王紅梅,劉微娜,季 瀏
蛋白質(zhì)O-GLcNAc糖基化與運(yùn)動(dòng)抗抑郁的神經(jīng)機(jī)制
王紅梅1,2,劉微娜1,2,季瀏1,2
O-連接N-乙酰氨基葡萄糖轉(zhuǎn)移酶(OGT)是蛋白質(zhì)翻譯后修飾過程中一個(gè)關(guān)鍵酶,主要分布于大腦、胰腺、胸腺以及人類的胎盤組織中,與OGA一起對(duì)細(xì)胞內(nèi)1 000多種蛋白進(jìn)行翻譯后修飾,調(diào)節(jié)蛋白質(zhì)的O-GlcNAc糖基化,進(jìn)而調(diào)控細(xì)胞功能。OGT參與的糖基化修飾與胰島素抵抗、糖尿病的并發(fā)癥以及阿爾茨海默病關(guān)系密切。神經(jīng)元形態(tài)復(fù)雜且局部能量需求大,突觸部位能量供應(yīng)特別依賴線粒體。在神經(jīng)細(xì)胞內(nèi),OGT調(diào)節(jié)線粒體移動(dòng)(motility),進(jìn)而影響線粒體在神經(jīng)元的分布,激活OGT,線粒體的能動(dòng)性降低。OGT與其大部分底物的親和力較低,但是與Milton蛋白的親和力較高,并且可形成OGT-Milton復(fù)合體,OGT-Milton復(fù)合體能運(yùn)送OGT穿過細(xì)胞膜,或綁定OGT移動(dòng)到線粒體表面進(jìn)行代謝調(diào)控。最近研究發(fā)現(xiàn),靶向性敲除小鼠胎盤OGT,不僅線粒體的結(jié)構(gòu)、代謝過程以及細(xì)胞的氧化還原狀態(tài)等都受到影響,而且HPA軸活性、神經(jīng)肽Y表達(dá)以及睪酮的合成也受到干擾,從而可導(dǎo)致抑郁行為。簡要介紹OGT的結(jié)構(gòu)與功能、OGT介導(dǎo)抑郁行為的關(guān)聯(lián)機(jī)制,以及運(yùn)動(dòng)抗抑郁與O-GlcNAc糖基化調(diào)節(jié)之間的關(guān)系,旨在通過OGT闡明代謝紊亂與抑郁癥之間的共病機(jī)制,為抑郁癥的藥物研發(fā)和運(yùn)動(dòng)干預(yù)提出新的發(fā)展方向。
OGT;抑郁;運(yùn)動(dòng);介導(dǎo)機(jī)制
目前,抑郁癥在全世界的發(fā)病率和死亡率排在第4位,而且存在性別差異,女性患者約是男性患者的2倍[1]。Lancet雜志發(fā)布的數(shù)據(jù)表明,中國的抑郁癥患者已經(jīng)達(dá)到9 000萬,急切地需要有效的治療干預(yù)方式[2]。關(guān)于抑郁癥存在許多假說,如單胺假說、線粒體功能假說、神經(jīng)營養(yǎng)假說、神經(jīng)可塑性假說和神經(jīng)炎癥假說等,每種假說都從特定角度闡述了抑郁發(fā)生的神經(jīng)生理機(jī)制,并舉出實(shí)驗(yàn)依據(jù),提出了預(yù)防和治療策略。無論哪種假說成立,運(yùn)動(dòng)作為抗抑郁的重要手段,對(duì)整個(gè)機(jī)體的積極調(diào)節(jié)作用已被肯定。最近有學(xué)者甚至提出,抑郁癥實(shí)際上是一種代謝性疾病[3]。抑郁癥的“代謝紊亂假說”將引起抑郁癥治療方式的變革。研究表明,蛋白質(zhì)的O-GlcNAc糖基化與許多疾病密切相關(guān),如2型糖尿病、神經(jīng)退行性疾病和癌癥等[4]。O-連接N-乙酰氨基葡萄糖轉(zhuǎn)移酶(OGT)催化OGlcNAc基團(tuán)通過β-O連-糖苷鍵連接到蛋白質(zhì)的絲氨酸或蘇氨酸上,而β-N-乙酰氨基葡萄糖苷酶(OGA)催化O-GlcNAc基團(tuán)從蛋白質(zhì)上解離。因此,OGT、OGA都是蛋白質(zhì)翻譯后修飾的重要酶,共同維持蛋白質(zhì)O-GlcNAc糖基化平衡。值得注意的是,OGT是一種伴X染色體基因,雌性O(shè)GT的表達(dá)顯著高于雄性[5]。最近研究明確顯示,妊娠應(yīng)激、慢性應(yīng)激引起抑郁行為與OGT表達(dá)下調(diào)有關(guān),胎盤OGT缺失導(dǎo)致子代成年后抑郁樣行為和體征[6]。O-GlcNAc糖基化動(dòng)態(tài)調(diào)節(jié)海馬突觸功能與學(xué)習(xí)記憶,AMPA受體的O-GlcNAc糖基化水平發(fā)生改變是神經(jīng)疾病的一種關(guān)聯(lián)機(jī)制[7]。由此推論,OGT可能介導(dǎo)了抑郁癥的發(fā)病機(jī)制和性別差異。本文將簡要介紹OGT的結(jié)構(gòu)與功能、OGT介導(dǎo)抑郁行為的關(guān)聯(lián)機(jī)制,以及運(yùn)動(dòng)抗抑郁與OGlcNAc糖基化調(diào)節(jié)之間的關(guān)系,旨在通過OGT闡明代謝紊亂與抑郁癥之間的共病機(jī)制,為抑郁癥的藥物研發(fā)和運(yùn)動(dòng)干預(yù)提出新的發(fā)展方向。
