蒲曉琴
一類中立型隨機(jī)偏微分方程概周期解的存在性和唯一性
蒲曉琴
(中國(guó)民航飛行學(xué)院計(jì)算機(jī)學(xué)院,四川廣漢618307)
最近,P.Bezandry和T.Diagana(P.Bezandry,T.Diagana.Appl.Anal.,2007,117:1-10.)引入了均值概周期的概念,研究了一類隨機(jī)時(shí)滯演化方程,并獲得了其均值概周期存在和唯一的充分條件.我們將應(yīng)用不動(dòng)點(diǎn)理論和分?jǐn)?shù)冪算子方法,獲得一類中立型隨機(jī)偏微分方程在均方意義下的概周期解的存在性和唯一性的充分條件.
中立隨機(jī)偏微分方程;均值概周期;分?jǐn)?shù)冪算子;不動(dòng)點(diǎn)
Bohr最先引了概周期函數(shù)的概念,隨后,Bochner將這概念推廣到Polish空間.近些年來(lái),由于概周期微分方程在物理、化學(xué)和生物數(shù)學(xué)上的應(yīng)用,許多學(xué)者研究了概周期微分方程概周期解存在性問(wèn)題[1-17].隨機(jī)微分方程的動(dòng)力行為也被許多人研究[8-20].最近,P.Bezandry等[21-22]引入了均值概周期的概念,研究了一類隨機(jī)時(shí)滯演化方程,并獲得了其均值概周期存在和唯一的充分條件.應(yīng)用不動(dòng)點(diǎn)理論和分?jǐn)?shù)冪算子方法,獲得了一類中立型隨機(jī)偏微分方程在均值概周期解的存在性和唯一性的充分條件.
假設(shè)H和K為實(shí)可分的Hilbert空間,它們的范數(shù)分別記為‖·‖和‖·‖K.設(shè)(Ω,F(xiàn),{Ft}t≥0,P)為完備概率空間.L2(K,H)為Hilbert-Schmidt算子,范數(shù)記為‖·‖2.Q為對(duì)稱非負(fù)算子,Q∈L2(K,H),并且Q的跡有限.W(t)(t∈R)為定義在(Ω,F(xiàn),{Ft}t≥0,P)上的取值在K上的Q-Wiener過(guò)程[23].
L2(P,H)為強(qiáng)可測(cè)的,均方可積的H值隨機(jī)變量的全體,顯然,在范數(shù)‖X‖L2(P,H)=(E‖X‖2)1/2下為Banach空間,其中E為期望.
其中,A為Hilbert空間H上的一致指數(shù)穩(wěn)定解析半群最小生成元,r≥0,f,g:R×H→H和σ:R×H→為連續(xù)函數(shù).
設(shè)A:D(A) H→H為定義在Hilbert空間H上的線性算子(T(t))t≥0的解析半群最小生成元,M和δ為正常數(shù),滿足‖T(t)‖≤Me-δt對(duì)任意t≥0.假設(shè)0∈ρ(A),那么,可以定義分?jǐn)?shù)冪算子Aα對(duì)0<α<1.它是一閉線性算子,并且定義域D(Aα)在H中稠密.Hα記為Banach空間D(Aα),其范數(shù)為
引理1.1[24]下列2個(gè)屬性成立:
(i)如果0<β<α≤1,那么Hα→Hβ并且當(dāng)A的預(yù)解式為緊時(shí),該嵌入是緊的; (ii)對(duì)0<α≤1,存在Cα以致
為了獲得主要結(jié)果,介紹一些定義和引理.
設(shè)(B,‖·‖)為一Banach空間.
定義1.1 一連續(xù)隨機(jī)過(guò)程X:R→L2(P;B)稱為均值概周期的,如果對(duì)每一個(gè)ε>0,存在l(ε)>0以致任何區(qū)間長(zhǎng)度l(ε)最少存在一數(shù)τ滿足
下列為一些均值概周期過(guò)程的屬性.
