蔡 雨 , 劉靜雅 , 秦俊蓮 , 孫樹剛 , 段舜山 , 徐 寧
暨南大學(xué)生態(tài)學(xué)系,水生生物研究所,廣州 510632
?
環(huán)境因子對(duì)東海原甲藻生長(zhǎng)及脲酶活性的影響
蔡雨 , 劉靜雅 , 秦俊蓮 , 孫樹剛 , 段舜山 , 徐寧*
暨南大學(xué)生態(tài)學(xué)系,水生生物研究所,廣州510632
摘要:以我國(guó)東南沿海大規(guī)模赤潮原因種東海原甲藻為實(shí)驗(yàn)材料,研究了環(huán)境因子對(duì)其生長(zhǎng)及脲酶活性的調(diào)控作用。結(jié)果表明,東海原甲藻的適宜生長(zhǎng)溫度為20—25 ℃,而25 ℃下脲酶活性最高。在光強(qiáng)2 μmol m-2s-1條件下細(xì)胞密度顯著下降(P<0.05),但仍能維持較高的脲酶活性(9.405 fmol h-1個(gè)-1)。在鹽度20—40范圍內(nèi),東海原甲藻能夠維持快速生長(zhǎng)和較高的脲酶活性。氮源組成對(duì)東海原甲藻生長(zhǎng)無(wú)顯著影響,但對(duì)脲酶活性影響較大。具體而言,東海原甲藻脲酶活性與尿素濃度呈顯著正相關(guān)關(guān)系,而無(wú)機(jī)氮源和對(duì)其脲酶活性具有顯著的抑制作用,在氮缺乏條件下脲酶活性明顯增強(qiáng)。東海原甲藻脲酶活性對(duì)環(huán)境溫度、光照、鹽度和營(yíng)養(yǎng)的響應(yīng)特征可能是在長(zhǎng)期進(jìn)化中形成的生態(tài)適應(yīng)策略,使其在無(wú)機(jī)氮源不足時(shí)得以轉(zhuǎn)而利用有機(jī)氮源,從而在資源競(jìng)爭(zhēng)中占據(jù)有利地位。
關(guān)鍵詞:東海原甲藻;脲酶活性;生長(zhǎng);尿素;環(huán)境因子
東海原甲藻(Prorocentrumdonghaiense)是近年來(lái)中國(guó)東海大規(guī)模赤潮的主要種類。據(jù)統(tǒng)計(jì),2002—2008年間福建沿岸海域共發(fā)生東海原甲藻赤潮25起,其中2004年5月初發(fā)生的赤潮面積達(dá)10000 km2[1- 2]。東海原甲藻赤潮不僅造成巨大的經(jīng)濟(jì)損失,同時(shí)也帶來(lái)嚴(yán)重的生態(tài)、資源和環(huán)境問(wèn)題[1,3]。研究顯示,東海原甲藻對(duì)低光照、較低溫度(10—20 ℃)、變化鹽度的適應(yīng)能力及其獨(dú)特的營(yíng)養(yǎng)競(jìng)爭(zhēng)策略可能是其形成赤潮的重要原因[3- 7]。
1材料與方法
1.1實(shí)驗(yàn)材料與培養(yǎng)條件
東海原甲藻(JX-1)采自我國(guó)東海赤潮高發(fā)海區(qū),經(jīng)毛細(xì)管分離培養(yǎng)成單細(xì)胞株系,保存于暨南大學(xué)水生生物研究中心藻種庫(kù)。
試驗(yàn)藻種于室內(nèi)光照培養(yǎng)箱(廣東省醫(yī)療器械廠,LRH-400-G)中培養(yǎng),除特殊說(shuō)明外,溫度(23±1)℃,輻照強(qiáng)度約100 μmol m-2s-1,光暗比12 h∶12 h。選用 f/2培養(yǎng)基,基礎(chǔ)介質(zhì)為人工海水(鹽度psu為30.5)[15]。
1.2實(shí)驗(yàn)設(shè)計(jì)1.2.1光照、溫度和鹽度實(shí)驗(yàn)
預(yù)培養(yǎng)將指數(shù)生長(zhǎng)期的東海原甲藻細(xì)胞接種至無(wú)氮、磷的f/2培養(yǎng)基,另添加CO(NH2)2500 μgN/L,NaH2PO4100 μgP/L,培養(yǎng)3輪以上。