人類和小鼠OGT基因位于X染色體,長12,790~12,820堿基,編碼區(qū)含4個(gè)外顯子。OGT蛋白結(jié)構(gòu)含有2部分(見圖1):一部分是34肽重復(fù)序列(tetratricopeptide repeats,TPRs);另一部分是起催化作用的3個(gè)結(jié)構(gòu)域,分別是N末端、C末端、中介D端結(jié)構(gòu)域。TPRs和催化結(jié)構(gòu)域由過渡性螺旋(H3)連接[8],人類OGT由4.5個(gè)TPR序列(hOGT4.5)和催化結(jié)構(gòu)域組成,TPR結(jié)構(gòu)域主要參與調(diào)節(jié)OGT與底物蛋白的結(jié)合,能與不同的蛋白質(zhì)相互作用[9]。由于OGT包含TPR的數(shù)量不同,又構(gòu)成了OGT的3種亞型:核質(zhì)OGT(110kDa,ncOGT)、短OGT(78 kDa,sOGT)和線粒體OGT(103 kDa,mOGT),3種亞區(qū)別僅是TPRs的數(shù)量不同,其中ncOGT和mOGT被認(rèn)為是最重要的,與葡萄糖敏感性和糖尿病密切相關(guān)[10-11]。OGT分布于細(xì)胞核和細(xì)胞質(zhì)中,這與OGA的分布相一致,OGT與OGA一起對(duì)1 000多種蛋白進(jìn)行翻譯后修飾,調(diào)節(jié)蛋白質(zhì)的O-GlcNAc糖基化,進(jìn)而調(diào)控細(xì)胞功能[12]。OGT幾乎存在于目前發(fā)現(xiàn)的所有組織中,在胰腺、胸腺和腦內(nèi)的含量尤其豐富[11,13],OGT表達(dá)水平在人類和鼠科類的胎盤組織也很高[14]。
圖1 OGT蛋白結(jié)構(gòu)示意圖[8]Figure1 Schematic of OGT[8]
母體妊娠應(yīng)激與子代抑郁行為密切相關(guān)已被證實(shí)[15]。母體應(yīng)激往往影響胎盤功能,導(dǎo)致胎兒神經(jīng)發(fā)育紊亂[16]。胎盤不僅為胎兒提供氧氣和營養(yǎng)物質(zhì),還維持胎兒內(nèi)環(huán)境穩(wěn)態(tài),是母體和胎兒間的一個(gè)重要傳感器[17]。2014年的一項(xiàng)研究顯示,靶向性敲除胎盤OGT基因(PI-OGT)導(dǎo)致子代大鼠體重減輕,下丘腦HPA軸呈現(xiàn)異常的興奮或抑制,這表明OGT是妊娠應(yīng)激時(shí)胎盤內(nèi)的一種重要生物標(biāo)記物,胎盤OGT基因表達(dá)對(duì)子代的代謝和神經(jīng)發(fā)育可能產(chǎn)生長期而深刻的影響[18]。經(jīng)歷妊娠應(yīng)激或PI-OGT都會(huì)造成胎盤OGT水平降低,OGT水平降低導(dǎo)致染色體結(jié)構(gòu)變化、下丘腦線粒體功能失調(diào)及子代神經(jīng)發(fā)育紊亂等[14,18]。在PI-OGT新生鼠的下丘腦,有370個(gè)調(diào)控基因發(fā)生了顯著變化,它們在神經(jīng)發(fā)育過程中調(diào)控能量代謝和突觸形成。這些結(jié)果為妊娠應(yīng)激所致抑郁行為提供了一種可能的機(jī)制,即胎盤OGT表達(dá)抑制損害了子代神經(jīng)發(fā)育。神經(jīng)肽Y (NPY)能抵御應(yīng)激所致的焦慮和抑郁行為,在多個(gè)腦區(qū)具備抗應(yīng)激作用,胎盤OGT水平降低會(huì)導(dǎo)致神經(jīng)肽Y水平降低,進(jìn)而導(dǎo)致抑郁[19]。PI-OGT子代雄鼠HPA軸活躍,而子代雌鼠HPA軸抑制[18];HPA軸不論高度活躍還是抑制,都可能引發(fā)抑郁[20]。睪酮對(duì)腦發(fā)育的性別差異至關(guān)重要,胎兒期睪酮的變化能夠預(yù)測與性別相關(guān)的一些特定腦區(qū)的灰質(zhì)體積。胎盤OGT水平降低會(huì)使睪酮和睪酮17-β-脫氫酶3(Hsd17b3,催化雄烯二醇生成睪酮)協(xié)同降低[21]。據(jù)此本文初步推測,雌性神經(jīng)發(fā)育或可塑性對(duì)OGT和睪酮的依賴性可能較高,對(duì)妊娠應(yīng)激也較為敏感,這在一定程度上導(dǎo)致女性抑郁發(fā)病率高于男性??傊?,在妊娠應(yīng)激所致抑郁的發(fā)病過程中,胎盤OGT可能發(fā)揮決定性作用,胎盤OGT表達(dá)進(jìn)一步?jīng)Q定HPA軸活性、神經(jīng)肽Y表達(dá)以及睪酮的合成。
3.1蛋白質(zhì)糖基化失衡損害線粒體功能