引理1.2[21]如果X屬于AP(R;L2(P;B)),那么:
(i)映射t→E‖X(t)‖2一致連續(xù);
(ii)存在常數(shù)N>0滿足E‖X(t)‖2≤N,對(duì)t∈R.
引理1.3 如果X(·)∈AP(R;L2(P;B)),那么X(·-r)∈AP(R;L2(P;B)),其中r≥0為固定常數(shù).
證明和文獻(xiàn)[25]中的相似,故省略.
設(shè)CUB(R;L2(P;B))為連續(xù)有界隨機(jī)過(guò)程X: R→L2(P;B)的集合,那么,容易證明在下列范數(shù)下
CUB(R;L2(P;B))為Banach空間.
引理1.4[21]AP(R;L2(P;B)) CUB(R; L2(P;B))為閉子空間.
由上可知,AP(R;L2(P;B))在范數(shù)‖·‖∞下是Banach空間.
設(shè)(B1,‖·‖B1)和(B2,‖·‖B2)為Banach空間.
定義1.2 稱連續(xù)函數(shù)F:R×B1→B2,(t,Y)→F(t,Y)關(guān)于t∈R是均值概周期的,對(duì)Y∈K是一致的,其中K B1是緊的,如果對(duì)任何ε>0,存在l(ε,K)>0以致對(duì)任何區(qū)間長(zhǎng)度l(ε,K)最少存在一數(shù)τ,對(duì)任何隨機(jī)過(guò)程Y:R→K滿足
引理1.5[21]設(shè)F:R×B1→B2,(t,Y)→F(t,Y)關(guān)于t∈R是均值概周期的,對(duì)Y∈K是一致的,其中K B1是緊的.假設(shè)F是以下列方式Lipschitz的
對(duì)所有Y,Z∈B1,t∈R成立,其中M>0,那么對(duì)所有均值概周期過(guò)程Φ:R→L2(P;B1),隨機(jī)過(guò)程t→F(t,Φ(t))是均值概周期的.
(1)式的溫和解的定義如下[26]:
定義1.3 隨機(jī)過(guò)程x(t):[δ,δ+a)→L2(P; H),a>0,稱為(1)式在[δ,δ+a)上的溫和解,如果s→AT(t-s)f(s,x(s-r))在[δ,t)可積,δ<t<δ+ a,并且滿足
為了獲得所需結(jié)果,假設(shè):
(H1)函數(shù)g(t,x):R×H→H關(guān)于t∈R對(duì)x∈Ω(Ω H是緊的)是一致均值概周期的.存在α∈(0,1)以致(-A)αf(t,x):R×H→Hα關(guān)于t∈R對(duì)x∈Ω(Ω H是緊的)是一致均值概周期的.進(jìn)一步,(-A)αf,g是以下列方式 Lipschitz的:存在 Lf和Lg滿足
對(duì)所有x,y∈H和t∈R成立.
(H2)函數(shù) σ(t,x):R×H→L02關(guān)于 t∈R對(duì)x∈Ω(Ω H是緊的)是一致均值概周期的.進(jìn)一步,σ是以下列方式Lipschitz的:存在Lσ滿足
對(duì)所有x,y∈H和t∈R成立.
定理2.1 假設(shè)(H1)和(H2)成立,并且
那么(1)式在R上存在唯一均值概周期解.
證明 設(shè)Γ:AP(R;L2(P;H))→C(R;L2(P; H))的定義為
顯然,Γx(·)是連續(xù)的.
定義
由引理1.3、引理1.5和(H1)可知,當(dāng)x為均值概周期函數(shù)時(shí),(-A)αf(t,x(t-r))為均值概周期函數(shù)時(shí).由引理1.2,可知(-A)αf(t,x(t-r))有界.由引理1.1和Cauchy-Schwarz不等式可得
由s→AT(t-s)f(s,x(s-r))是可積的在(-∞,t)對(duì)任何t∈R,故Γ定義是合適的.
