竇寧 王婧
[摘要]文章通過研究2006年1月到2015年4月我國商品房價格的變動情況,采用時間序列因素分解的方法來探究商品房價格自身變化的規(guī)律。實證分析發(fā)現(xiàn),時間序列因素分解對預測我國的商品房價格具有較好的效果。
[關鍵詞]時間序列;因素分解;商品房價格
1.引言
房地產(chǎn)業(yè)是影響我國經(jīng)濟發(fā)展的重要行業(yè),某種程度上說,房地產(chǎn)行業(yè)已成為我國經(jīng)濟發(fā)展的晴雨表。深入分析影響商品房價格的因素,不僅可以促進房地產(chǎn)行業(yè)的良性發(fā)展,對于我國經(jīng)濟的持續(xù)快速發(fā)展同樣有著重要的意義。
文章主要運用因素分解的方法來探究商品房價格變動的規(guī)律。首先,通過計算商品房價格序列的季節(jié)指數(shù),消除季節(jié)變動的影響;其次,建立ARMA模型,并對模型進行相關的檢驗分析;最后,對模型的預測性進行檢驗。
2.理論分析
商品房的價值在于它可以滿足人們的住房和投資需求,而影響商品房價格變動的因素包括:生產(chǎn)成本、供求關系、經(jīng)濟發(fā)展水平、經(jīng)濟政策、城市化進程、心理預期等多方面的因素。而商品房價格自身的變動也表現(xiàn)出一定的規(guī)律。長時間變動的商品房價格包含了趨勢、季節(jié)變動、隨機波動、不規(guī)則變動等因素。時間序列因素分解可考察其變動規(guī)律。
非平穩(wěn)時間序列包含趨勢(T)、季節(jié)變動(s)、循環(huán)變動(c)和不規(guī)則變動(I)。文章采用時間序列加法模型,即:
Y=T+S+C+I
首先消除時間序列中季節(jié)變動因素的影響。對于短期的時間序列,較難度量其循環(huán)變動因素,因而不作考慮。對于消除季節(jié)因素的時間序列做ARMA模型,并對其進行樣本內(nèi)預測,檢驗模型預測的準確性。
3.實證研究
文章選取統(tǒng)計年鑒中2006年1月到2015年4月全國范圍內(nèi)商品房銷售額與商品房銷售面積的月度數(shù)據(jù),通過計算獲得平均價格水平?;贓views 6.0,建立相應的模型,對商品房價格進行預測。所有數(shù)據(jù)來源于國家統(tǒng)計年鑒。缺失數(shù)據(jù)采用均值插補的方法補齊。用chp表示商品房價格,用chpr表示商品房價格增長率。
3.1商品房價格構成因素的分解與測定
商品房價格變動的構成可以分解為趨勢、季節(jié)變動、循環(huán)波動和不規(guī)則變動。由于所用時間序列較短,循環(huán)波動因素不容易測度,因而不考慮其影響。設商品房價格為Y,季節(jié)變動為s,趨勢為T,不規(guī)則變動為I,則:
Y=S+T+I
3.1.1季節(jié)因素的測定
計算月度數(shù)據(jù)的季節(jié)指數(shù),見表1:
3.1.2趨勢成分和不規(guī)則變動的構成分析
(1)趨勢和不規(guī)則變動序列z的平穩(wěn)性檢驗。
由表2可見,在5%的顯著性水平下,序列z不平穩(wěn)。做一階差分以后,序列平穩(wěn)。
(2)ARIMA(p,d,q)模型的識別。
①d的識別。序列z在做一階差分以后平穩(wěn),因而序列z為一階單整,即d為1。
②p和q的識別。一般可以借助自相關函數(shù)ACF和偏自相關函數(shù)PACF圖對p、q進行初步判斷。
由ACF圖與PACF圖知,p=2或p=3是比較合適的,因此建立的ARIMA模型的所有(p,q)的組合為(2,1,1)、(2,1,2)、(3,1,1)、(3,1,2)。
由表3的ARMA模型比較分析,選擇的最優(yōu)ARMA模型為ARIMA(3,1,3)。
③ARIMA(3,1,3)模型的殘差序列平穩(wěn)性和相關性檢驗。
由表4可以看出,殘差序列的ADF值為-10.04253,小于4.85,因而殘差序列平穩(wěn)。
由表5殘差性的LM檢驗可知,殘差序列不存在序列相關性。
構建的ARIMA(3,1,3)模型為:
dti.=0.0031+0.7488dti.,+0.3832dti.,-0.5604dti.,+
(4.9246)(6.3437) (3.3483) (-6.5117)
εt+1.1550 εt-1-0.4310εt-2-0.6918εt-3
(9.6597) (-1.9630) (-6.1842)
R2=0.8961 R2=0.8899 F=145.1912
DW=1.9492
5%水平下所有參數(shù)顯著,R2為0.8961,模型擬合效果較好,F(xiàn)統(tǒng)計量為145.1912,其對應的檢驗概率是0.0000,故模型顯著;DW為1.9492,不存在自相關。
3.2基于房地產(chǎn)價格因素分解的樣本內(nèi)預測
通過進一步的計算得到此模型預測的平均絕對誤差是0.00352,平均相對誤差是0.532%,均方誤差是0.01742。
4.結(jié)論及建議
文章主要通過運用時間序列因素分解的方法,分析了商品房價格變動的規(guī)律。實證結(jié)果表明時間序列因素分解的方法對于預測我國商品房價格的變動有較好的效果。通過計算季節(jié)指數(shù),消除季節(jié)變動對于商品房價格變動的影響。在不考慮周期波動影響下,用時間序列模型分析只包含隨即波動和趨勢項的序列,可以較好地擬合時間序列的變化規(guī)律。