高 芃,李金明
(北京醫(yī)院臨床檢驗(yàn)中心,北京 100730)
循環(huán)腫瘤DNA與腫瘤精準(zhǔn)治療
高 芃,李金明
(北京醫(yī)院臨床檢驗(yàn)中心,北京 100730)
目前治療腫瘤的手段多種多樣,已經(jīng)不完全局限于傳統(tǒng)的手術(shù)切除及放化療等,分子靶向治療藥物的普及使“精準(zhǔn)醫(yī)學(xué)”正逐步被應(yīng)用到臨床腫瘤領(lǐng)域。隨著基因組學(xué)及生物大分子技術(shù)的日漸成熟,腫瘤精準(zhǔn)醫(yī)學(xué)將個(gè)體疾病的遺傳學(xué)信息、診斷、治療三者結(jié)合,使腫瘤的診治更具有針對(duì)性、靶向性和特異性。因此,找到一種可以實(shí)時(shí)監(jiān)測(cè)腫瘤狀態(tài)的標(biāo)志物至關(guān)重要。循環(huán)腫瘤DNA(circulating tumour DNA,ctDNA)是腫瘤細(xì)胞在壞死、凋亡后釋放的一種游離DNA,由于其在血液中循環(huán),所以對(duì)ctDNA的檢測(cè)可以及時(shí)反映腫瘤狀態(tài)。目前ctDNA檢測(cè)已應(yīng)用于腫瘤的早期診斷、靶向治療和預(yù)后判斷等方面,由于高度特異性及靈敏性的新技術(shù)不斷出現(xiàn),檢測(cè)ctDNA可作為一種“液體活檢”,具有很好的臨床應(yīng)用前景。
腫瘤;循環(huán)腫瘤DNA;液體活檢;靶向治療
腫瘤是嚴(yán)重危害人類生命健康的一類慢性疾病,隨著腫瘤分子生物學(xué)的發(fā)展,臨床上已達(dá)到對(duì)腫瘤進(jìn)行基因水平上的診斷及靶向治療。目前,實(shí)體瘤的遺傳圖譜是從手術(shù)或活檢組織標(biāo)本中取得。但是,組織活檢標(biāo)本不能反映其異質(zhì)性,且由于獲取標(biāo)本采用侵入性手段,給患者帶來(lái)一定痛苦。因此,尋找可以替代腫瘤組織活檢標(biāo)本并具有高度敏感性和特異性的腫瘤標(biāo)志物具有十分重要的意義。近年來(lái)不斷有報(bào)道,血游離DNA在健康人的血液中含量極低,但當(dāng)機(jī)體處于特殊疾病狀態(tài)(如腫瘤、炎癥疾病和組織創(chuàng)傷等)時(shí)[1],其含量明顯上升,且在腫瘤患者中游離DNA還存在DNA完整性、微衛(wèi)星變化、基因突變、DNA超甲基化及染色體基因重排等腫瘤特異性的改變[2],同時(shí)由于檢測(cè)血液樣本具有容易獲取、快速簡(jiǎn)便且無(wú)創(chuàng)傷等優(yōu)點(diǎn),因此,檢測(cè)腫瘤患者血中游離DNA可視為一種“液體活檢”。2015年,MIT Technology Review雜志將“液體活檢技術(shù)”評(píng)為2015年度十大突破技術(shù)之一,有力證明了液體活檢技術(shù)具有強(qiáng)大的發(fā)展?jié)摿颓熬?。本文就游離DNA的來(lái)源、生物學(xué)特點(diǎn)、檢測(cè)方法及其在腫瘤治療及診斷中的臨床意義做一綜述。
血游離DNA又名循環(huán)DNA,是指血循環(huán)中具有DNA雙螺旋結(jié)構(gòu)的核苷酸片段,分子量0.5~3 kb。在血液中,其一部分以游離形式存在,另一部分通過(guò)與蛋白質(zhì)結(jié)合成復(fù)合物或附著在細(xì)胞表面[3]。1948年Mandel和Métais首次發(fā)現(xiàn)血中存在細(xì)胞外核苷酸[4]。在將純化后的游離DNA注于小鼠體內(nèi)的試驗(yàn)中,結(jié)果顯示血循環(huán)中的雙鏈DNA存在時(shí)間長(zhǎng)于單鏈DNA,環(huán)狀病毒DNA存在時(shí)間長(zhǎng)于線性DNA[5]。血游離DNA可由肝臟和腎臟清除,根據(jù)其片段大小及形態(tài)不同,其半衰期可從15分鐘到數(shù)小時(shí)。研究表明,正常人血游離DNA大多來(lái)源于血細(xì)胞,其含量極低,在100 μg/L之下,平均約為30 μg/L[6],而腫瘤患者的外周血游離DNA主要來(lái)源于腫瘤細(xì)胞壞死凋亡后擴(kuò)散,或增生活躍腫瘤細(xì)胞的釋放。腫瘤細(xì)胞在壞死、凋亡后釋放出可以在人體血液系統(tǒng)中不斷循環(huán)的腫瘤基因組游離DNA片段,稱為ctDNA[1],其濃度可高達(dá)1000 μg/L,平均值為180 μg/L[7]。