由引理1.3、引理1.5和(H1)可知,當(dāng)x為均值概周期函數(shù)時(shí),(-A)αf(t,x(t-r))為均值概周期函數(shù)時(shí).因此,對(duì)每一個(gè)ε>0存在l(ε)>0以致對(duì)任意區(qū)間長(zhǎng)度l(ε)最少存在一個(gè)數(shù)τ滿足
對(duì)任何t∈R成立.
同時(shí)有
由上可知
對(duì)每個(gè)t∈R成立,即I1x(t)均值概周期函數(shù).
下一步,證明當(dāng)x是均值概周期函數(shù)I3x(t)和I4x(t)是均值概周期函數(shù).該證明和文獻(xiàn)[21]中的定理3.2相似,故省略.
下一步證明I2x(t)是均值概周期函數(shù).由引理1.3、引理1.5和(H1)可得,當(dāng)x是均值概周期函數(shù),(-A)αf(t,x(t-r))是均值概周期函數(shù).因此,對(duì)每一個(gè)ε>0存在l(ε)>0以致對(duì)任意區(qū)間長(zhǎng)度l(ε)最少存在一個(gè)數(shù)τ滿足
對(duì)任何t∈R成立.
由引理1.1可得
因此,應(yīng)用Cauchy-Schwarz不等式可得
由上可知
對(duì)每個(gè)t∈R成立,即I2x(t)是均值概周期函數(shù).
由上可知,Γ是AP(R;L2(P;H))對(duì)自身的映射.下面證明Γ是壓縮映射.
顯然
由于
可得
首先,估計(jì)上式右邊第一項(xiàng)
現(xiàn)在估計(jì)第二項(xiàng),由引理1.1、(H1)和Cauchy-Schwarz不等式可得
現(xiàn)在估計(jì)第三項(xiàng)得
現(xiàn)在估計(jì)最后一項(xiàng),應(yīng)用建立在文獻(xiàn)[27]中命題1.9的It 積分估計(jì)得
因此
這說(shuō)明Γ(·)是壓縮的.故Γ(·)存在不動(dòng)點(diǎn)x∈AP(R;L2(P;H)),即
對(duì)所有t∈R成立.固定δ∈R可得
那么
然而,對(duì)t≥δ,
因此,x(t)是(1)式的溫和解.證明完畢.
致謝 中國(guó)民航飛行學(xué)院面上項(xiàng)目(J2013-39)對(duì)本文給予了資助,謹(jǐn)致謝意.
[1]HERN NDEZ E,PELICER M.Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations[J].Appl Math Lett,2005,18:1265-1272.
[2]HENR QUEZ H,V SQEZ C.Almost periodic solutions of abstract retarded functional-differential equations with unbounded delay[J].Acta Appl Math,1999,57(2):105-132.
[3]LIU B,TUNC C.Pseudo almost periodic solutions for a class of nonlinear Duffing system with a deviating argument[J].J Appl Math Comput,2015,49:233-242.
[4]ZHANG L,LI H.Weighted pseudo almost periodic solutions for differential equations with piecewise constant arguments[J].Bull Aust Math Soc,2015,92:238-250.
[5]AKDAD A,EZZINBI K,SOUDEN L.Pseudo almost periodic and automorphic mild solutions to nonautonomous neutral partial evolution equations[J].Nonauton Dyn Syst,2015,2:12-30.
[6]SADRATI A,ZERTITI A.Existence and uniqueness of positive almost periodic solutions for systems of nonlinear delay integral equations[J].Electron J Diff Eqns,2015,116:12.
[7]CAO J,HUANG Z.Existence and exponential stability of weighted pseudo almost periodic classical solutions of integro-differential equations with analytic semigroups[J].Differ Eqns Dyn Syst,2015,23:241-256.
[8]WANG W T.Positive pseudo almost periodic solutions for a class of differential iterative equations with biological background[J].Appl Math Lett,2015,46:106-110.
[9]HENRIQUEZ H,CUEVAS C,CAICEDO A.Almost periodic solutions of partial differential equations with delay[J].Adv Difference Eqns,2015,2015:46-61.
