)鋼 鈮 未再結(jié)晶區(qū) 控鍛-控冷處理
微合金非調(diào)質(zhì)鋼是通過微合金化、控制軋制(鍛造)和控制冷卻等強(qiáng)韌化方法,取消了調(diào)質(zhì)處理,達(dá)到或接近調(diào)質(zhì)鋼力學(xué)性能的一類優(yōu)質(zhì)或特殊質(zhì)量結(jié)構(gòu)鋼。相較于傳統(tǒng)的淬火+高溫回火(調(diào)質(zhì))處理的調(diào)質(zhì)鋼,微合金非調(diào)質(zhì)鋼具有降低能耗和制造成本(約25%~35%),簡化生產(chǎn)工藝流程,提高材料利用率,改善零件質(zhì)量,保護(hù)環(huán)境等優(yōu)點(diǎn),因而獲得廣泛應(yīng)用。目前此類鋼種的使用范圍已由最初的汽車行業(yè)逐漸向工程領(lǐng)域擴(kuò)展[1-2]。
微合金非調(diào)質(zhì)鋼本質(zhì)上是一種合金結(jié)構(gòu)鋼,其要求與調(diào)質(zhì)鋼具有基本相當(dāng)?shù)木C合力學(xué)性能。非調(diào)質(zhì)鋼的熱鍛及后續(xù)冷卻工藝是終態(tài)生產(chǎn)工藝,其加熱溫度、終鍛溫度和變形后的冷卻制度都對零件的最終力學(xué)性能產(chǎn)生直接影響。微合金化技術(shù)和控鍛控冷工藝是非調(diào)質(zhì)鋼高強(qiáng)韌化的有效途徑[3-5]。鑒于目前市場所提供的非調(diào)質(zhì)鋼中多數(shù)存在耐沖擊性能不足的缺點(diǎn),本文將Nb-V-Ti復(fù)合微合金化與未再結(jié)晶區(qū)鍛造相結(jié)合,探索提高微合金非調(diào)質(zhì)鋼沖擊韌性的有效方法,澄清對應(yīng)的組織-性能關(guān)聯(lián)特性和強(qiáng)韌化微觀機(jī)制。
試驗(yàn)用非調(diào)質(zhì)鋼的規(guī)格為φ80 mm×2 m圓棒,即鐵素體+珠光體型熱鍛用非調(diào)質(zhì)鋼,其化學(xué)成分如表1所示。試驗(yàn)鋼采用控鍛-控冷工藝進(jìn)行處理,工藝為:加熱溫度1 130℃,始鍛溫度1 050℃,終鍛溫度分別為1 000、950、900、850℃,鍛成φ25 mm×500 mm的棒材,鍛后以1.5℃/s的速度風(fēng)冷至650℃后空冷至室溫。
鍛后成品棒材按照GB 6397-86、GB/T 229-1994分別加工2個φ5 mm×65 mm拉伸試樣和3個10 mm×10 mm×55 mm U型缺口沖擊試樣,進(jìn)行力學(xué)性能測定;采用金相分析、掃描電鏡和透射電鏡等方法對試驗(yàn)鋼的顯微組織進(jìn)行觀察和分析。
表1 試驗(yàn)鋼V-Ti、V-Ti-Nb的化學(xué)成分(質(zhì)量分?jǐn)?shù))Table 1 Chemical compositions of the experimental V-Ti、Nb-V-Ti steels(mass fraction) %
2.1 力學(xué)性能
圖1顯示了終鍛溫度對非調(diào)質(zhì)鋼力學(xué)性能的影響,表2為終鍛溫度為850℃時非調(diào)質(zhì)鋼的力學(xué)性能。由圖1及表2可知,終鍛溫度對V-Ti非調(diào)質(zhì)鋼的強(qiáng)韌性影響較小,隨著終鍛溫度在850~1 000℃范圍內(nèi)變化,其抗拉強(qiáng)度和沖擊能量分別約為1 160MPa和20 J。類似地,由終鍛溫度改變所引起的Nb-V-Ti非調(diào)質(zhì)鋼強(qiáng)度變化亦不明顯,其抗拉強(qiáng)度大致保持在1 140~1 170 MPa。然而,終鍛溫度對Nb-V-Ti鋼沖擊韌性的影響顯著,在850~1 000℃溫度范圍內(nèi),Nb-V-Ti非調(diào)質(zhì)鋼的沖擊韌性隨著終鍛溫度降低而明顯提高,經(jīng)850℃終鍛后其沖擊能量可達(dá)~50 J,約為相同鍛造制度下V-Ti鋼沖擊韌性的2倍??梢?,通過控制終鍛溫度可以對非調(diào)質(zhì)鋼的沖擊韌性進(jìn)行有效調(diào)控。在本試驗(yàn)中,經(jīng)Nb-V-Ti復(fù)合微合金化后的試驗(yàn)鋼,具有與傳統(tǒng)V-Ti非調(diào)質(zhì)鋼相同的強(qiáng)度級別(1 100 MPa),并同時具有雙倍于后者的沖擊韌性。