腫瘤負(fù)荷與ctDNA釋放的含量直接相關(guān)[8]。對(duì)于一個(gè)腫瘤負(fù)荷為100 g(3×1010個(gè)癌細(xì)胞)患者,每天約有3.3%的腫瘤細(xì)胞DNA進(jìn)入血循環(huán)[9],經(jīng)低濃度的瓊脂糖凝膠電泳分析表明其片段大小在一般在70~200 bp,最大片段可接近21 kb[10]。腫瘤患者中ctDNA還會(huì)出現(xiàn)腫瘤特異性的改變:如DNA完整性的改變、癌基因或抑癌基因的突變、基因的甲基化異常、微衛(wèi)星改變、線粒體DNA荷載水平改變以及染色體基因組重排等。見(jiàn)表1。
表1 血游離DNA與ctDNA之間生物學(xué)特點(diǎn)對(duì)比表
隨著對(duì)腫瘤認(rèn)識(shí)的不斷深入,目前可在基因水平上進(jìn)行腫瘤相關(guān)分析?,F(xiàn)臨床上使用石蠟包埋的組織切片獲取腫瘤相關(guān)基因信息,但隨著對(duì)腫瘤分析日益增多,組織活檢樣本出現(xiàn)了很大的局限性,如很多患者無(wú)法進(jìn)行手術(shù)取樣,某些腫瘤解剖位置不便進(jìn)行穿刺,穿刺本身帶來(lái)的臨床危險(xiǎn)[11]及反復(fù)取材帶給患者巨大痛苦等。當(dāng)然,組織樣本最大的局限性是腫瘤的高度異質(zhì)性[12,13],包括:不同患者間的異質(zhì)性、原發(fā)灶內(nèi)部異質(zhì)性、原發(fā)灶與轉(zhuǎn)移灶之間的異質(zhì)性以及不同轉(zhuǎn)移灶之間的異質(zhì)性。攜帶高度異質(zhì)性腫瘤組織樣本無(wú)法反映真實(shí)的疾病狀態(tài),給臨床帶來(lái)了很大的干擾。與傳統(tǒng)的組織學(xué)樣本相比,檢測(cè)血中ctDNA具有巨大的優(yōu)勢(shì),見(jiàn)表2。隨著對(duì)ctDNA認(rèn)識(shí)水平的不斷提高,ctDNA定性、定量分析對(duì)腫瘤患者具有重要的臨床意義。因此,ctDNA的標(biāo)本采集要求與檢測(cè)手段不斷受到研究者的重視。
表2 組織活檢與液體活檢優(yōu)缺點(diǎn)對(duì)比表
2.1 ctDNA的檢測(cè)樣本要求及提取過(guò)程 檢測(cè)ctDNA需要1 ml血清或3 ml血漿。處理血漿時(shí),血液需放于含有EDTA的抗凝血?jiǎng)┲?,?xì)胞通過(guò)離心與上清液或血漿分離。血清在血液凝結(jié)后被收集,離心去細(xì)胞后與血清分離[14]。收集的血漿或血清用專用試劑盒提取ctDNA。但有文獻(xiàn)指出[15],當(dāng)比較血清和血漿時(shí),雖然血清中DNA量較多、質(zhì)較純,但是由于其很易降解,因此降低異常基因檢測(cè)的陽(yáng)性率。并且當(dāng)血液凝固時(shí),血細(xì)胞裂解可向血清中釋放正常DNA,可能會(huì)對(duì)檢測(cè)結(jié)果進(jìn)行干擾。因此,臨床上使用血漿作為檢測(cè)ctDNA的最佳取樣標(biāo)本。
為了更加準(zhǔn)確地測(cè)量ctDNA的含量、分析ctDNA中腫瘤特異性基因的改變,對(duì)其檢測(cè)樣本的采集與提取也有嚴(yán)格要求:采新鮮外周血8~10 ml,放入專用的含EDTAK3抗凝血?jiǎng)┖图?xì)胞防腐劑的ctDNA BCT管中,輕輕倒轉(zhuǎn)8~10次,保證其充分混合,因?yàn)榛旌喜怀浞只虿患皶r(shí)均可能影響檢測(cè)結(jié)果的準(zhǔn)確性。在4~37 ℃常溫保存和運(yùn)輸,禁止冷藏或冷凍保存[16]。
2.2 ctDNA的檢測(cè)方法 由于腫瘤分離出的DNA的質(zhì)量和數(shù)量變化極大,因此需要高特異性和高靈敏性的方法檢測(cè)ctDNA。ctDNA的檢測(cè)范圍為0.01%~93%[17,18]。研究者使用許多不同的方法如:數(shù)字PCR,基于流式技術(shù)的磁珠乳液擴(kuò)增方法(bead emulsion amplification magnetic,BEAMing)、實(shí)時(shí)熒光定量PCR及高通量測(cè)序(next generation sequencing,NGS)等來(lái)定性、定量檢測(cè)DNA的基因突變以確定ctDNA的存在。
