張桂通 劉佳 張曉燕 張志成 李放 孟繁星 孫移坤 孫天勝
?
骨髓間充質(zhì)細(xì)胞對大鼠急性脊髓損傷保護(hù)作用的機(jī)制探討
張桂通 劉佳 張曉燕 張志成 李放 孟繁星 孫移坤 孫天勝
【摘要】目的 探討骨髓間充質(zhì)細(xì)胞對大鼠急性脊髓損傷(spinal cord injury,SCI)的保護(hù)作用及其可能機(jī)制。方法將60只雌性SD大鼠隨機(jī)分為模型組(SCI組)、骨髓間充質(zhì)細(xì)胞組(BMSCs組)和假手術(shù)組(Sham組),每組各20只。改良Allen's打擊法打擊SD大鼠后建立脊髓損傷模型,分別于術(shù)后1天起進(jìn)行大鼠后肢運動功能(BBB評分)評估,并于術(shù)后14天行步態(tài)分析,脊髓損傷后6、12h酶聯(lián)免疫吸附試驗(ELISA)檢測脊髓組織的髓過氧化物酶(MPO)、脂質(zhì)過氧化物酶(MDA)和超氧化物歧化酶(SOD)活性,檢測腫瘤壞死因子α(TNF-α)、白細(xì)胞介素6(IL-6)、白細(xì)胞介素10(IL-10)水平。HE染色觀察病理變化情況。結(jié)果與SCI組相比,BMSCs組大鼠脊髓損傷后12h脊髓組織MPO含量由(149.7±28.4)nmol/mg降至(116.0±29.2)nmol/mg。MDA含量由(58.1±3.3)U/g降至(41.7±2.6)U/g。SOD水平由(194.6±14.3)U/mg升至(362.0±13.6)U/mg。脊髓損傷后6h的TNF-α水平由(439.8±12.8)pg/ml降至(314.6±17.6)pg/ml。IL-6 水平由(364.7±16.9)pg/ml降至(232.9±15.2)pg/ml。IL-10 水平由(291.3±9.8)pg/ml升至(377.9±17.9)pg/ml。光鏡下脊髓組織損傷程度降低;脊髓損傷后14天BBB評分及Catwalk步態(tài)分析結(jié)果,差異有統(tǒng)計學(xué)意義(P<0.05)。結(jié)論BMSCs對脊髓損傷具有保護(hù)作用,改善其運動功能,可能是通過抑制炎癥及氧化應(yīng)激反應(yīng)。
【關(guān)鍵詞】間充質(zhì)基質(zhì)細(xì)胞;脊髓損傷;大鼠
脊髓損傷(spinal cord injury,SCI)是脊椎外科常見的急重癥,致殘率較高,治療困難,是醫(yī)學(xué)界的一大難題[1]。脊髓損傷后的病理生理機(jī)制相當(dāng)復(fù)雜,其中繼發(fā)反應(yīng)是導(dǎo)致脊髓組織結(jié)構(gòu)破壞及最終出現(xiàn)神經(jīng)功能障礙的主要原因,如何調(diào)控繼發(fā)反應(yīng)一直是脊髓損傷治療領(lǐng)域的研究熱點[2-4]。目前,應(yīng)用于脊髓損傷治療一線藥物是甲潑尼龍,但應(yīng)用后并發(fā)癥較多,因此是否作為脊髓損傷的常規(guī)藥物仍存在爭議[5-6]?;谏鲜鲈?,探尋更加安全有效的治療手段迫在眉睫。
骨髓間充質(zhì)細(xì)胞(bone marrow mesenchymal stromal cells,BMSCs)作為一種安全有效的炎癥調(diào)節(jié)與免疫調(diào)節(jié)手段已經(jīng)廣受關(guān)注,并在部分炎癥性疾病中取得了較好的療效。在脊髓損傷的治療領(lǐng)域,BMSCs 相關(guān)的研究一直集中在促進(jìn)神經(jīng)組織的修復(fù)和再生,也取得了一定的進(jìn)展。多個研究團(tuán)隊的結(jié)果已經(jīng)證實,BMSCs移植能夠有效促進(jìn)大鼠脊髓損傷后的軸突再生以及后肢運動功能恢復(fù)[7]。目前為止,關(guān)于BMSCs在脊髓損傷中的神經(jīng)保護(hù)作用及相關(guān)機(jī)制的探討較少。因此,本研究通過采用改良的Allen's打擊法[8]建立大鼠脊T10節(jié)段髓損傷模型,觀察BMSCs對脊髓損傷大鼠的保護(hù)作用和炎癥反應(yīng)及運動功能的影響,進(jìn)一步揭示其作用機(jī)制。