實(shí)驗(yàn)方法將東海原甲藻轉(zhuǎn)接至含600 mL培養(yǎng)基(同上)的三角瓶中,分別設(shè)置不同的光照(2、30、100 μmol m-2s-1)、溫度(15、20、25 ℃)或鹽度psu(20、25、30、35、40)條件,置于室內(nèi)光照培養(yǎng)箱中培養(yǎng),每組3個(gè)平行。每隔24 h取5 mL藻液觀察并測(cè)定其吸光值OD680。每隔48 h取10 mL藻液觀察、計(jì)數(shù),并測(cè)定脲酶活性[16]。取指數(shù)增長(zhǎng)期后期(第6天)的藻液收集部分藻粉,測(cè)定其細(xì)胞碳氮比(CHNS/O 2400, Perkin Elmor)。脲酶活性測(cè)定方法:尿酶活性方法測(cè)定參照徐寧等[16],并以單個(gè)細(xì)胞單位時(shí)間內(nèi)所產(chǎn)生氨的量來(lái)表示脲酶活性。
1.2.2氮源組成實(shí)驗(yàn)
預(yù)培養(yǎng)設(shè)置如下6種氮源組成:NaNO3(a組),CO(NH2)2(b組),NH4Cl(c組),NaNO3和CO(NH2)2各占1/2(d組),NH4Cl和CO(NH2)2各占1/2(e組),NaNO3、NH4Cl、CO(NH2)2各占1/3(f組)。設(shè)置氮濃度為500 μgN/L,磷濃度為100 μgP/L。將處于指數(shù)生長(zhǎng)期的東海原甲藻分別接種至上述培養(yǎng)基中進(jìn)行3輪預(yù)培養(yǎng)。
實(shí)驗(yàn)方法經(jīng)預(yù)培養(yǎng)的東海原甲藻等量接種于裝有600 mL f/2培養(yǎng)基(氮磷如上添加)的三角瓶中,每組3個(gè)平行。將三角瓶置于室內(nèi)光照培養(yǎng)箱中培養(yǎng)。每隔24 h取5 mL藻液觀察并測(cè)定其吸光值OD680。每隔24 h取10 mL(3份)的藻液觀察、計(jì)數(shù),并測(cè)定脲酶活性。
1.2.3氮源轉(zhuǎn)換實(shí)驗(yàn)
預(yù)培養(yǎng)調(diào)整f/2培養(yǎng)基氮源為NaNO3(A組)或NH4Cl(B組),氮濃度為500 μg N/L,同時(shí)調(diào)整磷濃度為100 μg P/L,將處于指數(shù)生長(zhǎng)期的東海原甲藻分別接種至上述培養(yǎng)基中預(yù)培養(yǎng)三輪。
實(shí)驗(yàn)方法將經(jīng)過(guò)預(yù)培養(yǎng)的東海原甲藻離心清洗后,等量接種于裝有1500 mL培養(yǎng)基(培養(yǎng)基成分同預(yù)培養(yǎng))的三角瓶中,每組3個(gè)重復(fù)。將三角瓶置于室內(nèi)光照培養(yǎng)箱中培養(yǎng),至培養(yǎng)基中無(wú)氮時(shí),加入500 μg N/L的 CO(NH2)2和100 μg P/L的 NaH2PO4,繼續(xù)以相同條件培養(yǎng)。每隔24 h取5 mL藻液觀察并測(cè)定其吸光值OD680。每隔24 h取10 mL(3份)的藻液觀察、計(jì)數(shù),并分別測(cè)定脲酶活性。
1.3統(tǒng)計(jì)分析
使用 SPSS 17.0 軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,Origin 7.5繪圖。
2結(jié)果與分析
2.1鹽度、溫度和光照強(qiáng)度對(duì)東海原甲藻生長(zhǎng)及脲酶活性的影響
實(shí)驗(yàn)結(jié)果顯示,東海原甲藻在20—40鹽度范圍和15—25 ℃水溫范圍內(nèi)均能夠快速生長(zhǎng)(圖1)。鹽度為25和30條件下的細(xì)胞密度顯著高于其它3組(P<0.05)。20 ℃和25 ℃實(shí)驗(yàn)組的最大細(xì)胞密度和最大比生長(zhǎng)速率都顯著大于15 ℃實(shí)驗(yàn)組(P<0.05)。在2 μmol m-2s-1光照強(qiáng)度下,東海原甲藻細(xì)胞密度基本不變,在30 μmol m-2s-1和100 μmol m-2s-1光照條件下,東海原甲藻的生長(zhǎng)顯著高于2 μmol m-2s-1(P<0.05)(圖1)。
圖1 鹽度、溫度和光照強(qiáng)度對(duì)東海原甲藻生長(zhǎng)的影響Fig.1 Effects of salinity, temperature and light intensity on the growth of Prorocentrum donghaiense