神經(jīng)元線粒體功能紊亂是抑郁行為發(fā)生的重要神經(jīng)機(jī)制之一[22-24]。靶向性敲除胎盤OGT基因(PI-OGT)導(dǎo)致子代大鼠下丘腦6個(gè)與線粒體功能有關(guān)的基因表達(dá)改變,經(jīng)歷妊娠應(yīng)激也會(huì)類似地改變子代雄性大鼠4個(gè)線粒體相關(guān)基因的特異表達(dá),這些基因主要調(diào)控線粒體的結(jié)構(gòu)、代謝過程、細(xì)胞的氧化還原狀態(tài)等[18]。這表明,胎盤OGT缺失或表達(dá)降低損害子代大鼠神經(jīng)元線粒體功能。神經(jīng)元形態(tài)復(fù)雜且局部能量需求大,突觸部位能量供應(yīng)特別依賴線粒體[25]。在神經(jīng)細(xì)胞內(nèi),OGT調(diào)節(jié)線粒體移動(dòng)(motility),進(jìn)而影響線粒體在神經(jīng)元的分布[26]。激活OGT可降低線粒體移動(dòng),OGT的激活過程依賴葡萄糖的能量供應(yīng)[27]。OGT與其大部分底物的親和力較低,但是與Milton蛋白的親和力較高,并且可形成OGT-Milton復(fù)合體,OGT-Milton復(fù)合體能運(yùn)送OGT穿過細(xì)胞膜,或綁定OGT移動(dòng)到線粒體表面進(jìn)行代謝調(diào)控[28-29]。OGT對(duì)線粒體功能的調(diào)控過程中,Milton蛋白是最關(guān)鍵的底物。OGT催化Milton糖基化,進(jìn)而降低線粒體移動(dòng)[30]。目前,尚無直接的動(dòng)物模型顯示Milton蛋白糖基化抑制線粒體移動(dòng)是OGT與抑郁行為之間的介導(dǎo)機(jī)制。但是,有充分證據(jù)顯示,維持蛋白質(zhì)的糖基化平衡對(duì)線粒體功能至關(guān)重要。PI-OGT和妊娠應(yīng)激都抑制OGT表達(dá),損害神經(jīng)元線粒體功能且誘導(dǎo)抑郁行為[18]。然而,OGT或OGA超表達(dá)均誘導(dǎo)線粒體的呼吸鏈和三羧酸循環(huán)蛋白損失,有氧呼吸和糖酵解能力損傷,線粒體形態(tài)改變[31]。因此,OGT缺失誘導(dǎo)抑郁行為并不能充分說明OGT至關(guān)重要,蛋白糖基化失衡進(jìn)而損害線粒體功能或許才是抑郁發(fā)生的潛在機(jī)制。
3.2AMPK及其下游蛋白的糖基化
AMPK是細(xì)胞感受能量狀態(tài)的重要蛋白激酶,AMPK活性降低是慢性應(yīng)激引起焦慮抑郁行為的重要機(jī)制之一。慢性應(yīng)激導(dǎo)致大腦皮質(zhì)突觸蛋白減少,這與AMPK磷酸化水平下降有關(guān)[32]。在細(xì)胞內(nèi),OGT和AMPK形成相互調(diào)控的網(wǎng)絡(luò),保護(hù)細(xì)胞免受代謝應(yīng)激損害,二者協(xié)同調(diào)控細(xì)胞的代謝、增殖、分化以及特定組織的功能。一方面,AMPK對(duì)OGT蛋白的磷酸化修飾調(diào)節(jié)OGT對(duì)底物的選擇;另一方面,OGT對(duì)AMPK及其下游蛋白的糖基化修飾也調(diào)節(jié)AMPK信號(hào)通路的活性[33]。
很多可致抑郁的代謝應(yīng)激,如葡萄糖缺乏、過氧化氫誘導(dǎo)的線粒體應(yīng)激、雌激素受體(ER)應(yīng)激等,可激活A(yù)MPK進(jìn)而改變OGT的核定位,最后影響核內(nèi)蛋白的糖基化修飾。研究發(fā)現(xiàn),快速激活A(yù)MPK可以改變骨骼肌成肌細(xì)胞OGT的核定位,進(jìn)而影響眾多核內(nèi)蛋白的糖基化修飾以及組蛋白H3K9位點(diǎn)的乙?;?,最后影響基因的轉(zhuǎn)錄激活[33]。在體外實(shí)驗(yàn)中,OGT的蘇氨酸444位點(diǎn)被AMPK磷酸化后,改變了OGT的核定位和底物選擇。該位點(diǎn)的磷酸化與AMPK活性以及OGT核轉(zhuǎn)位關(guān)系十分緊密。而動(dòng)物模型研究顯示,大鼠海馬AMPK的激活介導(dǎo)克他命的抗抑郁作用[34]。從這2項(xiàng)獨(dú)立研究中可以提出一種假設(shè),AMPK對(duì)OGT的磷酸化促進(jìn)OGT的核轉(zhuǎn)位,進(jìn)而改變了核內(nèi)蛋白的糖基化水平以及基因轉(zhuǎn)錄活性,這可能是AMPK、OGT介導(dǎo)抑郁行為的神經(jīng)機(jī)制之一??挂钟羲幬锏难邪l(fā)或許可以從激活A(yù)MPK、調(diào)節(jié)OGT核轉(zhuǎn)位著手。