一、實驗動物及分組
2個月齡健康雌性SD大鼠60只,體質(zhì)量220~260g,由北京海旺動物實驗動物養(yǎng)殖有限公司提供[許可證號:SCXK(京)2009-017]。自由取水、進(jìn)食,適應(yīng)性飼養(yǎng)2周。按隨機(jī)數(shù)字表,隨機(jī)分為3組:模型組(SCI組)、BMSCs組和假手術(shù)組(Sham組),每組各20只。
二、紅色熒光BMSCs的體外分離培養(yǎng)與鑒定
選擇6~8周健康雄性C57小鼠6只,由清華大學(xué)醫(yī)學(xué)院提供。脫臼處死,即刻在無菌條件取C57小鼠股骨,剔除附著的肌肉,用小鼠間充質(zhì)干細(xì)胞專用培養(yǎng)液充分沖洗骨髓腔,將細(xì)胞用7號針頭吹打成單個核細(xì)胞,調(diào)整細(xì)胞濃度為1×109L-1接種于10ml的培養(yǎng)皿中,置入37℃,飽和濕度的體積分?jǐn)?shù) 5%的CO2培養(yǎng)箱中,2天首次用緩沖液 PBS洗凈非貼壁細(xì)胞換液,以后每隔 2天換液1次,每次換液時洗凈非貼壁細(xì)胞。待細(xì)胞匯合率達(dá)80%~90%再用PBS洗滌3次,用含EDTA的0.25%胰蛋白酶消化后,收集細(xì)胞懸液,以402×g,離心5min,棄上清液,計數(shù),調(diào)節(jié)細(xì)胞密度為5×104/cm2接種,通過3代傳代對細(xì)胞進(jìn)行純化。在倒置顯微鏡下觀察BMSCs的形態(tài)學(xué)特征。流式細(xì)胞儀檢細(xì)胞表面標(biāo)志。
三、模型制備及干預(yù)
根據(jù)Gruner的改良的Allen's打擊法制備脊髓損傷模型:10%水合氯醛0.3ml/100g腹腔內(nèi)注射,腰背部備皮,取俯臥位固定于手術(shù)臺,碘伏及酒精消毒皮膚后,待麻醉后,取T10部位行后正中2~3cm切口,咬處T10椎板,暴露相應(yīng)節(jié)段脊髓,采用 250g相應(yīng)節(jié)Now York University 打擊器25mm高度打擊,撞擊區(qū)脊髓血腫,尾部出現(xiàn)擺動,軀體及雙下肢呈現(xiàn)抽搐,痙攣表示造模成功。關(guān)閉傷口,單籠飼養(yǎng)。BMSCs組于術(shù)后即刻給予尾靜脈注射BMSCs(5.0Cs單6/只)2ml。模型組于脊髓損傷后給予等量0.9%氯化鈉溶液腹腔注射。空白對照組僅行T10椎板摘除,不行脊髓損傷。模型制作成功后,每日3次人工擠壓膀胱排尿,直至膀胱反射恢復(fù)(約1周時間)。背部皮下注射青霉素(5kU/只),連續(xù)3天,預(yù)防感染。
四、大鼠后肢運動評分(BBB評分)及Catwalk系統(tǒng)步態(tài)分析
將各組大鼠于脊髓損傷前3天(每日16時),置于開放的平板適應(yīng)環(huán)境,15min,減少實驗動物的不適所導(dǎo)致的評分差異。分別于術(shù)后1、3、5、7、14天對大鼠進(jìn)行運動評分(BBB評分,5只/組),評估大鼠后肢各關(guān)節(jié)功能活動、協(xié)調(diào)運動和尾部支配情況等。造模成功后14天3組分別接受Catwalk系統(tǒng)步態(tài)分析(5 只/組)。每只大鼠接受至少3次評估,每次必須連續(xù)的走完設(shè)定好的長度范圍的分析平板,整個實驗過程在暗室中進(jìn)行。Catwalk系統(tǒng)在識別并標(biāo)記出每一個腳印后,將自動產(chǎn)生一系列步態(tài)參數(shù),包括:每個爪子各自的相對空間關(guān)系、爪子之間的相對空間關(guān)系、四肢間的協(xié)調(diào)性、時間參數(shù)等[9]。
五、組織學(xué)檢測
造模成功后3天,每組各取5只大鼠,水合氯醛麻醉,經(jīng)左心室灌注0.9%氯化鈉約200ml,后以4%多聚甲醛200ml灌注,然后以損傷區(qū)為中心分離脊髓組織1cm,固定于4%多聚甲醛48h,蔗糖梯度脫水,OCT包埋劑包埋,行冰凍切片10劑包,HE染色,觀察脊髓組織病理學(xué)改變。
