李 靜
一類利用卷積定義的p葉解析函數(shù)類的系數(shù)邊界
李 靜
(江漢大學(xué)文理學(xué)院,湖北武漢430056)
卷積是研究解析函數(shù)的有效工具,對于解析函數(shù)的系數(shù)研究起到很大的作用.利用卷積定義了一類在單位圓盤U={z∈C:|z|<1}內(nèi)的p葉解析函數(shù)類MDδ,pa,c(λ,b,α,β),利用正實(shí)部函數(shù)族的系數(shù)性質(zhì),得到了它的全體系數(shù)邊界,同時推廣了一些常用的結(jié)論.
卷積;算子;系數(shù);星象函數(shù);凸函數(shù)
設(shè)A(p)表示單位圓盤U={z∈C:|z|<1}內(nèi)具有泰勒級數(shù)
f(z)與g(z)的卷積定義為
R.M.Goel等[2]定義了線性算子
其中
其中
經(jīng)計算得:
為了敘述方便,下文記
近期對于上述相關(guān)算子的研究,可以參看文獻(xiàn)[7-16].另外,還注意到
且
下面是一些特殊的函數(shù)類:
引理1[23]若h(z)=1+c1z+c2z2+…(z∈U)為正實(shí)部解析函數(shù),即Rh(z)>0,則|ck|≤2,k=1,2,….
則
移項得
即
由于≤α≤β,易知0≤ξ<1,所以
其中,η =(1-β)cos λ+i(1-α)sin λ.
定義函數(shù)p(z)滿足等式
其中p(z)在U內(nèi)解析且p(0)=1,Rp(z)>0.現(xiàn)記
將(7)式代入(6)式得
將上式進(jìn)行變形得到
利用(3)式得
即
比較上式2邊項zn+p-1的系數(shù)得
利用引理1得
下面用數(shù)學(xué)歸納法證明結(jié)論.在(8)式中令n =2得
這就證明了(4)式.令n=3,并利用(9)式得
假設(shè)(5)式對n=k成立,即
當(dāng)n=k+1時有
這就證明了(5)式.
推論1[19]設(shè)f(z)∈SD(α,β),則
證明 在定理2中令a=c,δ=0,p=1,λ= 0,b=2.
推論2 設(shè)f(z)∈S*(β),則
證明 在推論1中令α=0.
推論3[20]設(shè)f(z)∈KD(α,β),則
證明 在定理2中令a=c,δ=1,p=1,λ= 0,b=1.
推論4 設(shè)f(z)∈K(β),則
證明 在推論3中令α=0.
定理3 設(shè)f(z)∈A(p)由(1)式定義,若滿足下面不等式
證明 為簡便起見,記
則要證明的結(jié)論即為
利用(3)式,經(jīng)計算得
由于
所以
結(jié)合(11)式,如果(12)式的最后一個式子有上界1,即
上式經(jīng)整理得
此式即為(10)式.此時由(12)式有
推論5[24]設(shè)f(z)∈A(p)由(1)式定義,若滿足下面不等式
則f(z)∈Sp*(β).
證明 在定理3中令a=c,δ=-p+1,λ= 0,b=2,α=0.
推論6[25]設(shè)f(z)∈A(1)由(1)式定義,若滿足下面不等式
則f(z)∈S*(β).
證明 在推論5中令p=1.
推論7[24]設(shè)f(z)∈A(p)由(1)式定義,若滿足下面不等式
則f(z)∈Kp(β).
證明 在定理3中令a=c,δ=-p+2,λ= 0,b=1,α=0.
推論8[26]設(shè)f(z)∈A(1)由(1)式定義,若滿足下面不等式
則f(z)∈S*(β).
證明 在推論5中令p=1.
[1]SAITOH H.A linear operator and its application of first order differential subordinations[J].Math Jpn,1966,44:31-38.
[2]GOEL R M,SOHI N.A new criterion for p-valent functions[J].Proc Am Math Soc,1980,78:353-357.
[3]CHO N ,KWON O S,SRIVASTAVA H M.Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operator[J].J Math Anal Appl,2004,292(2):470-483.
[4]LIU J L,NOOR K I.Some properties of Noor integral operator[J].J Nat Geom,2002,21:81-90.
[5]NOOR K I,ARIF M.Generalized integral operators related with p-valent analytic functions[J].Math Inequal Appl,2009,12(1):91-98.
[6]NOOR K I.On new classes of integral operators[J].J Nat Geom,1996,16:71-80.
[7]SRIVASTAVA H M,GABOURY S.A new class of analytic functions defined by means of a generalization of the Srivastava-Attiya operator[J].J Inequal Appl,2015,39:1-15.