[10]WANG Q,LIU Z,LI Z,et al.Existence and global asymptotic stability of positive almost periodic solutions of a two-species competitive system[J].Int J Biomath,2014,7:1450040.
[11]ZHUANG R,YUAN R.Weighted pseudo almost periodic solutions of N-th order neutral differential equations with piecewise constant arguments[J].Acta Math Sin(Engl Ser),2014,30:1259-1272.
[12]MAQBUL M,BAHUGUANA D.Almost periodic solutions for Stepanov-almost periodic differential equations[J].Differ Eqns Dyn Syst,2014,22:251-264.
[13]EZZINBI K,ZABSORE I.Pseudo almost periodic solutions of infinite class for some functional differential equations[J].Appl Anal,2013,92:627-1642.
[14]WANG L,SHI Y.Almost periodic solutions of abstract differential equation with impulse and time delay in Banach space[J].Int J Appl Math Stat,2013,43:379-386.
[15]VRABEL I.Almost periodic solutions for nonlinear delay evolutions with nonlocal initial conditions[J].J Evol Eqns,2013,13: 693-714.
[16]DING H,LONG W,N’GU R KATA G.Existence of pseudo almost periodic solutions for a class of partial functional differential equations[J].Electron J Diff Eqns,2013,104:14.
[17]XU Y.Existence and uniqueness of almost periodic solutions for a class of nonlinear Duffing system with time-varying delays[J].Electron J Qual Theory Differ Eqns,2012,80:9.
[18]鮑杰,舒級(jí).高階廣義2D Ginzburg-Landau方程的隨機(jī)吸引子[J].四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,37(3):298-306.
[19]付穎,李揚(yáng)榮.無(wú)界域上帶有可加白噪音的Ginzburg-Landau方程的隨機(jī)吸引子[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,37(12):37-42.
[20]杜先云,陳偉.具有可加噪聲的耗散KdV型方程的隨機(jī)吸引子[J].四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,35(5):651-655.
[21]BEZANDRY P,DIAGANA T.Existence of almost periodic solutions to some stochastic differential equations[J].Appl Anal,2007,117:1-10.
[22]BEZANDRY P.Existence of almost periodic solutions to some functional integro-differential stochastic evolution equations[J].Stat Probabil Lett,2008,78:2844-2849.
[23]PRATO G,ZABCZYK J.Stochastic Equations in Infinite Dimensions[M].Cambridge:Cambridge Univ Press,1992.
[24]PAZY A.Applied Methematical Sciences[M].New York:Springer-Verlag,1983.
[25]DING H,LIANG J,N’GU R KATA G.Pseudo almost periodicity of some nonautonomous evolution equations with delay[J].Nonlinear Anal:TMA,2007,67:1412-1418.
[26]LIU K.Stability of Infinite Dimensional Stochastic Differential Equations with Applications[M].London:Chapman and Hall,2004.
[27]ICHIKAWA A.Stability of semilinear stochastic evolution equations[J].J Math Anal Appl,1982,90(1):12-44.
Existence and Uniqueness of Almost Periodic Solutions to Some Neutral Stochastic Differential Equations
PU Xiaoqin
(School of Computer Science,Civil Aviation Flight University of China,Ganghan 618307,Sichuan)
P.Bezandry and T.Diagana introduced a new concept of square-mean almost periodicity.They established the existence and uniqueness of square-mean almost periodic mild solutions to some stochastic differential equations and some functional integrodifferential stochastic evolution equations.Sufficient conditions for the existence and uniqueness of a square-mean almost periodic mild solution of a class of abstract neutral stochastic differential equations in a real separable Hilbert space are derived with the help of the Banach fixed point theorem and the fractional power of operators.
neutral stochastic differential equations;square-mean almost periodic;fractional power of operators;fixed point
O175.13
A
1001-8395(2016)05-0659-06
10.3969/j.issn.1001-8395.2016.05.008
(編輯 李德華)
2014-09-01
國(guó)家自然科學(xué)基金(11326118)
蒲曉琴(1986—),女,助教,主要從事微分方程定性的研究,E-mail:power1356@163.com
2010 MSC:35B15