六、化學(xué)比色法測定脊髓髓過氧化物酶(MPO)、脂質(zhì)過氧化物酶(MDA)及超氧化物歧化酶(SOD)含量與酶聯(lián)免疫吸附試驗(ELISA)
檢測脊髓TNF-α、IL-6、IL-10含量于各取材12h、3天,水合氯醛麻醉后處死大鼠,取損傷段脊髓組織,用0.9%氯化鈉溶液配制成10%脊髓勻漿液,將勻漿液以有效離心半徑5cm、4000r/min離心30min取上清液,參照試劑盒說明嚴(yán)格操作測試其濃度。
七、統(tǒng)計學(xué)分析
采用SPSS17.0軟件進(jìn)行處理,計算資料以x-±s表示。炎癥因子水平及脊髓組織損傷評分的組間比較采用t檢驗。P<0.05為差異有統(tǒng)計學(xué)意義。
一、BMSCs培養(yǎng)后檢測
BMSCs的形態(tài)學(xué)觀察,貼壁細(xì)胞呈單個分散或成簇生長,細(xì)胞形態(tài)均勻,多呈長梭形、紡錘形。紅光激發(fā)后CD29單克隆抗體顯示綠色熒光,CD34單克隆抗體不顯影。流式細(xì)胞儀檢測到CD29陽性的細(xì)胞占全部細(xì)胞95%以上,CD34陽性的細(xì)胞為3%(圖1)。
二、BBB 評分
與Sham組相比,脊髓損傷后大鼠后肢BBB評分明顯降低(P<0.05);BMSCs 組大鼠術(shù)后 BBB 評分成增高趨勢,并在14天明顯高于SCI組(P<0.05)(圖2)。術(shù)后14天Catwalk系統(tǒng)步態(tài)分析,脊髓損傷后大鼠四肢平均壓力明顯降低(P<0.05),但 BMSCs組大鼠明顯高于 SCI 組(P<0.05)(圖3,4)。
圖2 3組大鼠的BBB評分對比Sham組(aP < 0.05);對比SCI組(bP < 0.05)Fig.2 BBB score of 3 groups of rats(aP < 0.05), vs. Sham group;(bP < 0.05), vs SCI group
圖3 3組大鼠步態(tài)分析儀觀察步態(tài) BMSCs 組較 SCI 組的步態(tài)有明顯改善Fig.3 Gait analysis was used to observe the gait of 3 groups of rats. Signifcant improvement, BMSCs group vs. SCI group
圖4 3組大鼠四肢的平均壓力對比 Sham 組(aP < 0.05);對比SCI 組(bP < 0.05)Fig.4 The mean pressure of the limbs of the 3 groups of rats(aP <0.05), vs. Sham group;(bP < 0.05), vs SCI group
圖 1a:BMSCs 細(xì)胞形態(tài)(× 200);b:細(xì)胞 CD29 BMSCs(免疫熒光 × 200);c:細(xì)胞 CD34 BMSCs(免疫熒光 × 200)Fig.1 a: Morphology of BMSCs cells under light microscope; b: Cellular immune fuorescence BMSCs CD29(× 200); c: Cellular immune fuorescence BMSCs CD34(× 200)
三、脊髓病理形態(tài)
Sham 組大鼠脊髓灰白質(zhì)交界清楚,沒有出血及水腫灶,神經(jīng)元豐富,核仁清晰,無核固縮及壞死現(xiàn)象;SCI 組可見散在的出血灶,間質(zhì)水腫并有空腔形成,大量炎性細(xì)胞浸潤,膠質(zhì)細(xì)胞增生,正常的細(xì)胞形態(tài)嚴(yán)重破壞,細(xì)胞變性壞死嚴(yán)重,神經(jīng)元大量丟失甚至缺如;BMSCs 組與 SCI 組相比,炎性細(xì)胞明顯減少,膠質(zhì)細(xì)胞增生不明顯,細(xì)胞排列較為整齊和規(guī)則,變性壞死的細(xì)胞明顯減少(圖5)。
四、脊髓中 MPO、MDA、SOD 含量