[8]劉文娟,彭娟,楊清.與Noor積分算子有關(guān)的多葉解析函數(shù)子類的性質(zhì)[J].揚(yáng)州大學(xué)學(xué)報(自然科學(xué)版),2012,15(3):8-11.
[9]吳春.全純函數(shù)差分算子的值分布[J].四川大學(xué)學(xué)報(自然科學(xué)版),2015,52(6):1-6.
[10]SEOUDY T M,AOUF M K.Inclusion properties for some subclasses of analytic functions associated with generalized integral operator[J].J Egyptian Math Soc,2013,21(1):11-15.
[11]XU Q H,XIAO H G,SRIVASTAVA H M.Some applications of differential subordination and the Dziok-Srivastava convolution operator[J].Appl Math Comput,2014,230:496-508.
[12]秦川,李小飛.一類利用復(fù)合算子函數(shù)定義的解析函數(shù)類的包含性質(zhì)[J].四川師范大學(xué)學(xué)報(自然科學(xué)版),2015,38(3):376-340.
[13]田琳,韓紅偉.算子解析函數(shù)的系數(shù)不等式[J].?dāng)?shù)學(xué)的實(shí)踐與認(rèn)識,2014,44(18):239-245.
[14]李書海,湯獲,馬麗娜,等.與條形區(qū)域有關(guān)的解析函數(shù)新子類[J].?dāng)?shù)學(xué)物理學(xué)報,2015,35(5):970-986.
[15]張兆霞,劉名生.涉及Dziok-Srivastava算子的某些多葉解析函數(shù)子類的性質(zhì)[J].華南師范大學(xué)學(xué)報(自然科學(xué)版),2013,45(3):37-41.
[16]鮑春梅.由線性算子定義的解析函數(shù)子類的Fekete-Szego不等式[J].?dāng)?shù)學(xué)的實(shí)踐與認(rèn)識,2014,44(19):292-296.
[17]ARIF M.On certain suffciency criteria for p-valent meromorphic spiralike functions[J].Abs Appl Anal,2012,1:1-9.
[18]ROBERTSON M S.Univalent functions f(z)for wich zf'(z)is spirallike[J].Michigan Math J,1969,16:97-101.
[19]OWA S,POLATOGLU Y,YAVUZ E.Coefficient inequalities for classes of uniformly starlike and convex functions[J].J Inequal Pure Appl Math,2006,7(5):1-6.
[20]SHAMS S,KULKARNI S R,JAHANGIRI J M.Classes of uniformly starlike and convex functions[J].Int J Math Math Sci,2004,55:2959-2961.
[21]RAVICHANDRAN V,SELVARAJ C,RAJGOPAL R.On uniformly convex spiral functions and uniformly spirallike function[J].Soochow J Math,2003,29(4):392-405.
[22]LATHA S.Coefficient inequalities for certain classes of ruscheweyh type analytic functions[J].J Inequal Pure Appl Math,2008,9(2):1-5.
[23]POMMERENKE C H.Univalent Functions[M].Gotingen:Vandenhoeck and Rupercht,1975.
[24]MUHAMMAD A,JANUSZ S,MAHAMMAD A.Coefficient inequalities for a subclass of p-valent analytic functions[J].The Scientific World J,2014,2014:1-5.
[25]MERKES E P,ROBERTSON M S,SCOTT W T.On products of starlike functions[J].Proc Am Math Soc,1962,13:960-964.
[26]SILVERMAN H.Univalent functions with negative coeffcients[J].Proc Am Math Soc,1975,51:109-116.
Coefficient Bounds for a Subclass of p-valent Analytic Functions by Convolution
LI Jing
(College of Arts and Sciences,Jianghan University,Wuhan 430056,Hubei)
Convolution is an effective tool to study analytic functions,which plays a significant role in the study of the coefficient of analytic functions.In this paper,a subclass(λ,b,α,β)of p-valent analytic functions defined by convolution in the open disc U ={z∈C:|z|<1}is introduced.The aim of the paper is to study all coefficient bounds of the above class with coefficient properties of real part functions.Many known results are generalized.
convolution;operator;coefficient;starlike function;convex function
O174.51
A
1001-8395(2016)05-0686-05
10.3969/j.issn.1001-8395.2016.05.013
(編輯 余 毅)
2015-09-25
湖北省教育廳規(guī)劃課題(2014B354)
李 靜(1984—),女,講師,主要從事應(yīng)用數(shù)學(xué)的研究,E-mai:2935788547@qq.com
2010 MSC:30C45