所有實(shí)驗(yàn)組均能檢測(cè)到脲酶活性,且變化趨勢(shì)相似:接種后第3天活性最高,然后隨著處理時(shí)間的延長(zhǎng)而下降(圖2)。從圖2可以看出,水溫對(duì)東海原甲藻脲酶活性影響最大。25 ℃組具有最高脲酶活性(12.81 fmol h-1個(gè)-1,),其次是20 ℃組(11.02 fmol h-1個(gè)-1),而15 ℃組最高脲酶活性僅為7.055 fmol h-1個(gè)-1,約為25 ℃實(shí)驗(yàn)組的50%,顯著低于其他兩組(P<0.05)。光照是除溫度外影響東海原甲藻脲酶活性的重要因素。光照在大于30 μmol m-2s-1時(shí)對(duì)脲酶活性無(wú)顯著影響(P>0.05)。但當(dāng)光照強(qiáng)度為2 μmol m-2s-1,其脲酶活性9.405 fmol h-1個(gè)-1,顯著低于其它兩組(P<0.05)(圖2)。鹽度對(duì)藻細(xì)胞脲酶活性的影響較小。鹽度為25—35實(shí)驗(yàn)組最大脲酶活性均高于11 fmol h-1個(gè)-1,顯著高于鹽度20和40的實(shí)驗(yàn)組(P<0.05)(圖2)。東海原甲藻細(xì)胞碳氮比(C/N)實(shí)驗(yàn)結(jié)果顯示: 15 ℃實(shí)驗(yàn)組C/N比值為11.06,遠(yuǎn)小于20和25 ℃實(shí)驗(yàn)組(P<0.05)。而 2 μmol m-2s-1光照組C/N值為8.15,顯著小于30 μmol m-2s-1和100 μmol m-2s-1光照組其他兩組(P<0.05)(表1)。不同鹽度實(shí)驗(yàn)組C/N比值差異不顯著。
圖2 鹽度、溫度和光照強(qiáng)度對(duì)東海原甲藻脲酶活性的影響Fig.2 Effects of salinity, temperature and light intensity on urease activity of P. donghaiens
處理組Treatment碳平均含量Carboncontent/%氮平均含量Nitrogencontent/%碳氮質(zhì)量比RatioofC/N碳氮比標(biāo)準(zhǔn)偏差StandarddeviationofC/N鹽度Salinity 2024.021.1321.260.876 2531.011.4820.950.743 3029.941.3622.010.699 3532.471.4222.870.823 4028.861.1724.670.847溫度Temperatrue/℃ 1537.163.3611.06*0.7 2047.641.8525.750.85 2547.461.9823.970.79光照Lightintensity/(μmolm-2s-1) 25.540.688.15*0.47 3027.551.3320.710.49 10044.972.1421.010.56
*表示P<0.05,與其他組別相比,有顯著差異
2.2氮源的組成對(duì)東海原甲藻生長(zhǎng)及脲酶活性的影響
如圖 4所示,各實(shí)驗(yàn)組均可檢測(cè)出脲酶活性。b組(尿素)第1天的脲酶活性顯著高于其它組(P<0.05),第3天(指數(shù)生長(zhǎng)初期)的脲酶活性達(dá)到最大值,為11.27 fmol h-1個(gè)-1,而后下降并趨于平穩(wěn),與接種時(shí)相近。含1/2—1/3 尿素氮的d、e、f組第3天(指數(shù)生長(zhǎng)初期)脲酶活性略下降而后升高,到第7天(指數(shù)生長(zhǎng)末期)達(dá)最大值,分別為9.48、8.82、8.25 fmol h-1個(gè)-1,且d組(1/2尿素氮)顯著大于f組(1/3尿素氮)(P<0.05)。培養(yǎng)基中不含尿素的a、c組脲酶活性在實(shí)驗(yàn)期間保持不變,且顯著小于其他4組(P<0.05),但a組(硝氮組)的脲酶活性略大于c組(銨氮組)。實(shí)驗(yàn)結(jié)果表明,氮源組成是影響東海原甲藻細(xì)胞脲酶活性的重要因素。最大脲酶活性與尿素濃度呈顯著正相關(guān)(R=0.977)。