SCI 組大鼠脊髓組織 MPO、MDA 含量較 Sham組明顯升高,SOD 含量明顯降低(P<0.05);BMSCs組大鼠脊髓組織 MPO、MDA 含量較 SCI 組降低(P<0.05),但高于 Sham 組;SOD 含量較 SCI 組升高(P<0.05),但仍低于 Sham 組水平;造模成功后 14 天,損傷組 MPO、MDA 含量逐漸降低,而BNSCs 組 SOD 含量逐步增高(圖6,7,8)。
五、脊髓中 TNF-、IL-6、IL-10 水平變化
與 Sham 組相比,脊髓損傷后大鼠血清 TNF-清、IL-6 及 IL-10 水平明顯升高(P<0.05);BMSCs 組 TNF-s、IL-6 水平較 SCI 組降低,IL-10 水平升高(P<0.05)(圖9)。
脊髓受損后,在錯綜復(fù)雜的繼發(fā)反應(yīng)過程中,炎癥和氧化應(yīng)激反應(yīng)占據(jù)了核心地位,二者與其它機(jī)制相互作用,引起級聯(lián)放大瀑布效應(yīng),進(jìn)一步加重脊髓損傷程度[10-12]。目前應(yīng)用最廣泛的治療藥物為甲潑尼龍,其被認(rèn)為可以阻滯脂質(zhì)過氧化、減輕炎癥反應(yīng)、減少出血[5-6,13],但因該類藥物作用帶來的收益和風(fēng)險的矛盾,其對于脊髓損傷預(yù)后的影響究竟如何尚未完全清楚。因此,多年來對于脊髓損傷患者是否應(yīng)用MPO及其用量是一個備受爭議的話題[14-15]。為此,學(xué)界一直在努力尋找更加行之有效的治療手段,其中細(xì)胞治療備受關(guān)注。
圖6 3組大鼠脊髓組織的 MPO 檢測對比 Sham 組(aP < 0.05);對比 SCI 組(bP < 0.05)Fig.6 Spinal cord tissue MPO of 3 group of rats(aP < 0.05), vs. Sham group;(bP < 0.05), vs SCI group
圖7 3組大鼠脊髓組織的 MDA 檢測對比 Sham 組(aP < 0.05);對比 SCI 組(bP < 0.05)Fig.7 Spinal cord tissue MDA of 3 group of rats determination(aP <0.05), vs. Sham group;(bP < 0.05), vs SCI group
圖8 3組大鼠脊髓組織的 SOD 檢測對比 Sham 組(aP < 0.05);對比 SCI 組(bP < 0.05)Fig.8 Spinal cord tissue SOD of 3 group of rats(aP < 0.05), vs. Sham group;(bP < 0.05), vs SCI group
圖5 大鼠脊髓病理切片 HE 染色 a:假手術(shù)組(HE × 400);b:SCI 組(HE × 400);c:BMSCs 組(HE × 400)Fig.5 HE staining of injured spinal cord in rats a: Sham group(HE × 400); b: SCI group(HE × 400); c: BMSCs group(HE × 400)
圖9 脊髓組織的 TNF-α、IL-6、IL-10 檢測對比 Sham 組(aP <0.05);對比 SCI 組(bP < 0.05)Fig.9 Spinal cord tissue TNF-α、IL-6、IL-10(aP < 0.05), vs. Sham group;(bP < 0.05), vs SCI group
BMSCs因其良好的增殖及多向分化能力,且便于取材,易于分離培養(yǎng)及低免疫源性等特性而成為細(xì)胞治療領(lǐng)域研究的熱點之一,在中樞神經(jīng)系統(tǒng)損傷領(lǐng)域也得到廣泛的應(yīng)用[16-17]。近年來,BMSCs對免疫及炎癥反應(yīng)的調(diào)節(jié)能力逐漸成為人們關(guān)注的另一個焦點。有文章報道,在菌血癥或燒傷模型中,BMSCs 可以有效減輕由炎癥反應(yīng)所導(dǎo)致的臟器損傷[18]。