圖1 終鍛溫度對非調(diào)質(zhì)鋼力學(xué)性能的影響Fig.1 Effect of final forging temperature on mechanical properties of non-quenched and tempered steels
表2 850℃終鍛后V-Ti與Nb-V-Ti非調(diào)質(zhì)鋼力學(xué)性能對比Table 2 Comparison ofmechanical properties of the V-Ti and Nb-V-Ti non-quenched and tempered steels finally forged at850℃
2.2 組織分析
圖2為微合金非調(diào)質(zhì)鋼的顯微組織,可見與V-Ti微合金化鋼相比,Nb-V-Ti微合金化鋼鍛后的珠光體組織均勻細(xì)小,鐵素體的體積分?jǐn)?shù)約16%。由于Nb-V-Ti復(fù)合進(jìn)一步促進(jìn)了碳氮化物析出,通過阻止熱加工過程中奧氏體晶界遷移,提高奧氏體再結(jié)晶終止溫度(950℃),繼而使完全動態(tài)再結(jié)晶提前實(shí)現(xiàn)[6]。Nb-V-Ti微合金化降低了奧氏體向鐵素體轉(zhuǎn)變溫度,從而達(dá)到細(xì)化析出晶粒的效果。在奧氏體未再結(jié)晶區(qū)850~900℃鍛造,已完成動態(tài)再結(jié)晶的奧氏體晶粒仍會被再次拉長,鍛造變形不斷使奧氏體扁平細(xì)化并多次動態(tài)再結(jié)晶,最終導(dǎo)致組織逐步細(xì)化。同時,終鍛溫度降低可使非調(diào)質(zhì)鋼中位錯密度和形變儲能顯著增加。而Nb-V-Ti復(fù)合微合金化促進(jìn)了V(C,N)粒子在晶界和晶內(nèi)、以及位錯線上的析出,并促進(jìn)先共析鐵素體在VN顆粒周圍優(yōu)先形核和長大[7-8]。
因此,在奧氏體未再結(jié)晶區(qū)對Nb-V-Ti微合金非調(diào)質(zhì)鋼進(jìn)行低溫鍛造,能有效地促進(jìn)先共析鐵素體晶粒的細(xì)化和彌散分布。而Nb-V-Ti鋼組織中存在著大量彌散分布的、細(xì)小的晶內(nèi)鐵素體,對粗大的珠光體團(tuán)進(jìn)行分割和細(xì)化??梢?,降低終鍛溫度及由此造成的晶內(nèi)鐵素體彌散分布是Nb-V-Ti鋼具有高沖擊韌性的原因之一[9-10]。
圖2 850℃終鍛后微合金非調(diào)質(zhì)鋼的顯微組織Fig.2 Microstructures ofmicroalloyed non-quenched and tempered steels finally forged at850℃
圖3 850℃終鍛后微合金非調(diào)質(zhì)鋼的珠光體形貌Fig.3 Pearlitemorphologies ofmicroalloyed non quenched and tempered steels finally forged at850℃
2.3 珠光體層片微觀形貌分析
圖3為經(jīng)850℃終鍛后V-Ti和Nb-V-Ti非調(diào)質(zhì)鋼中珠光體組織的SEM照片。由圖可見,V-Ti和Nb-V-Ti鋼中珠光體層片具有完全不同的微觀形態(tài):在V-Ti鋼中,珠光體層片均勻且平行排列;而在Nb-V-Ti鋼中,珠光體嚴(yán)重碎化,局部形成尺寸短小且隨機(jī)分布的珠光體碎片,部分碎片甚至出現(xiàn)球化現(xiàn)象。