圖3 氮源組成對(duì)東海原甲藻生長(zhǎng)的影響 Fig.3 Effects of nitrogen sources on the growth of P. donghaiensea:500 μg NaNO3-N/L;b:500 μg CO(NH2)2-N/L;c:500 μg NH4Cl-N/L;d:250 μg NaNO3-N/L,250 μg CO(NH2)2-N/L;e:250 μgNH4Cl-N/L,250 μg CO(NH2)2-N/L;f:167 μg NaNO3-N/L,167 μg NH4Cl-N/L,167 μgCO(NH2)2-N/L
圖4 氮源組成對(duì)東海原甲藻脲酶活性的影響 Fig.4 Effects of nitrogen sources on urease activity of P. donghaiensea:500 μg NaNO3-N/L;b:500 μg CO(NH2)2-N/L;c:500 μg NH4Cl-N/L;d:250 μg NaNO3-N/L,250 μg CO(NH2)2-N/L;e:250 μgNH4Cl-N/L,250 μg CO(NH2)2-N/L;f:167 μg NaNO3-N/L,167 μg NH4Cl-N/L,167 μgCO(NH2)2-N/L
2.3氮源轉(zhuǎn)換對(duì)東海原甲藻生長(zhǎng)及脲酶活性的影響
實(shí)驗(yàn)結(jié)果顯示,東海原甲藻在以硝氮(A組)和銨氮(B組)為唯一氮源時(shí)均能快速生長(zhǎng),且銨氮組細(xì)胞密度顯著高于硝氮組(P<0.05)。在培養(yǎng)基中補(bǔ)充尿素后,硝氮組比銨氮組(停滯1d)早1d重新進(jìn)入指數(shù)生長(zhǎng)期,且前期細(xì)胞密度顯著高于銨氮組(P<0.05),但后期兩組細(xì)胞密度相近(P>0.05)(圖5)。
A、B兩組均可檢測(cè)出東海原甲藻脲酶活性。在加入尿素前(第8天前),A、B兩組脲酶活性都趨于穩(wěn)定,但A組顯著高于B組(P<0.05)。加入尿素后(第8天后),兩組脲酶活性均迅速升高。A、B組分別在第10和11天達(dá)到最大值,分別為10.47、9.82 fmol h-1個(gè)-1,且A組顯著高于B組(P<0.05),其后均開始下降(圖6)。
圖5 氮源轉(zhuǎn)換對(duì)東海原甲藻生長(zhǎng)的影響 Fig.5 Effects of nitrogen source conversion on the growth of P. donghaienseA:500 μg NaNO3-N/L;B:500 μg NH4Cl -N/L
圖6 氮源轉(zhuǎn)換對(duì)東海原甲藻脲酶活性的影響 Fig.6 Effects of nitrogen source conversion on urease activity of P. donghaienseA:500 μg NaNO3-N/L;B:500 μg NH4Cl-N/L
3討論
3.1溫度、光照和鹽度對(duì)東海原甲藻脲酶活性的影響
實(shí)驗(yàn)室研究結(jié)果表明,在20—27 ℃溫度范圍內(nèi)東海原甲藻的生長(zhǎng)速率大于0.60 d-1[4]。野外調(diào)查發(fā)現(xiàn),東海原甲藻赤潮期間水溫為18.5—21.3 ℃[17- 18],類似地,本研究結(jié)果顯示,20—25 ℃水溫條件下東海原甲藻細(xì)胞密度較高,15 ℃時(shí)細(xì)胞密度有所下降,與野外調(diào)查結(jié)果一致(圖 1B)。本研究采用以尿素為唯一氮源的低氮培養(yǎng)條件,在培養(yǎng)至第八天后東海原甲藻的生長(zhǎng)出現(xiàn)衰退現(xiàn)象(圖 1)。王宗靈等的研究也發(fā)現(xiàn),在N限制條件下,東海原甲藻的生長(zhǎng)在第5天就出現(xiàn)衰退現(xiàn)象[19]。由此可見東海原甲藻的生長(zhǎng)受到環(huán)境條件尤其是營(yíng)養(yǎng)狀況的調(diào)控。