數(shù)字PCR(digital polymerase chain reaction,dPCR)是通過(guò)將一個(gè)樣本分成幾十到幾萬(wàn)份,分配到不同的反應(yīng)單元,每個(gè)單元包含一個(gè)或多個(gè)拷貝的DNA 模板,在每個(gè)反應(yīng)單元中分別對(duì)目標(biāo)分子進(jìn)行PCR 擴(kuò)增,擴(kuò)增結(jié)束后對(duì)各個(gè)反應(yīng)單元的熒光信號(hào)進(jìn)行統(tǒng)計(jì)學(xué)分析??梢詫?shí)現(xiàn)單分子DNA絕對(duì)定量[19]。dPCR在超過(guò)75%的胰腺癌、子宮癌、大腸癌等患者中使用數(shù)字PCR可檢測(cè)到ctDNA,在原發(fā)性腦癌、腎癌及前列腺癌中的檢出率約為50%。Beaming技術(shù)結(jié)合了數(shù)字PCR和流式細(xì)胞儀,每一類DNA分子都會(huì)專一地與磁性微珠相連接,通過(guò)流式細(xì)胞儀檢測(cè)每個(gè)磁珠的熒光標(biāo)記來(lái)分析DNA分子之間的差異[20]。其用于檢測(cè)血液樣品中已知基因突變具有不錯(cuò)的效果,即使在非常低的拷貝數(shù)亦是如此。它比大多數(shù)競(jìng)爭(zhēng)技術(shù)更敏感,同時(shí)也可使拷貝數(shù)量化[21]。實(shí)時(shí)熒光定量PCR技術(shù),是指在PCR反應(yīng)體系中加入熒光基團(tuán),利用熒光信號(hào)積累實(shí)時(shí)監(jiān)測(cè)整個(gè)PCR進(jìn)程,最后通過(guò)標(biāo)準(zhǔn)曲線對(duì)未知模板進(jìn)行定量分析的方法[22]。擴(kuò)增受阻突變系統(tǒng)(amplification refractory mutation system,ARMS)是基于耐熱Taq DNA聚合酶缺乏3′→5′外切校正活性的特點(diǎn),若引物的3′端堿基與模板堿基不互補(bǔ),則用一般耐熱DNA聚合酶無(wú)法延伸。因此,根據(jù)已知點(diǎn)突變?cè)O(shè)計(jì)出引物,其3′端堿基分別與突變和正常的模板堿基互補(bǔ),從而將有某種點(diǎn)突變的模板與正常模板區(qū)分開(kāi)[23]。
由于高通量測(cè)序技術(shù)的發(fā)展,一次性對(duì)幾十萬(wàn)到幾百萬(wàn)條DNA分子進(jìn)行序列測(cè)定成為可能。近年來(lái),已經(jīng)有研究者采用NGS法檢測(cè)NSCLC血漿中的ctDNA,然而其敏感度低、檢測(cè)成本高以及對(duì)患者選擇性強(qiáng),只適用于少數(shù)的患者[24]。由于對(duì)NGS法的不斷改進(jìn),基于NGS的新型ctDNA檢測(cè)方法越來(lái)越多。腫瘤個(gè)體化分析深度測(cè)序法(cancer personalized profiling by deep sequencing,CAPP-Seq)利用定制化的突變位點(diǎn)庫(kù)作為篩選器,對(duì)樣本進(jìn)行靶向捕獲后再進(jìn)行新一代測(cè)序,通過(guò)在不同級(jí)別的肺癌患者中驗(yàn)證,檢測(cè)ctDNA的靈敏度更高,能檢測(cè)到低至0.019%的ctDNA水平,特異性可達(dá)到96%,突變檢出率為0.02%,可以得到滿意的檢測(cè)效果,與全外顯子測(cè)序相比經(jīng)濟(jì)可行[25]。標(biāo)記擴(kuò)增深度測(cè)序技術(shù)(tagged-amplicon deep sequencing,TAM-Seq)具有兩步擴(kuò)增[26]:預(yù)擴(kuò)增時(shí)利用特異性引物進(jìn)行15個(gè)循環(huán)的目標(biāo)區(qū)域擴(kuò)增,再利用通用不同特性的接頭標(biāo)簽進(jìn)行二次擴(kuò)增,通過(guò)雙向重復(fù)測(cè)序提高了測(cè)序精度,其突變頻率檢出率可達(dá)2%,具有高度靈敏度和特異性且測(cè)序通量高,因此測(cè)序時(shí)間和成本顯著下降。見(jiàn)表3。
表3 ctDNA的檢測(cè)方法對(duì)比表