可見,Nb-V-Ti復(fù)合微合金化不但提高了非調(diào)質(zhì)鋼動態(tài)再結(jié)晶終止溫度(950℃),而且擴(kuò)大了未再結(jié)晶區(qū)的溫度范圍。因此,由動態(tài)再結(jié)晶細(xì)化奧氏體晶粒與未再結(jié)晶區(qū)低溫(850℃)鍛造相結(jié)合的工藝方法,增加非調(diào)質(zhì)鋼在控制冷卻處理前的形變儲能,并形成更多的鐵素體形核位置,能促進(jìn)先共析鐵素體形成和均勻分布。另一方面,經(jīng)未再結(jié)晶區(qū)低溫(850℃)鍛造后,Nb-VTi非調(diào)質(zhì)鋼形成均勻細(xì)小的珠光體層片團(tuán)簇。據(jù)已有資料報道,珠光體層片的碎化、球化和無序分布可同時提高微合金鋼的強(qiáng)度和韌性[11]。
2.4 珠光體片碎化
圖4為V-Ti和Nb-V-Ti非調(diào)質(zhì)鋼中珠光體組織的TEM照片。由圖可見,添加Nb后,非調(diào)質(zhì)鋼中滲碳體由針狀轉(zhuǎn)變?yōu)槎贪魻?;?jīng)低溫(850℃)終鍛后,Nb-V-Ti鋼中珠光體層片十分細(xì)小,其平均層片厚度約27 nm,平均間距約85 nm(圖4(b))。由于Nb具有阻止再結(jié)晶、晶粒細(xì)化、通過控制相變降低珠光體層片間距、析出強(qiáng)化四重作用[12-15],這使得V-Ti和Nb-V-Ti非調(diào)質(zhì)鋼雖經(jīng)相同工藝鍛造,但控鍛原理卻大不相同:前者屬于再結(jié)晶控鍛-控冷,而后者為再結(jié)晶-未再結(jié)晶控鍛-控冷。可見,Nb-V-Ti復(fù)合微合金化與控鍛-控冷處理相結(jié)合,充分利用了在低溫未再結(jié)晶區(qū)鍛造過程中奧氏體晶粒細(xì)化、拉長、扁平形變等軸再結(jié)晶晶粒。Nb-V-Ti非調(diào)質(zhì)鋼在控制冷卻過程中,一部分較長的滲碳體層片出現(xiàn)折斷、碎片化甚至球化,從有序排列變?yōu)闊o序排列,從而使得Nb-VTi非調(diào)質(zhì)鋼在不損失強(qiáng)度的情況下韌性得到提高。
圖4 850℃終鍛后微合金非調(diào)質(zhì)鋼珠光體片層的TEM形貌Fig.4 TEMmicrographs of pearlitic lamellae in non-quenched and tempered steels finially forged at850℃
(1)經(jīng)終鍛溫度為850℃的再結(jié)晶-未再結(jié)晶區(qū)鍛造加工后,Nb-V-Ti微合金非調(diào)質(zhì)鋼中鐵素體-珠光體組織得到明顯細(xì)化,珠光體層片發(fā)生碎片化和球化,細(xì)小碳氮化物彌散分布,組織的細(xì)化程度和均勻性得到顯著改善。
(2)與傳統(tǒng)再結(jié)晶區(qū)控鍛-控冷處理的V-Ti非調(diào)質(zhì)鋼(Rm=1 160 MPa,KU2=20 J)相比,經(jīng)再結(jié)晶-未再結(jié)晶區(qū)(850~900℃)控鍛-控冷處理后Nb-V-Ti非調(diào)質(zhì)鋼可達(dá)相同強(qiáng)度級別,同時具有較高沖擊能量(~50 J),細(xì)晶強(qiáng)化和析出強(qiáng)化是Nb-V-Ti鋼具有較高強(qiáng)韌性的主要原因。
[1]YANG H G,CUI Q H.Application and evaluation of non quenched and tempered steel in engineeringmachinery field[J].Journal of Engineering Design,2004,11(4):228-230.