本研究結(jié)果顯示,25 ℃實(shí)驗(yàn)組的最大脲酶活性顯著高于20 ℃和15 ℃組(圖2B)。前期研究發(fā)現(xiàn),東海原甲藻的脲酶活性在15—70 ℃之間隨著溫度的升高而增強(qiáng),當(dāng)溫度達(dá)到80 ℃以后,脲酶活性急劇降低[16]??赡艿脑蚴请迕甘且粋€(gè)熱穩(wěn)定性的酶[20]。野外調(diào)查也表明,脲酶活性最高出現(xiàn)在夏季,比春秋季高出5倍[21- 22]。并且,在河口尿素的最高吸收率也出現(xiàn)在夏季,最低吸收率出現(xiàn)在冬季[22]。這些報(bào)道與本實(shí)驗(yàn)結(jié)果一致。東海原甲藻脲酶活性與溫度的正相關(guān)關(guān)系可能是在長(zhǎng)期進(jìn)化中形成的適應(yīng)特征。水溫較低時(shí),浮游植物生長(zhǎng)緩慢,水體營(yíng)養(yǎng)鹽含量較高,東海原甲藻對(duì)尿素的吸收不是必要的。而水溫較高時(shí),浮游植物生長(zhǎng)迅速,對(duì)營(yíng)養(yǎng)鹽的競(jìng)爭(zhēng)加劇,無(wú)機(jī)氮源已經(jīng)無(wú)法滿足其生長(zhǎng)的需要。此時(shí),對(duì)尿素的吸收能夠有效補(bǔ)充氮源,成為東海原甲藻重要的競(jìng)爭(zhēng)策略。然而,有研究指出,在硅藻為優(yōu)勢(shì)種的水體中尿素的吸收率與溫度呈負(fù)相關(guān)[23]。另外,在Chesapeake灣和Neuse 河口的現(xiàn)場(chǎng)研究發(fā)現(xiàn), 10—25 ℃范圍內(nèi)微小原甲藻(Prorocentrumminimum)對(duì)尿素的吸收率保持不變[24]。因此,海洋微藻脲酶活性對(duì)溫度的響應(yīng)關(guān)系可能是因種而異的。
實(shí)驗(yàn)室研究發(fā)現(xiàn),東海原甲藻在30 μmol m-2s-1的光照強(qiáng)度下,種群生長(zhǎng)接近飽和[4],即光照需求顯著低于其他赤潮藻,因此在高混濁海水中具有形成赤潮的優(yōu)勢(shì)[25]。本研究也證實(shí),在30 μmol m-2s-1和100 μmol m-2s-1的光照強(qiáng)度下東海原甲藻生長(zhǎng)并無(wú)顯著差異,但在2 μmol m-2s-1的低光照條件下無(wú)法生長(zhǎng)(圖1)??赡艿脑蚴?,東海原甲藻對(duì)尿素的吸收需要消耗能量通過(guò)尿素轉(zhuǎn)移酶完成,而低光強(qiáng)不足以支持藻細(xì)胞對(duì)尿素的吸收[8,26- 27]。另一方面,低光照強(qiáng)度下東海原甲藻光合作用速率降低,脲酶將尿素轉(zhuǎn)化為氨,使氨在藻體內(nèi)被大量積累,進(jìn)而抑制藻脲酶活性[8]。有趣的是,即使在低光照(2 μmol m-2s-1)條件下,東海原甲藻細(xì)胞脲酶活性仍維持在較高水平(9.405 fmol h-1個(gè)-1)表明藻細(xì)胞在不利于生長(zhǎng)的條件下能夠持續(xù)吸收、積累尿素(圖2)。此時(shí)藻細(xì)胞的碳氮質(zhì)量比為8.15,顯著高于其它處理組(表 1),表明低光照對(duì)光合作用的影響大于對(duì)氮吸收的影響。東海原甲藻在低光照條件下對(duì)尿素的吸收能力對(duì)于維持種群的生存具有重要生態(tài)意義。
東海原甲藻鹽度適應(yīng)范圍較廣,為20—40,適宜生長(zhǎng)的鹽度介于25—35之間[16]。藻細(xì)胞在高鹽度下生長(zhǎng)需要更多能量,脂肪含量也相應(yīng)增加,而當(dāng)鹽度適當(dāng)降至其原環(huán)境的鹽度2/3時(shí),對(duì)其生長(zhǎng)有明顯的促進(jìn)作用[28]。本研究表明,鹽度對(duì)東海原甲藻脲酶活性影響不大(圖2)。鹽度為25—35條件下東海原甲藻脲酶活性較高,鹽度20和40的實(shí)驗(yàn)組脲酶活性有所降低(圖2)。沿海水體的鹽度范圍一般介于25—35之間,有利于東海原甲藻對(duì)尿素的吸收和利用。
3.2氮源對(duì)東海原甲藻脲酶活性的影響