近年來(lái),隨著對(duì)ctDNA研究的不斷深入,ctDNA的檢測(cè)對(duì)腫瘤具有越來(lái)越重要的意義。通過(guò)監(jiān)測(cè)ctDNA含量的變化,可以對(duì)腫瘤高危人群進(jìn)行早期篩選。通過(guò)對(duì)ctDNA水平變化分析,能夠獲得來(lái)自腫瘤病灶(原發(fā)灶和轉(zhuǎn)移灶)相關(guān)的基因改變信息,利用這些腫瘤特異性基因改變,可以實(shí)時(shí)監(jiān)測(cè)腫瘤進(jìn)展,指導(dǎo)靶向治療藥物,實(shí)時(shí)監(jiān)測(cè)耐藥變化,監(jiān)測(cè)腫瘤復(fù)發(fā)及評(píng)估預(yù)后等。
3.1 腫瘤早期篩查 ctDNA水平的升高對(duì)腫瘤高危人群的早期篩查和腫瘤早期診斷具有重要意義。Jahr[18]通過(guò)檢測(cè)結(jié)腸癌和健康人中的血清DNA水平和CEA 水平,表明結(jié)腸癌患者ctDNA水平比健康人明顯升高,并提示可將血清游離DNA 與CEA 進(jìn)行聯(lián)合檢測(cè),并將其作為早期結(jié)腸癌篩查指標(biāo)。Toth 等進(jìn)一步將ctDNA 甲基化指標(biāo)應(yīng)用于結(jié)直腸癌的早期篩查[33]。Chan等[34]的研究結(jié)果也說(shuō)明肺癌患者與健康人的ctDNA含量之間存在顯著性差異,檢測(cè)ctDNA水平可用于肺癌的早期篩查。
3.2 靶向治療藥物選擇 檢測(cè)ctDNA的目的是檢測(cè)腫瘤基因中特定位置的基因缺陷,并針對(duì)此種基因改變指導(dǎo)臨床對(duì)晚期腫瘤患者靶向治療藥物的選擇。檢測(cè)腫瘤患者ctDNA中腫瘤特異性基因發(fā)現(xiàn),攜帶EGFR激活突變的患者經(jīng)表皮生長(zhǎng)因子受體酪氨酸激酶抑制劑(epidermal growth factor receptor tyrosine kinase inhibitor,EGFR-TKIs)治療較常規(guī)化療具有更高的有效應(yīng)答率(有效率可達(dá)到60%~72%)和更長(zhǎng)的PFS[35],其中攜帶EGFR 19外顯子缺失的患者PFS延長(zhǎng)的最為明顯[36]。因此,對(duì)于EGFR突變型患者應(yīng)將EGFR-TKIs作為一線治療藥物[37]。Allegra等[38]指出用抗EGFR抗體藥物治療轉(zhuǎn)移性結(jié)直腸癌時(shí),患者要進(jìn)行腫瘤基因型測(cè)試,當(dāng)檢測(cè)出KRAS12或13號(hào)密碼子基因突變時(shí),應(yīng)避免使用抗EGFR抗體對(duì)其進(jìn)行治療,選用EGFR單抗(西妥昔單抗或帕尼單抗)對(duì)其進(jìn)行治療有效。Shaw等指出非小細(xì)胞肺癌中ALK重排陽(yáng)性的患者對(duì)ALK激酶抑制劑敏感,可以選用克里唑替尼治療[39],總緩解率可達(dá)65.7%,治療組肺癌相關(guān)癥狀顯著改善[40]。具有BRAF突變的黑色素瘤患者中,應(yīng)用威羅菲尼可以延長(zhǎng)其生存期[41]。見(jiàn)表4。
表4 腫瘤相關(guān)基因改變與靶向治療藥物
3.3 靶向治療耐藥實(shí)時(shí)監(jiān)測(cè) 盡管靶向治療藥物為針對(duì)特定類型基因改變的腫瘤治療帶來(lái)里程碑式的意義,但近年來(lái)很多文獻(xiàn)表明患者會(huì)出現(xiàn)繼發(fā)性耐藥現(xiàn)象。通過(guò)監(jiān)測(cè)ctDNA中腫瘤特異性基因的改變,可以對(duì)耐藥情況進(jìn)行實(shí)時(shí)評(píng)估。Yun等[45]指出晚期非小細(xì)胞肺癌患者中出現(xiàn)EGFR耐藥突變T790 M通過(guò)其激酶結(jié)構(gòu)域增加與ATP活性對(duì)吉非替尼產(chǎn)生耐藥性。Shi[46]通過(guò)對(duì)黑色素瘤的全基因組測(cè)序確定BRAFV600E擴(kuò)增對(duì)BRAF抑制劑威羅菲尼產(chǎn)生繼發(fā)性耐藥,這種耐藥性的產(chǎn)生可能與受體酪氨酸激酶或N-RAS基因上調(diào)有關(guān)[47]。見(jiàn)表5。
表5 針對(duì)靶向治療產(chǎn)生的獲得性耐藥突變