另外,許多AMPK的下游靶蛋白也會(huì)發(fā)生糖基化修飾,如cAMP,應(yīng)答元件結(jié)合蛋白(CREB)、CREB調(diào)控的轉(zhuǎn)錄共激活因子2(CRTC2 或TORC2)、抗腫瘤因子p53等[35-36]。系列研究表明,作為重要轉(zhuǎn)錄因子的CREB在抑郁的病理生理和臨床治療都是一個(gè)重要靶點(diǎn)[37-38]。CREB磷酸化上調(diào)是抗抑郁治療產(chǎn)生的標(biāo)志性分子效應(yīng)[39]。OGT對(duì)AMPK下游靶蛋白的糖基化可能影響AMPK信號(hào)轉(zhuǎn)導(dǎo),介導(dǎo)抑郁發(fā)生的神經(jīng)機(jī)制。在肝臟,OGT通過CRTC2糖基化修飾,激活糖異生。CRTC2糖基化位點(diǎn)的磷酸化則讓CRTC2定位于細(xì)胞漿,不進(jìn)入細(xì)胞核,也就不能直接發(fā)揮轉(zhuǎn)錄調(diào)控作用[40]。這項(xiàng)研究雖然沒涉及抑郁,但提出了一種可能機(jī)制:AMPK與OGT競爭修飾CRTC2的某個(gè)氨基酸位點(diǎn),從而決定CRTC2的細(xì)胞內(nèi)定位。由于CREB、CRTC2、p53作為轉(zhuǎn)錄調(diào)控因子均在核內(nèi)發(fā)揮作用,OGT核定位極有可能對(duì)其進(jìn)行糖基化修飾,這種修飾是否介導(dǎo)抑郁發(fā)生和抗抑郁效應(yīng),有待進(jìn)一步研究。
目前的研究進(jìn)展表明,OGT介導(dǎo)抑郁行為與線粒體功能異常、AMPK下游靶蛋白的糖基化異常有關(guān)。同時(shí),大量研究已經(jīng)確證線粒體功能紊亂、AMPK信號(hào)通路異常是代謝性疾病的重要分子依據(jù),靶向線粒體功能改善和AMPK激活的藥物以及運(yùn)動(dòng)鍛煉是防治代謝性疾病的有效方法[41-43]。抑郁癥的代謝假說將為運(yùn)動(dòng)抗抑郁提供最直接的理論支撐。之前的研究已表明,運(yùn)動(dòng)預(yù)處理促進(jìn)大腦內(nèi)線粒體融合蛋白mRNA的表達(dá),增強(qiáng)線粒體功能進(jìn)而預(yù)防抑郁[44]。運(yùn)動(dòng)提高大腦線粒體活性,增強(qiáng)大腦對(duì)呼吸鏈抑制劑rotenone的抵抗能力,而且線粒體轉(zhuǎn)錄因子Tfam、呼吸鏈復(fù)合物蛋白基因表達(dá)以及CREB磷酸化都在運(yùn)動(dòng)后上調(diào),這些變化與焦慮抑郁情緒改善有關(guān)[45]。最近有研究發(fā)現(xiàn),脂聯(lián)素缺失小鼠表現(xiàn)抑郁行為。運(yùn)動(dòng)增加海馬神經(jīng)發(fā)生,改善抑郁行為,依靠脂聯(lián)素受體/AMPK信號(hào)通路激活[46],而脂聯(lián)素及其信號(hào)通路失活也是2型糖尿病代謝紊亂發(fā)生的重要機(jī)制。這一研究再次證實(shí)了抑郁癥的“代謝紊亂假說”,運(yùn)動(dòng)可能通過機(jī)體的代謝改善有效預(yù)防或治療抑郁行為。
O-GLcNAc糖基化失衡是2型糖尿病等代謝性疾病重要的發(fā)病機(jī)制。事實(shí)上,蛋白質(zhì)O-GLcNAc糖基化直接參與細(xì)胞能量代謝,因?yàn)樘腔枰腢DP-GLcNAc主要由葡萄糖、谷氨酰胺和UTP等原料合成。蛋白質(zhì)的糖基化位點(diǎn)與磷酸化位點(diǎn)幾乎是重合的,蛋白質(zhì)的O-GLcNAc糖基化與磷酸化的競爭抑制引發(fā)了代謝紊亂[47]。對(duì)心肌而言,運(yùn)動(dòng)傾向于降低蛋白質(zhì)的糖基化水平。較早的研究就發(fā)現(xiàn),運(yùn)動(dòng)降低心肌蛋白質(zhì)的OGLcNAc糖基化和OGT的表達(dá)水平[48]。對(duì)于鏈脲霉素誘導(dǎo)的糖尿病小鼠,運(yùn)動(dòng)盡管沒能降低小鼠血糖,但降低了心肌蛋白的糖基化水平。運(yùn)動(dòng)沒有引起OGT的表達(dá)水平改變,但OGA的表達(dá)水平及其活性顯著提高[49]。游泳運(yùn)動(dòng)使心臟OGT、GFAT(谷氨酰胺6-磷酸果糖酰胺轉(zhuǎn)移酶)表達(dá)水平顯著降低,并降低心臟蛋白的糖基化,進(jìn)而改善糖尿病、貧血(局部缺血)、肥厚型心臟病等[48]。另有研究顯示,15 min急性跑臺(tái)運(yùn)動(dòng)降低了心肌細(xì)胞質(zhì)中的糖基化,細(xì)胞核內(nèi)糖基化沒有變化。該研究認(rèn)為,急性運(yùn)動(dòng)改變了細(xì)胞內(nèi)蛋白質(zhì)O-GLcNAc糖基化的分布狀況[50]。在骨骼肌中,劇烈運(yùn)動(dòng)增加了蛋白質(zhì)O-GLcNAc糖基化。