最近二、三十年以來(lái),全球尿素的使用量迅速增加,大量尿素進(jìn)入近岸水體,成為溶解有機(jī)氮庫(kù)的重要組成成分。越來(lái)越多的證據(jù)顯示,這些來(lái)源于人類活動(dòng)的有機(jī)氮可能改變浮游植物群落結(jié)構(gòu),甚至誘發(fā)甲藻赤潮的發(fā)生[4,33]。本研究證實(shí),在無(wú)機(jī)氮源缺乏的環(huán)境條件下,東海原甲藻脲酶活性顯著增強(qiáng),而且與水體尿素濃度呈正相關(guān)關(guān)系。有理由相信,東海原甲藻對(duì)尿素的利用是一種重要的營(yíng)養(yǎng)競(jìng)爭(zhēng)策略,使其在無(wú)機(jī)氮源不足時(shí)得以轉(zhuǎn)而利用有機(jī)氮源,從而有效拓展?fàn)I養(yǎng)生態(tài)位,在資源競(jìng)爭(zhēng)中占據(jù)有利地位。
參考文獻(xiàn)(References):
[1]李榮茂. 福建省沿岸赤潮生物——東海原甲藻生態(tài)探討. 海洋環(huán)境科學(xué), 2009, 28(Z1): 65- 69.
[2]朱德弟, 陸斗定, 王云峰, 蘇紀(jì)蘭. 2005年春初浙江近海的低溫特征及其對(duì)大規(guī)模東海原甲藻赤潮發(fā)生的影響. 海洋學(xué)報(bào), 2009, 31(6): 31- 39.
[3]徐寧, 王萌, 孫凱峰, 胡章喜, 段舜山. 有機(jī)氮對(duì)大亞灣亞歷山大藻種群生長(zhǎng)的促進(jìn)作用. 中國(guó)環(huán)境科學(xué), 2012, 32(3): 504- 509.
[4]Hu Z, Duan S S, Xu N, Mulholland M R. Growth and nitrogen uptake kinetics in cultruedProrocentrumdonghaiense. PLoS One, 2014, 9(4): e94030.
[5]Hu Z X, Mulholland M R, Duan S S, Xu N. Effects of nitrogen supply and its composition on the growth ofProrocentrumdonghaiense. Harmful Algae, 2012, 13: 72- 82.
[6]李瑞香, 朱明遠(yuǎn), 王宗靈, 石曉勇, 陳炳章. 東海兩種赤潮生物種間競(jìng)爭(zhēng)的圍隔實(shí)驗(yàn). 應(yīng)用生態(tài)學(xué)報(bào), 2003, 14(7): 1049- 1054.
[7]陳炳章, 王宗靈, 朱明遠(yuǎn), 李瑞香. 溫度、鹽度對(duì)具齒原甲藻生長(zhǎng)的影響及其與中肋骨條藻的比較. 海洋科學(xué)進(jìn)展, 2005, 23(1): 60- 64.
[8]Solomon C M, Collier J L, Berg G M, Glibert P M. Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquatic Microbial Ecology, 2010, 59(1): 67- 88.
[9]Collos Y, Gagne C, Laabir M, Vaquer A, Cecchi P, Souchu P. Nitrogenous nutrition ofAlexandriumcatenella(Dinophyceae) cultures and in Thau Lagoon, southern France. Journal of Phycology, 2004, 40(1): 96- 103.
[10]Kudela R M, Cochlan W P. Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California. Aquatic Microbial Ecology, 2000, 21(1): 31- 47.
[11]Glibert P M, Harrison J, Heil C, Seitzinger S. Escalating worldwide use of urea—a global change contributing to coastal eutrophication. Biogeochemistry, 2006, 77(3): 441- 463.