3.4 腫瘤微小殘留病灶導(dǎo)致腫瘤復(fù)發(fā)的監(jiān)測(cè) ctDNA可作為腫瘤切除術(shù)后微小殘留的潛在標(biāo)志物并可能確定患者是否復(fù)發(fā)。術(shù)后或經(jīng)治療后ctDNA水平與術(shù)前無(wú)明顯變化或降低不明顯,提示患者體內(nèi)含有腫瘤微小殘留病灶,可導(dǎo)致復(fù)發(fā)。用切除后的腫瘤組織確定針對(duì)每個(gè)患者自身的基因突變譜并做成針對(duì)每位患者的突變特異性探針,用于檢測(cè)并定量切除術(shù)后患者體內(nèi)的ctDNA,隨訪2~5年,用ctDNA含量衡量患者在術(shù)后微小殘留病灶的存在,其檢測(cè)具有極高敏感性[52]。經(jīng)手術(shù)切除后的食管癌患者,定量檢測(cè)ctDNA水平降低至正常人水平,但隨訪12個(gè)月后,2例血清DNA水平持續(xù)升高、4例血清DNA下降后再次升高者復(fù)查時(shí)出現(xiàn)明顯復(fù)發(fā)、轉(zhuǎn)移[53]。
另外,術(shù)后突變DNA的出現(xiàn)與腫瘤復(fù)發(fā)間存在很強(qiáng)的關(guān)聯(lián)性。在腸癌和卵巢癌完全切除術(shù)后的骨轉(zhuǎn)移患者的復(fù)發(fā)轉(zhuǎn)移原因是由于原發(fā)性卵巢癌中R273 h TP53突變的存在[54]。術(shù)后大腸癌患者中檢測(cè)腫瘤特異性突變,如TP53、KRAS等,可以確定疾病的復(fù)發(fā)率,其靈敏度和準(zhǔn)確度高達(dá)100%[55]。有研究指出,在乳腺癌、肺癌及口腔鱗狀細(xì)胞癌中,疾病復(fù)發(fā)和特定腫瘤畸變(如KRAS、APC、TP53突變)中有一致性關(guān)系[56~58]。
3.5 腫瘤實(shí)時(shí)治療監(jiān)測(cè)與預(yù)后評(píng)估 ctDNA 能實(shí)時(shí)顯示腫瘤患者體內(nèi)腫瘤負(fù)荷的動(dòng)態(tài)信息,可用于觀察治療效果,為評(píng)價(jià)療效、預(yù)后提供實(shí)驗(yàn)依據(jù)。經(jīng)手術(shù)治療后的乳腺癌患者血液中ctDNA含量顯著降低[59],且經(jīng)一段時(shí)間監(jiān)測(cè)ctDNA水平,無(wú)上升趨勢(shì),表明經(jīng)手術(shù)治療后預(yù)后良好。在18例結(jié)直腸癌患者[52]中,第一次手術(shù)進(jìn)行局部切除時(shí),檢測(cè)ctDNA含量并沒(méi)有降低,第二次手術(shù)完全切除時(shí),ctDNA含量降低明顯。另外,還可通過(guò)定量檢測(cè)增加的基因拷貝數(shù)評(píng)估特定的基因擴(kuò)增預(yù)測(cè)療效,如檢測(cè)肺癌中的MET擴(kuò)增可以預(yù)測(cè)肺癌患者對(duì)抗EGFR抗體的治療效果[60]。在轉(zhuǎn)移性結(jié)直腸癌患者中使用定量PCR檢測(cè)ctDNA中KRAS突變水平,低水平的KRAS突變說(shuō)明使用第三代西妥昔單抗和伊立替康治療后可以穩(wěn)定疾病狀態(tài)[61]。高濃度血漿KRAS和BRAF突變提示結(jié)直腸癌靶向治療后預(yù)后不良。
隨著分子生物學(xué)技術(shù)的不斷發(fā)展與改進(jìn),對(duì)ctDNA的檢測(cè)水平也不斷提高,其檢測(cè)方法具有高度特異性及靈敏性,可作為一種有效的非侵入式腫瘤診斷方式。通過(guò)對(duì)腫瘤患者與健康個(gè)體ctDNA的差異,可以評(píng)估腫瘤的分子異質(zhì)性,為腫瘤患者確定靶向治療藥物,評(píng)價(jià)藥物療效,檢測(cè)腫瘤發(fā)展進(jìn)程等。但是同時(shí),我們意識(shí)到ctDNA還存在一定的改善空間,對(duì)于ctDNA檢測(cè)水平的標(biāo)準(zhǔn)化方面需要做出努力。隨著人們對(duì)腫瘤基因突變的深入研究,腫瘤特異性基因突變檢測(cè)在臨床腫瘤應(yīng)用檢測(cè)上逐步普及,而伴隨近年來(lái)NGS的發(fā)展,為 ctDNA基因突變 NGS檢測(cè)提供了條件。但經(jīng)文獻(xiàn)查閱后發(fā)現(xiàn),現(xiàn)尚無(wú)用于NGS的ctDNA質(zhì)控品,故急需制備ctDNA質(zhì)控品,將此ctDNA基因突變質(zhì)控品應(yīng)用于全國(guó)各級(jí)醫(yī)院以進(jìn)行高通量測(cè)序的質(zhì)量評(píng)價(jià),以達(dá)到對(duì)于ctDNA檢測(cè)水平進(jìn)行標(biāo)準(zhǔn)化的目的。