OGT mRNA在腓腸肌和比目魚肌中的表達(dá)水平是不一樣的,這可能是由于肌纖維類型不同決定的其代謝和氧化應(yīng)激反應(yīng)不同引起的,提示氧化應(yīng)激和蛋白質(zhì)糖基化修飾密切相關(guān)[51]。胰島素抵抗與關(guān)鍵代謝調(diào)節(jié)蛋白的過度O-GLcNAc糖基化有關(guān)。運(yùn)動(dòng)干預(yù)可以改變OGT基因表達(dá)及蛋白質(zhì)的OGLcNAc糖基化,但是運(yùn)動(dòng)頻率、強(qiáng)度、類型、時(shí)間對(duì)O-GLcNAc糖基化的作用并未取得一致性觀點(diǎn)。一般情況下,溫和的長期運(yùn)動(dòng)訓(xùn)練降低蛋白質(zhì)的O-GLcNAc糖基化,而劇烈的急性運(yùn)動(dòng)增加蛋白質(zhì)的O-GLcNAc糖基化。這進(jìn)一步暗示,蛋白質(zhì)的OGLcNAc糖基化需要維持動(dòng)態(tài)平衡,急性運(yùn)動(dòng)與長期規(guī)律性運(yùn)動(dòng)對(duì)蛋白質(zhì)的O-GLcNAc糖基化都是有益的[52]。研究還顯示,蛋白質(zhì)的O-GLcNAc糖基化與運(yùn)動(dòng)能力有關(guān)。運(yùn)動(dòng)能力較低的大鼠表現(xiàn)胰島素抵抗,葡萄糖攝取和轉(zhuǎn)運(yùn)能力較低,心肌線粒體蛋白Complex I,IV,VDAC,SERCA的O-GLcNAc糖基化水平較高。該研究表明,線粒體蛋白的糖基化水平提高導(dǎo)致線粒體功能障礙和胰島素抵抗[53]。因此,運(yùn)動(dòng)對(duì)蛋白質(zhì)OGLcNAc糖基化的調(diào)節(jié)作用是毋庸置疑的,目前的研究主要集中于心肌、骨骼肌的研究,尚未涉及中樞神經(jīng)及其有關(guān)的疾病。還沒有直接的證據(jù)顯示,運(yùn)動(dòng)、O-GLcNAc糖基化與抑郁行為之間的關(guān)系。但是,有研究明確顯示,蛋白質(zhì)O-GLcNAc糖基化與代謝綜合癥、神經(jīng)疾病、癌癥有關(guān)。而抑郁癥、癌癥研究已傾向于向“O-GLcNAc糖基化與代謝紊亂”尋找發(fā)病機(jī)理和治療方式[3,6,47]。本文推測,OGT以及蛋白質(zhì)O-GLcNAc糖基化可能是抑郁癥與代謝疾病共病機(jī)制的關(guān)鍵節(jié)點(diǎn),運(yùn)動(dòng)對(duì)代謝疾病與抑郁的改善與OGT以及O-GLcNAc糖基化可能關(guān)系密切(見圖2),基于代謝假說的運(yùn)動(dòng)抗抑郁理論模型還待進(jìn)一步研究確證。
圖2 基于代謝假說的運(yùn)動(dòng)抗抑郁機(jī)制Figure2 Mechanism of exercise intervention against depression—from the aspect of metabolism
O-連接N-乙酰氨基葡萄糖轉(zhuǎn)移酶(OGT)介導(dǎo)的蛋白質(zhì)O-GLcNAc糖基化是蛋白質(zhì)翻譯后修飾的重要過程。最近的研究發(fā)現(xiàn),OGT缺失影響神經(jīng)發(fā)育、HPA軸活性、神經(jīng)元能量代謝,導(dǎo)致抑郁行為,其關(guān)聯(lián)機(jī)制還涉及線粒體蛋白的糖基化失衡,以及AMPK與OGT的交互調(diào)節(jié)發(fā)生紊亂。細(xì)胞質(zhì)內(nèi)OGT通過Milton蛋白的糖基化影響線粒體功能,細(xì)胞核內(nèi)OGT調(diào)控AMPK下游轉(zhuǎn)錄因子的磷酸化,從而調(diào)節(jié)基因轉(zhuǎn)錄,最終影響細(xì)胞功能?,F(xiàn)有證據(jù)表明,抑郁癥發(fā)病機(jī)制與代謝性疾病有相似之處,運(yùn)動(dòng)對(duì)代謝性疾病和抑郁癥都有顯著積極的改善作用?;谝钟舭Y的“代謝紊亂假說”以及OGT介導(dǎo)的糖基化修飾,本文提出,運(yùn)動(dòng)可能通過調(diào)節(jié)神經(jīng)元OGT及其參與的蛋白質(zhì)糖基化修飾,進(jìn)而改善神經(jīng)元線粒體功能和能量代謝,發(fā)揮抗抑郁作用。靶向OGT及其參與的蛋白質(zhì)糖基化,可能是抑郁癥治療以及運(yùn)動(dòng)抗抑郁研究的一個(gè)新方向。
[1]GOLDSTEIN J M,HANDA R J,TOBET S A.Disruption of fetal hormonal programming(prenatal stress)implicates shared risk for sex differences in depression and cardiovascular disease[J].Frontiers in Neuroendocrinology,2014,35(1):140-158.