[12]徐寧, 段舜山, 李愛芬, 劉振乾. 沿岸海域富營(yíng)養(yǎng)化與赤潮發(fā)生的關(guān)系. 生態(tài)學(xué)報(bào), 2005, 25(7): 1782- 1787.
[13]Collos Y, Vaquer A, Laabir M, Abadie E, Laugier T, Pastoureaud A, Souchu P. Contribution of several nitrogen sources to growth ofAlexandriumcatenelladuring blooms in Thau lagoon, Southern France. Harmful Algae, 2007, 6(6): 781- 789.
[14]Dyhrman S T, Anderson D M. Urease activity in cultures and field populations of the toxic dinoflagellateAlexandrium. Limnology and Oceanography, 2003, 48(2): 647- 655.
[15]Harrison P J, Waters R E, Taylor F J R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. Journal of Phycology, 1980, 16(1): 28- 35.
[16]徐寧, 孫樹剛, 段舜山, 李愛芬, 張成武. 海洋微藻脲酶活性測(cè)定方法的實(shí)驗(yàn)研究. 中國(guó)環(huán)境科學(xué) 2010, 30(5): 689- 693.
[17]Li Y, Lü S H, Jiang T J, Xiao Y P, You S P. Environmental factors and seasonal dynamics ofProrocentrumpopulations in Nanji Islands National Nature Reserve, East China Sea. Harmful Algae, 2011, 10(5): 426- 432.
[18]陳翰林, 呂頌輝, 張傳松, 朱德弟. 2004年?yáng)|海原甲藻赤潮爆發(fā)的現(xiàn)場(chǎng)調(diào)查和分析. 生態(tài)科學(xué), 2006, 25(3): 226- 230.
[19]王宗靈, 李瑞香, 朱明遠(yuǎn), 陳炳章, 郝彥菊. 半連續(xù)培養(yǎng)下東海原甲藻和中肋骨條藻種群生長(zhǎng)過(guò)程與種間競(jìng)爭(zhēng)研究. 海洋科學(xué)進(jìn)展, 2006, 24(4): 495- 503.
[20]王金輝, 黃秀清. 具齒原甲藻的生態(tài)特征及赤潮成因淺析. 應(yīng)用生態(tài)學(xué)報(bào), 2003, 14(7): 1065- 1069.
[21]Siuda W, Chróst R J. Urea and ureolytic activity in lakes of different trophic status. Polish of Journal Microbiology, 2006, 55(3): 211- 225.
[22]Solomon C M. Regulation of Estuarine Phytoplankton and Bacterial Urea Uptake and Urease Activity by Environmental Factors[D〗. Maryland: University of Maryland, College Park, M D, 2006.
[23]Lomas M W, Glibert P M. Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool- water diatoms. Limnology and Oceanography, 1999, 44(3): 556- 572.
[24]Fan C L, Glibert P M, Burkholder J A M. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships forProrocentrumminimumin natural blooms and laboratory cultures. Harmful Algae, 2003, 2(4): 283- 299.
[25]孫百曄, 王修林, 李雁賓, 王長(zhǎng)友, 王愛軍, 梁生康, 張傳松. 光照在東海近海東海原甲藻赤潮發(fā)生中的作用. 環(huán)境科學(xué), 2008, 29(2): 362- 367.
[26]Beckers G, Bendt A K, Kr?mer R, Burkovski A. Molecular identification of the urea uptake system and transcriptional analysis of urea transporter and urease- encoding genes inCorynebacteriumglutamicum. Journal of Bacteriology, 2004, 186(22): 7645- 7652.
[27]Cimbleris A C P, Cáceres O. Kinetics of urea uptake byMelosiraitalica(Ehr.) Kütz at different luminosity conditions. Hydrobiologia, 1991, 220(3): 211- 216.
[28]Kuwada Y, Ohta Y. Effect of salinity on hydrogen production and growth of Lyngbya sp. Joural of the Faculty of Applied Biological Science, 1994, 30(1): 13- 18.
[29]鐘娜, 楊維東, 劉潔生, 張潔玲, 何洋. 不同氮源對(duì)利瑪原甲藻(Prorocentrumlima)生長(zhǎng)和產(chǎn)毒的影響. 環(huán)境科學(xué)學(xué)報(bào), 2008, 28(6): 1186- 1191.
[30]Solomon C M, Glibert P M. Urease activity in five phytoplankton species. Aquatic Microbial Ecology, 2008, 52(2): 149- 157.