[1] Fleischhacker M,Schmidt B.Circulating nucleic acids (CNAs) and cancer-a survey[J].Biochim Biophys Acta,2007,1775:181-232.
[2] 拜紅霞.血清游離DNA在腫瘤診斷中的研究進(jìn)展[J].檢驗(yàn)醫(yī)學(xué)與臨床,2011,9(8):1110-1112.
[3] HU Y,NI H.Advance in human free circulating DNA[J].Hereditas,2008,30(7):815-820.
[4] Mandel P,Métais P.Les acides nucléiques du plasma sanguinchezl' homme[J].C R Hebd seances Acad Sci,1948,142:241-243.
[5] Bendich A,Wilczok T,Borenfreund E.Circulating DNA as a possible factor in oncogenesis[J].Sci,1965,148:374-376.
[6] Anker P,Stroun M.Circulating DNA in Plasma or serum[J].Medicina B Aires,2000,60(5Pt2):699-702.
[7] Shapiro B,Chakrabarty M,Cohn EM,et al.Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease[J].Cancer,1983,51(11):2116-2120.
[8] Thierry AR.Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts[J].Nucleic Acids Res,2010,38:6159-6175.
[9] Diehl F,Li M,Dressman D,et al.Detection and quantification of mutations in the plasma of patients with colorectal tumors[J].Proc Natl Acad Sci USA,2005,102:16368-16373.
[10]Jahr S,Hentze H,Englisch S,et al.DNA fragments in the blood plasma of cancer patients:quantitations and evidence for their origin from apoptotic and necrotic cells[J].Cancer Res,2001,61:1659-1665.
[11]Overman MJ,Modak J,Kopetz S,et al.Use of research biopsies in clinical trials:Are risks and benefits adequately discussed[J].J Clin Oncol,2013,31:17-22.
[12]Gerlinger M,Rowan AJ,Horswell S,et al.Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J].N Engl J Med,2012,366:883-892.
[13]Vogelstein B,Papadopoulos N,Velculescu VE,et al.Cancer genome landscapes[J].Science,2013,339:1546-1558.
[14]Wang JY.Molecular detection of APC,Kras,and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers[J].World J Surg,2004,28:721-726.
[15]蔣蓓琦,張一楚.血游離DNA檢測(cè)及腫瘤的基因診斷[J].國(guó)外醫(yī)學(xué)外科學(xué)分冊(cè),2001,28(2):65-67.