[2]MITCHELL A J,VAZE A,RAO S.Clinical diagnosis of depression in primary care:a meta-analysis[J].Lancet,2009,374(9690):609-619.
[3]MCELROY S L,KECK P J.Metabolic syndrome in bipolar disorder:a review with a focus on bipolar depression[J].J Clin Psychiatry,2014,75 (1):46-61.
[4]STARSKA K,F(xiàn)ORMA E,BRZEZINSKA-B?ASZCZYK E,et al.Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer[J].Clinical and Experimental Medicine,2015,15(4):455-468.
[5]SHAFI R,IYER S P,ELLIES L G,et al.The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny[J].Proc Natl Acad Sci U S A,2000,97 (11):5735-5739.
[6]HOWERTON C L,BALE T L.Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction[J].Proc Natl Acad Sci U S A,2014,111(26):9639-9644.
[7]TAYLOR E W,WANG K,NELSON A R,et al.O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses[J].J Neurosci,2014,34(1):10-21.
[8]LAZARUS M B,NAM Y,JIANG J,et al.Structure of human O-GlcNAc transferase and its complex with a peptide substrate[J].Nature,2011,469(7331):564-567.
[9]KREPPEL L K,HART G W.Regulation of a cytosolic and nuclear OGlcNAc transferase.Role of the tetratricopeptide repeats[J].J Biol Chem,1999,274(45):32015-32022.
[10]LOVE D C,KOCHAN J,CATHEY R L,et al.Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase[J].J Cell Sci,2003,116(Pt 4):647-654.
[11]LUBAS W A,F(xiàn)RANK D W,KRAUSE M,et al.O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats[J].J Biol Chem,1997,272(14):9316-9324.
[12]WANG J,TORII M,LIU H,et al.dbOGAP-an integrated bioinformatics resource for protein O-GlcNAcylation[J].BMC Bioinformatics,2011,12:91.
[13]KREPPEL L K,BLOMBERG M A,HART G W.Dynamic glycosyl-ation of nuclear and cytosolic proteins.Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats [J].J Biol Chem,1997,272(14):9308-9315.
[14]HOWERTON C L,MORGAN C P,F(xiàn)ISCHER D B,et al.O-GlcNAc transferase(OGT)as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development[J].Proceedings of the National Academy of Sciences,2013,110(13):5169-5174.