基于上述原因,本研究擬探討B(tài)MSCs在脊髓損傷后炎癥調(diào)節(jié)作用以及對受損脊髓組織的保護(hù)作用。本實驗采用BMSCs5.0Cs作6/只尾靜脈注射作為實驗用量。BMSCs 組大鼠造模成功后14天的BBB評分及步態(tài)分析結(jié)果均明顯高于SCI組,說明 BMSCs可以促進(jìn)脊髓損傷大鼠后肢運動功能的恢復(fù)。此外,筆者還對相關(guān)分子機(jī)制進(jìn)行了探討。
產(chǎn)生的大量氧自由基及軸突和髓鞘的損傷使細(xì)胞膜不飽和脂肪酸及磷脂過氧化反應(yīng)增強(qiáng),造成脊髓組織損傷,表現(xiàn)出產(chǎn)生大量MPO、MDA,SOD則會因大量消耗而下降[19-21]。MPO存在于中性粒細(xì)胞內(nèi),其活性高低反應(yīng)脊髓組織內(nèi)中性粒細(xì)胞的浸潤程度。MDA又稱脂質(zhì)過氧化物酶,其含量高低可反應(yīng)組織中自由基含量及過氧化物程度[10]。SOD作為體內(nèi)清除自由基的特異酶,其活性的高低反映了機(jī)體清除氧自由基的能力[22]。本研究中,SCI組大鼠脊髓組織中MPO和MDA含量明顯高于Sham組,SOD含量明顯低于Sham組,說明其能夠使反映脊髓組織中性粒細(xì)胞浸潤程度的MPO和反映脊髓中自由基含量和脂質(zhì)過氧化物程度的MDA水平降低,并且減少了反映體內(nèi)抗氧化能力的SOD的消耗,提示BMSCs 在抗氧化的平衡中起到了重要作用。
根據(jù)之前的報道,浸潤的中性粒細(xì)胞及局部激活的巨噬細(xì)胞共同釋放各種類型炎癥介質(zhì),導(dǎo)致TNF-α、IL-6和 IL-10在脊髓內(nèi)濃度顯著升高[23-27]。本研究在造模成功后的6h對各組動物脊髓組織中促炎因子 TNF-α、IL-6和抑炎因子IL-10的水平進(jìn)行了檢測,發(fā)現(xiàn)3種因子的水平均有所升高,與本實驗室之前的研究結(jié)果相一致。本研究還發(fā)現(xiàn)經(jīng)尾靜脈注射BMSCs可以顯著降低上述兩種促炎因子的水平,而進(jìn)一步提高IL-10的水平。提示BMSCs在炎癥水平較高時可以發(fā)揮明顯的抑制作用,這與以往學(xué)者在其它炎癥類疾病中發(fā)現(xiàn)的BMSCs炎癥調(diào)節(jié)特性相一致[28-33]。
本研究表明,BMSCs對于大鼠脊髓損傷具有一定的神經(jīng)保護(hù)作用,并且改善損傷后的運動功能,其機(jī)制可能與調(diào)控炎癥反應(yīng)和清除自由基有關(guān)。但對于脊髓損傷治療中的BMSCs的最佳濃度、時間窗及方式仍須進(jìn)一步探討研究。
參 考 文 獻(xiàn)
[1]Forostyak S, Jendelova P, Sykova E. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie, 2013, 95(12):2257-2270.
[2]Lu M, Wang S, Han X, et al. Butein inhibits NF-kappaB activation and reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett, 2013,542(87-91.
[3]Hu J, Lang Y, CaoY, et al. The neuroprotective effect of tetramethylpyrazine against contusive spinal cord injury by activating PGC-1alpha in rats. Neurochem Res, 2015, 40(7):1393-1401.
[4]Han X, Lu M, Wang S, et al. Targeting IKK/NF-kappaB pathway reduces infltration of infammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett, 2012, 511(1):28-32.