[16]Diehl F.Circulating mutant DNA to assess tumor dynamics[J].Nat Med,2008,14:985-990.
[17]Diehl F.Detection and quantification of mutations in the plasma of patients with colorectal tumors[J].Proc Natl Acad Sci,2005,102:16368-16373.
[18]Jahr S.DNA fragments in the blood plasma of cancer patients:quantitations and evidence for their origin from apoptotic and necrotic cells[J].Cancer Res,2001,61:1659-1665.
[19]Vogelstein B,Kinzler KW.Digital PCR[J].Proc Natl Acad Sci,1999,96(16):9236-9241.
[20]Diehl F,Schmidt K,Choti MA,et al.Circulating mutant DNA to assess tumor dynamics[J].Nat Med,2008,14(9):985-990.
[21]Michaela JH,Danijela J,Evan B.Detection of Tumor PIK3CA Status in Metastatic Breast Cancer Using Peripheral Blood[J].Clin Cancer Res,2012,18(12):3462-3469.
[22]Ponchel F,Toomes C,Bransfield K,et al.Real-time PCR based on SYBR-Green I fluorescence:an alternative to the TaqMan assay for a relative quantification of gene rearrangements,gene amplifications and micro gene deletions[J].BMC Biotechnol,2003,13(3):18.
[23]Newton CR,Graham A,Heptinstall LE,et al.Analysis of any point mutation in DNA.The amplification refractory mutation system (ARMS)[J].Nucleic Acids Res,1989,17(7):2503-2516.
[24]Schwaederle M,Husain H,F(xiàn)anta PT,et al.Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay[J].Oncotarget,2016,7(9):9707-9717.
[25]Newman AM,Bratman SV,To J.An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J].Nat Med,2014,20(5):548-554.
[26]Chetan B,Mark S,Rebecca JL.Detection of Circulating Tumor DNA in Early-and Late-Stage Human Malignancies[J].Sci Transl Med,2014,6(224):224.
[27]Wang JY.Molecular detection of APC,K-ras,and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers[J].World J Surg,2004,28:721-726.
[28]Schwaederle M,Husain H,F(xiàn)anta PT,et al.Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay[J].Oncotarget,2016,7(9):9707-9717.
[29]Nygaard AD,Garm Spindler KL,Pallisgaard N,et al.The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer[J].Lung Cance,2013,79:312-317.
[30]Diehl F.Circulating mutant DNA to assess tumor dynamics[J].Nat Med,2008,14:985-990.
[31]Dawson SJ.Analysis of circulating tumor DNA to monitor metastatic breast cancer[J].N Engl J Med,2013,368:1199-1209.
[32]Forshew T.Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[J].Sci Transl Med,2012,4:136-168.
[33]Toth K,Galam BO,Spisok S,et al.Free circulatin g DNA based colorectal cancer screening from peripheral blood:the possibility of the methylated sept in 9 gene marker[J].OrvHetil,2009,150(21):969-977.
[34]Chan KC.Cancer genome scanning in plasma:detection of tumor-associated copy number aberrations,single-nucleotide variants,and tumoral heterogeneity by massively parallel sequencing[J].Clin Chem,2013,59:211-224.
[35]Keedy VL.American Society of Clinical Oncology provisional clinical opinion:epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy[J].J Clin Oncol.2011,29(15):2121-2127.
[36]Alain RT,F(xiàn)lorent M,Safia EM.Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA[J].Nat Med,2014,20(4):430-435.
[37]National Comprehensive Cancer Network.NCCN Clinical Practice Guidelines in Oncology.Non-Small Cell Lung Cancer Version[J/ON].http://www.nccn.org/professionals/physician gls/pdf/nscl.pdf.2015.
[38]Allegra CJ.American Society of Clinical Oncology provisional clinical opinion:testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy[J].J Clin Oncol,2009,27:2091-2096.
[39]Shaw AT,Engelman JA.ALK in lung cancer:past,present,and future[J].J Clin Oncol,2013,31:1105-1111.
[40]Pallis AG,Serfass L,Dzcadzlusko R,et al.Targeted therapies in the treatment of advanced/metastatic NSCLC[J].Eur J Cancer,2009,45(14):2473-2487.
[41]Gonzalez D.BRAF mutation testing algorithm for vemurafenib treatment in melanoma:recommendations from an expert pane[J].Br J Dermatol,2013,168:700-707.
[42]Baselga J,Lewis Phillips GD.Relationship between tumor biomarkers and efficacy in EMILIA,a phase iii study of trastuzumab emtansine in HER2-Positive metastatic breast cancer[J].Clin Cancer Res,2016,26:2499.