[15]SLYKERMAN R F,THOMPSON J,WALDIE K,et al.Maternal stress during pregnancy is associated with moderate to severe depression in 11-year-old children[J].Acta Paediatr,2015,104(1):68-74.
[16]MARSIT C J,MACCANI M A,PADBURY J F,et al.Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome[J].PLoS One,2012,7(3):e33794.
[17]ROSSANT J,CROSS J C.Placental development:lessons from mouse mutants[J].Nat Rev Genet,2001,2(7):538-548.
[18]HOWERTON C L,BALE T L.Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction[J].Proceedings of the National Academy of Sciences,2014,111(26):9639-9644.
[19]HEILIG M.The NPY system in stress,anxiety and depression[J].Neuropeptides,2004,38(4):213-224.
[20]GRAGNOLI C.Depression and type 2 diabetes:cortisol pathway implication and investigational needs[J].J Cell Physiol,2012,227(6):2318-2322.
[21]LOMBARDO M V,ASHWIN E,AUYEUNG B,et al.Fetal testosterone influences sexually dimorphic gray matter in the human brain[J].J Neurosci,2012,32(2):674-680.
[22]GELLERICH F N,TRUMBECKAITE S,MULLER T,et al.Energetic depression caused by mitochondrial dysfunction[J].Mol Cell Biochem,2004,256-257(1-2):391-405.
[23]MODICA-NAPOLITANO J S,RENSHAW P F.Ethanolamine and phosphoethanolamine inhibit mitochondrial function in vitro:implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder[J].Biol Psychiatry,2004,55(3):273-277.
[24]KLINEDINST N J,REGENOLD W T.A mitochondrial bioenergetic basis of depression[J].J Bioenerg Biomembr,2015,47(1-2):155-171.
[25]PEPPIATT C,ATTWELL D.Neurobiology:feeding the brain[J].Nature,2004,431(7005):137-138.
[26]CHANG D T,HONICK A S,REYNOLDS I J.Mitochondrial trafficking to synapses in cultured primary cortical neurons[J].J Neurosci,2006,26(26):7035-7045.
[27]MACASKILL A F,RINHOLM J E,TWELVETREES A E,et al.Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses[J].Neuron,2009,61(4):541-555.
[28]BRICKLEY K,POZO K,STEPHENSON F A.N-acetylglucosamine transferase is an integral component of a kinesin-directed mitochondrial trafficking complex[J].Biochim Biophys Acta,2011,1813(1):269-281.
[29]IYER S P,HART G W.Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity[J].J Biol Chem,2003,278(27):24608-24616.
[30]PEKKURNAZ G,TRINIDAD J C,WANG X,et al.Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase[J].Cell,2014,158(1):54-68.
[31]TAN E P,VILLAR M T,E L,et al.Altering O-linked beta-N-acetylglucosamine cycling disrupts mitochondrial function[J].J Biol Chem,2014,289(21):14719-14730.
[32]ZHU S,WANG J,ZHANG Y,et al.Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice[J].Brain Res,2014,1576:81-90.
[33]BULLEN J W,BALSBAUGH J L,CHANDA D,et al.Cross-talk between two essential nutrient-sensitive enzymes:O-GlcNAc transferase (OGT)and AMP-activated protein kinase(AMPK)[J].J Biol Chem,2014,289(15):10592-10606.
[34]XU S X,ZHOU Z Q,LI X M,et al.The activation of adenosine monophosphate-activated protein kinase in rat hippocampus contributes to the rapid antidepressant effect of ketamine[J].Behav Brain Res,2013,253:305-309.
[35]KUHAJDA F P.AMP-activated protein kinase and human cancer:cancer metabolism revisited[J].Int J Obes(Lond),2008,32 Suppl 4:S36-S41.
[36]CHATHAM J C,NOT L G,F(xiàn)ULOP N,et al.Hexosamine biosynthesis and protein O-glycosylation:the first line of defense against stress,ischemia,and trauma[J].Shock,2008,29(4):431-440.
[37]VOLETI B,TANIS K Q,NEWTON S S,et al.Analysis of target genes regulated by chronic electroconvulsive therapy reveals role for Fzd6 in depression[J].Biol Psychiatry,2012,71(1):51-58.
[38]BLENDY J A.The role of CREB in depression and antidepressant treatment[J].Biol Psychiatry,2006,59(12):1144-1150.
[39]KOCH J M,KELL S,Hinze-Selch D,et al.Changes in CREB-phosphorylation during recovery from major depression[J].J Psychiatr Res,2002,36(6):369-375.
[40]DENTIN R,HEDRICK S,Xie J,et al.Hepatic glucose sensing via the CREB coactivator CRTC2[J].Science,2008,319(5868):1402-1405.
[41]LOWELL B B,SHULMAN G I.Mitochondrial dysfunction and type 2 diabetes[J].Science,2005,307(5708):384-387.