[5]Harrop JS. Spinal cord injury: debating the effcacy of methylprednisolone. Neurosurgery, 2014, 61(Suppl 1):S30-31.
[6]Kong XY, Gao J, Yang Y, et al. Research advances inthe application of methylprednisolone in the treatment of acute spinal cordinjury. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2014, 36(6):680-685.
[7]Abrams MB, Dominguez C, Pernold K, et al. Multipotent mesenchymal stromal cells attenuate chronic infammation and injury-induced sensitivityto mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci, 2009, 27(4):307-321.
[8]Gruner JA. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma, 1992, 9(2):123-128.
[9]Neumann M, Wang Y, Kim S, et al. Assessing gait impairment following experimental traumatic brain injury in mice. J Neurosci Methods, 2009, 176(1):34-44.
[10]Kwon BK, Tetzlaff W, Grauer JN, et al. Pathophysiology andpharmacologic treatment of acute spinal cord injury. Spine,2004, 4(4):451-464.
[11]Silva NA, Sousa N, Reis RL, et al. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol,2014, 114:25-57.
[12]Schwab JM, Chiang N, Arita M, et al. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature, 2007, 447(7146):869-874.
[13]Burns SM, Fisher C, Earven Tribble SS, et al. Multifactor clinical score and outcome of mechanical ventilation weaning trials: Burns Wean Assessment Program. Am J Crit Care, 2010,19(5):431-439.
[14]Breslin K, Agrawal D. The use of methylprednisolone in acute spinal cord injury: a review of the evidence, controversies,and recommendations. Pediatr Emerg Care, 2012, 28(11):1238-12345.
[15]Gupta R, Bathen ME, Smith JS, et al. Advances in the management of spinal cord injury. J Am Acad Orthop Surg,2010, 18(4):210-222.
[16]Cole SJ, Bradford D, Cooper HM. Neogenin: A multifunctional receptor regulating diverse developmental processes. Int J Biochem Cell Biol, 2007, 39(9):1569-1575.
[17]郭冕,鄭永日,李青松,等.局部注射骨髓間充質(zhì)干細(xì)胞治療大鼠脊髓損傷: 運動功能有改善嗎? 中國組織工程研究與臨床康復(fù), 2010,(14):2556-2559.
[18]Yagi H, Soto-Gutierrez A, Kitagawa Y, et al. Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant, 2010, 19(6):823-830.
[19]Bradley PP, Priebat DA, Christensen RD, et al. Measurement of cutaneous infammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol, 1982, 78(3):206-209.
[20]Sun L, Guo RF, Newstead MW, et al. Effect of IL-10 on neutrophil recruitment and survival after Pseudomonas aeruginosa challenge. Am J Respir Cell Mol Biol, 2009, 41(1):76-84.
[21]Pincemail J, Deby C, Thirion A, et al. Human myeloperoxidase activity is inhibited in vitro by quercetin. Comparison with three related compounds. Experientia, 1988, 44(5):450-453.
[22]Ohta S, Iwashita Y, Takada H, et al. Neuroprotection and enhanced recovery with edaravone after acute spinal cord injury in rats. Spine, 2005, 30(10):1154-1158.
[23]Hao Z, Tiansheng S, Zhi L, et al. Hip fracture aggravates systemic infammation and lung injury in aged chronic cigarette smoke exposed rats. J Orthop Res, 2014, 32(1):24-30.
[24]Ba?hl S, Garneau H, Le Page A, et al. Altered neutrophil functions in elderly patients during a 6-month follow-up period after a hip fracture. Exp Gerontol, 2015, 65:58-68.
[25]Zhang H, Sun T, Liu Z, et al. Systemic infammatory responses and lung injury following hip fracture surgery increases susceptibility to infection in aged rats. Mediators Inflamm,2013, 2013:536435.
[26]Wang C, Ge J, Ni S. Effect of interleukin-6 polymorphism on fracture risk. Int J Clin Exp Med, 2015, 8(6):9599-9602.
[27]den Uyl D, van Schoor NM, Bravenboer N, et al. Low grade inflammation is associated with lower velocity of sound and broadband ultrasound attenuation in older men, but not with bone loss or fracture risk in a longitudinal aging study. Bone,2015, 81:270-276.
[28]Sun Y, Yao Z, Lin P, et al. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip. Cell Biol Int, 2014, 38(5):647-654.