[43]Zhang Y,Wang W.Response to crizotinib observed in lung adenocarcinoma with MET copy number gain but without a high-level MET/CEP7 ratio,MET overexpression,or exon 14 splicing mutations[J].J Thorac Oncol,2015,15:255-260.
[44]Krajewska J,Olczyk T,Jarzab B.Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer[J].Expert Rev Clin Pharmacol,2016,9(1):69-79.
[45]Yun CH.The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP[J].Proc Natl Acad Sci USA,2008,105:2070-2075.
[46]Shi H.Melanoma whole-exome sequencing identifies (V600E)BRAF amplification-mediated acquired BRAF inhibitor resistance[J].Nat Commun,2012,3:724.
[47]Nazarian R.Melanomas acquire resistance to BRAF(V600E) inhibition by RTK or NRAS upregulation[J].Nature,2010,468:973-977.
[48]Murtaza M.Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA[J].Nature,2013,497:108-112.
[49]Diaz LA.The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers[J].Nature,2012,486:537-540.
[50]Sequist LV.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J].Sci Transl Med,2011,3:75.
[51]Choi YL.EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors[J].N Engl J Med,2010,363:1734-1739.
[52]Diehl F,Schmidt K,Choti MA,et al.Circulating mutant DNA to assess tumor dynamics[J].Nat Med,2008,14:985-990.
[53]Banki F,Mason RJ,Oh D,et al.Plasma DNA as a molecular marker for completeness of resection and recurrent disease in patients with esophageal cancer[J].Arch Surg,2007,142(6):533.
[54]Forshew T.Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[J].Sci Transl Med,2012,4:136-168.
[55]Diehl F.Circulating mutant DNA to assess tumor dynamics[J].Nat Med,2008,14:985-990.
[56]Frattini M.Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer[J].Cancer Lett,2008,263:170-181.
[57]Hamana K.Monitoring of circulating tumour-associated DNA as a prognostic tool for oral squamous cell carcinoma[J].Br J Cancer,2005,92:2181-2184.
[58]Hsieh JS.APC,K-ras,and p53 gene mutations in colorectal cancer patients:correlation to clinicopathologic features and postoperative surveillance[J].Am Surg,2005,71:336-343.
[59]Catarino R,F(xiàn)errcim MM,Rodrigues H,et al.Quantification of free circulating tumour DNA as a diagnostic marker for breast cancer[J].DNA Cell Biol,2008,27(8):415-421.
[60]Bean J.MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib[J].Proc Natl Acad Sci USA,2007,104:20932-20937.
[61]Spindler KL,Pallisgaard N,Vogelius I,et al.Quantitative cell-free DNA,KRAS,and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan[J].Clin Cancer Res,2012,18:1177-1185.
Circulating tumor DNA and tumor precision treatment
GAO Peng,LI Jin-ming
(Clinical Laboratory Center,Beijing Hospital,Beijing 100730,China)
LIJin-ming
Up to now,there is a variety of treatments for tumor in addition to traditional surgical resection,radiotherapy and chemotherapy.The precision medicine based upon molecular targeted-therapy drugs has been gradually applied in clinical oncology.With gradually mature of genomics and biological macromolecules technology,tumor precision medicine that combines genetic information,diagnosis and treatment in individual disease makes tumor diagnosis and treatment more pertinent,targeted,and specific.Therefore,it is of crucial importance to find a marker which monitors the state of tumor in real time.Circulating tumor DNA (ctDNA),a kind of cell-free DNA,is released after tumor cell necrosis or apoptosis.Since they circulate,detection of ctDNA may timely reflect the state of tumor.Currently ctDNA detection has been applied in early diagnosis,targeted therapy and prognosis of tumors.Due to the new technology with high specificity and sensitivity are emerging,detecting ctDNA,as a kind of “l(fā)iquid biopsy”,has great clinical application prospects.
Tumor;Circulating tumor DNA;Liquid biopsy;Targeted-therapy
李金明,男,研究員,博士,博士研究生導(dǎo)師。中國(guó)計(jì)量測(cè)試學(xué)會(huì)國(guó)家標(biāo)準(zhǔn)物質(zhì)委員會(huì)委員,中國(guó)輸血協(xié)會(huì)專家委員會(huì)成員,中華醫(yī)學(xué)會(huì)檢驗(yàn)分會(huì)傳染病學(xué)組和免疫學(xué)組專家委員會(huì)委員。研究方向:臨床分子診斷方法及標(biāo)準(zhǔn)化。
R73-36
A
1672-6170(2016)03-0001-06
2016-04-05)