[42]LONG Y C,ZIERATH J R.AMP-activated protein kinase signaling in metabolic regulation[J].J Clin Invest,2006,116(7):1776-1783.
[43]KAHN B B,ALQUIER T,CARLING D,et al.AMP-activated protein kinase:ancient energy gauge provides clues to modern understanding of metabolism[J].Cell Metab,2005,1(1):15-25.
[44]LIU W,ZHOU C.Corticosterone reduces brain mitochondrial function and expression of mitofusin,BDNF in depression-like rodents regardless of exercise preconditioning[J].Psychoneuroendocrinology,2012,37(7):1057-1070.
[45]AGUIAR A J,STRAGIER E,DA L S D,et al.Effects of exercise on mitochondrial function,neuroplasticity and anxio-depressive behavior of mice[J].Neuroscience,2014,271:56-63.
[46]YAU S Y,LI A,HOO R L,et al.Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin[J].Proc Natl Acad Sci U S A,2014,111 (44):15810-15815.
[47]SLAWSON C,COPELAND R J,HART G W.O-GlcNAc signaling:a metabolic link between diabetes and cancer?[J].Trends Biochem Sci,2010,35(10):547-555.
[48]BELKE D D.Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart[J]. J Appl Physiol(1985),2011,111(1):157-162.
[49]BENNETT C E,JOHNSEN V L,SHEARER J,et al.Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocininduced diabetic mice[J].Life Sci,2013,92(11):657-663.
[50]MEDFORD H M,PORTER K,MARSH S A.Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regula-tion of cardiac hypertrophy[J].Am J Physiol Heart Circ Physiol,2013,305(1):H114-H123.
[51]PETERNELJ T T,MARSH S A,STROBEL N A,et al.Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle[J].Mol Cell Biochem,2015,400(1-2):265-275.
[52]MYSLICKI J P,BELKE D D,SHEARER J.Role of O-GlcNAcylation in nutritional sensing,insulin resistance and in mediating the benefits of exercise[J].Appl Physiol Nutr Metab,2014,39(11):1205-1213.
[53]JOHNSEN V L,BELKE D D,HUGHEY C C,et al.Enhanced cardiac protein glycosylation(O-GlcNAc)of selected mitochondrial proteins in rats artificially selected for low running capacity[J].Physiol Genomics,2013,45(1):17-25.
RoleofProteinO-GlcNAcylationintheAntidepressantActionsofExercise
WANG Hongmei1,2,LIU Weina1,2,JI Liu1,2
(1.The Key Laboratory of Adolescent Health Assessment and Exercise Intervention,Ministry of Education,East China Normal University,Shanghai 200241,China;2.School of PE&Health Care,East China Normal University,Shanghai 200241,China)
O-Linked N-acetylglucosamine transferase(OGT),enriched in brain,pancreas,thymus and human placenta,plays an important role in the posttranslational modification of proteins,mediating cellular metabolism and other functions.OGT is involved in insulin resistant,diabetes complications and Alzheimer disease through O-GlcNAcylation.An obvious site that requires mitochondria on neuronal processes is the synapse.In cultured primary cortical neurons,OGT regulates mitochondrial motility and distribution.Activated OGT can decrease mitochondrial activity.OGT has low-affinity interactions with many of its substrates but forms a stable complex with few.Milton was one of the first identified high-affinity OGT partners.OGT-dependent Milton O-GlcNAcylation links glucose metabolism to the regulation of mitochondrial motility.Recent studies indicated that a targeted placental disruption of OGT impaired mitochondrial structure,metabolic process and cell redox,as well as activity of HPA axis,expression of neuropeptide Y and testosterone production,thus led to depression.The current study aims to introduce the structure and function of OGT,the interventional mechanism of OGT in depression,and the role of protein O-GlcNAacylation in the antidepressant actions of exercise.The prospective findings may contribute to our understanding of the comorbidity between depression and metabolic diseases,and suggest a new target or guide for pharmacological research and exercise intervention against depression.
O-GLcNAc transferase;depression;exercise;interventional mechanism
G 804.5
A
1005-0000(2016)02-125-06
10.13297/j.cnki.issn1005-0000.2016.02.006
2015-06-04;
2016-01-07;錄用日期:2016-01-08
國家自然科學(xué)基金項(xiàng)目(項(xiàng)目編號(hào):31200893);青少年P(guān)OWER工程協(xié)同創(chuàng)新中心項(xiàng)目(項(xiàng)目編號(hào):44801400);教育部重點(diǎn)實(shí)驗(yàn)室建設(shè)項(xiàng)目(項(xiàng)目編號(hào):40500-541235-14203/004)
王紅梅(1988-),女,山西太原人,在讀碩士研究生,研究方向?yàn)橐钟舭Y的運(yùn)動(dòng)干預(yù)。
1.華東師范大學(xué)青少年健康評(píng)價(jià)與運(yùn)動(dòng)干預(yù)教育部重點(diǎn)實(shí)驗(yàn)室,上海200241;2.華東師范大學(xué)體育與健康學(xué)院,上海200241。