[29]Zuo D, Tang Q, Fan H, et al. Modulation of nuclear factorkappaB-mediated pro-inflammatory response is associated with exogenous administration of bone marrow-derived mesenchymal stem cells for treatment of experimental colitis. Mol Med Rep, 2015, 11(4):2741-2748.
[30]Wang YW, Xu DP, Liu Y, et al. The effect of tumor necrosis factor-alpha at different concentrations on osteogenetic differentiation of bone marrow mesenchymal stem cells. J Craniofac Surg, 2015, 26(7):2081-2085.
[31]Sun T, Wang X, Liu Z, et al. Patterns of cytokine release and evolution of remote organs from proximal femur fracture in COPD rats. Injury, 2011, 42(8):825-832.
[32]Sun T, Wang X, Liu Z, et al. Plasma concentrations of pro- and anti-infammatory cytokines and outcome prediction in elderly hip fracture patients. Injury, 2011, 42(7):707-713.
[33]Yang J, Liu XX, Fan H, et al. Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Protect against Experimental Colitis via Attenuating Colon Inflammation,Oxidative Stress and Apoptosis. PLoS One, 2015, 10(10):e0140551.
(本文編輯:李貴存)
. 脊柱脊髓損傷 Spinal and spinal cord injuries .
DOI:10.3969/j.issn.2095-252X.2016.06.004中圖分類號:R683.2
作者單位:100700 北京,陸軍總醫(yī)院骨科(張桂通、劉佳、張曉燕、張志成、李放、孟繁星、孫天勝);100853 北京,解放軍醫(yī)學(xué)院骨科教研室(張桂通、孫移坤)
通信作者:孫天勝,Email: suntiansheng-@163.com
收稿日期:(2016-02-16)
Protective effects of bone marrow mesenchymal stromal cells on spinal cord injury in rats and its mechanism
ZHANG Gui-tong, LIU Jia, ZHANG Xiao-yan, ZHANG Zhi-cheng, LI Fang, MENG Fan-xing, SUN Yi-kun, SUN Tiansheng.
Chinese People's Liberation Army Beijing Military Command General Hospital, Beijing, 100700, PRC
Corresponding author: SUN Tian-sheng, Email: suntiansheng-@163.com
【Abstract】Objective To investigate the protective effects of bone marrow mesenchymal stromal cells(BMSCs)on spinal cord injury(SCI)model of rats and its potential mechanism. Methods Totally 60 adult SD rats were randomly divided into 3 groups: sham group(n = 20), SCI group(n = 20)and BMSCs group(n = 20). Model of spinal cord injury was established by modifed Allen' s assay. From the frst day after injury, motor function of the rats' hind limb was evaluated by BBB(Basso Beattie and Bresnahan)scores and Catwalk gait analysis and detection at 14 d. Content of myeloperoxidase(MPO), malondialdehyde(MDA), superoxide dismutase(SOD)in spinal cord tissue and levels of tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), interleukin-10(IL-10)in serum were determined by ELISA analysis. Pathological changes of spinal cord tissues were observed with HE staining. Results Compared with the model group, the content of MPO in injured spinal cord at 12h after injury in BMSCs group decreased from(149.7 ± 28.4)nmol/mg to(116.0 ± 29.2)nmol/mg, MDA levels decreased from(58.1 ± 3.3)U/g to(41.7 ± 2.6)U/g, at 6 h after injury TNF-α levels in serum decreased from(439.8 ± 12.8)pg/ml to(314.6 ± 17.6)pg/ml, IL-6 levels decreased from(364.7 ± 16.9)pg/ml to(232.9 ± 15.2)pg/ml while SOD activity increased from(194.6 ± 14.3)U/mg to(362.0 ± 13.6)U/mg, IL-10 levels increased from(291.3 ± 9.8)pg/ml to(377.9 ± 17.9)pg/ml(P < 0.05). Compared with the SCI group, BBB scores and catwalk gait analysis improved signifcantly at 14 d after injury in BMSCs group(P < 0.05). The pathological injury of spinal cord was relieved in BMSCs group. Conclusions BMSCs administration improves the motor function after spinal cordinjury. Its potential mechanism may be the inhibition of infammatory reaction and oxidative stress reaction.
【Key words】Mesenchymal stromal cells; Spinal cord injuries; Rats