[2]楊才福,張永權(quán),王瑞珍.釩鋼的冶金原理及應(yīng)用[M].北京:冶金工業(yè)出版社,2012.
[3]RADOVIC N.Effect of interpass time and cooling rate on apparent activation energy for hot working and critical recrystallization temperature of Nb microalloyed steel[J].ISIJ Int,1999,39(6):575-582.
[4]YI H L,DU L X,Wang Guodong,et al.High-temperature deformation behavior of Nb-V-Ti bearing and Ti-bearing HSLA rolled steels[J].Journal of Northeastern University(Natural Science),2007,28(10):1369-1405.
[5]KHODABANDEH A R,JAHAZI M,YUE S,et al.Impact toughness and tensile properties improvement through microstructure control in hot forged Nb-V microalloyed steel[J].ISIJ Int,2006,45(2):272-280.
[6]譚利,詹肇麟,劉攀,等.Nb對微合金非調(diào)質(zhì)鋼熱加工過程的影響[J].熱加工工藝,2012,41(20):37-40.
[7]RAINFORTH WM,BLACK MP,HIGGINSON R L,et al.Precipitation of NbC in amodel austentic steel[J].Acta Mater,2002,50(4):735-747.
[8]HOU H R,CHEN Q P,LIU Q Y,et al.Grain refinement of a Nb-Ti microalloyed steel through heavy deformation controlled cooling[J].Journal of Materials Processing Technology,2003,137(1-3):173-176.
[9]SHABAN M,EGHBALIB.Characterization of austenite dynamic recrystallization under different Z parameters in a microalloyed steel[J].JMater Sci Technol,2011,27(4):359-363.
[10]ISHIKAWA F,TAKAHASHI T.The Formation of Intragranular Ferrite Plates in Medium-carbon Steels for Hot-forging and its Effect on the Toughness[J].ISIJ International,1995,35(9):1128-1133.
[11]PANDITA A,MURUGAIYANA A,PODDERA A S,et al.
Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels[J].Scripta Mater,2005,53(11):1309-1403.
[12]HONG SC,LIMSH,HONG H S,etal.Effects of Nb on strain induced ferrite transformation in C-Mn steel[J].Mater Sci Eng A,2003,355(s1-2):241-248.
[13]CAO JC,LIU Q Y,YONG Q L,et al.Effect of niobiumon microstructure and strengtheningmechanism of HSLA steel[J].Iron and Steel,2006,41(8):61-68.
[14]COTA A B,LACERDA C A,OLIVEIRA FLG,et al.Effectof the austenitizing temperature on the kinetics of ferritic grain growth under continuous cooling of a Nbmicroalloyed steel[J].Scripta Mater,2004,51(7):721-725.
[15]張正延,雍岐龍,孫新軍,等.共析鋼中鈮對珠光體相變行為的影響[J].鋼鐵,2012,47(4):79-83.
收修改稿日期:2016-03-02
Influence of Final Forging Tem perature on the Microstructure and Im pact Toughness of Nb-V-Ti Microalloyed Non-Quenched and Tempered Steel
Yao Chunfa Man Tinghui Bao Yaozong
(Department of Structural Steels,Central Iron and Steel Research Institute,Beijing 100081,China)
The microstructure and mechanical properties of V-Ti and Nb-V-Timicroalloyed non-quenched and tempered(NQT)steels with controlled forging and cooling process were investigated.The results showed that the ferrite grain size and pearlite colony size of the Nb-V-TiNQT steel was refined significantly,together with promoting V(C,N)precipitation in the ferritic grain interior.Addition of Nb increased the full recrystallization temperature and expanded the nonrecrystallization region of the NQT steel,and hence refining themicrostructure of pearlite and ferrite and improving the distribution of the fine precipitates.Compared with the conventional V-Ti NQT steel,the impact toughness of Nb-V-Ti NQT steelwas enhanced by the controlled forging and cooling process with the lowering final forging temperature.The high impact toughness of the forged Nb-V-Ti NQT steel wasmainly attributed to the fragmentation and refinement of pearlitic lamellae during the controlled forging process.
non-quenched and tempered steel,niobium,non-recrystallization region,controlled forging and cooling process
姚春發(fā),男,高級工程師,從事先進(jìn)鋼鐵材料熱加工工藝研究,Email:yaochunfa@nercast