[31]Peers G S, Milligan A J, Harrison P J. Assay optimization and regulation of urease activity in two marine diatoms. Journal of Phycology, 2000, 36(3): 523- 528.
[32]Lomas M W. Nitrate reductase and urease enzyme activity in the marine diatomThalassiosiraweissflogii(Bacillariophyceae): interactions among nitrogen substrates. Marine Biology, 2004, 144(1): 37- 44.
[33]黃凱旋, 張?jiān)? 歐林堅(jiān), 呂頌輝, 呂淑果, 齊雨藻. 春季海南島近岸海域尿素與浮游生物的脲酶活性. 生態(tài)學(xué)報(bào), 2013, 33(15): 4575- 4582.
Effects of environmental factors on the growth and urease activity of the harmful dinoflagellateProrocentrumdonghaiense
CAI Yu, LIU Jingya, QIN Junlian, SUN Shugang, DUAN Shunshan, XU Ning*
DepartmentofEcology,InstituteofHydrobiology,JinanUniversity,Guangzhou510632,China
Abstract:In the last few decades, the geographic distribution and frequency of harmful algal blooms (HABs) have been increasing worldwide, and have resulted in severe economic losses and ecological disaster. There has been a scientific consensus that there is a positive relationship between occurrences of HABs and increased eutrophication due to human activities in coastal waters. Studies demonstrated that urea has seen wide use in agriculture as a major nitrogen fertilizer in recent years, and consequently, concentrations of urea in aquatic environments have increased dramatically, becoming an important component of dissolved organic nitrogen (DON) in coastal waters. Other studies demonstrated the presence of a positive correlation between the increased input of urea into coastal waters and HABs frequencies. However, the ecological role of urea in triggering HABs, and the mechanism by which it does so (in a species-specific and physiological context in particular), are still unclear. The armored dinoflagellate Prorocentrum donghaiense is a representative HABs-causing alga found in the southeastern coastal waters of China, and has caused serious damage to fisheries and aquaculture facilities, and threatened coastal aquatic ecosystems. This species has shown a wide range of tolerance to light, temperature, and salinity, and is capable of utilizing both inorganic and ) and organic (e.g. urea and amino acids) forms of nitrogen (N). Based on our prior study, in which we demonstrated that P. donghaiense exhibits a higher growth rate when grown in media containing urea as the sole N source, compared to those grown with as the N source, we investigated the effects of environmental factors (temperature, light intensity, and salinity) on the growth of P. donghaiense, and further explored the potential regulating effects of these factors and different forms of N on the activity of urease, a key enzyme involved in the metabolism of urea. The optimal temperatures for P. donghaiense growth were between 20 and 25°С, while the highest urease activity was observed at 25°С. Light was observed to significantly influence urease activity: high urease activity (9.405 fmol h-1cell-1) was observed even at lower irradiance levels (<2 μmol m-2s-1), where the cell density was the lowest. Compared to light and temperature, salinity had the smallest impact on growth and urease activity, i.e., both relatively high growth rates and urease activity were measured at salinities ranging from 20 to 40 psu. Regarding the different effects of different nitrogen resources, P. donghaiense was capable of using all forms of nitrogen provided: , , and urea, to meet its growth requirement. However, urease activity, was significantly inhibited by and , but enhanced by the presence of elevated concentrations of urea. More specifically, P. donghaiense exhibited the strongest urease activity three days after inoculation in the urea treatment group, while, in contrast, urease activity in media with or as the sole N source did not change significantly over time and was significantly lower than that observed in the urea-augmented medium. Moreover, we found that had a stronger inhibitory effect on the urease activity of P. donghaiense than . In the N source conversion experiments, urease activity in the substrate was still lower than that in substrate after the addition of equal amount of urea. In addition, urease activity was significantly elevated when ambient nitrogen was deficient. The response of P. donghaiense urease activity and growth rates to the temperature, light, salinity, and nutrient differences observed in this study may reflect an ecological adaptation of P. donghaiense, which allows it to make use of organic nitrogen when inorganic nitrogen sources are insufficient, providing P. donghaiense with a competitive advantage over co-occurring phytoplankton species when the availability of urea is higher than inorganic forms of nitrogen.
Key Words:Prorocentrum donghaiense; urease activity; growth; urea; environmental factors
DOI:10.5846/stxb201408251681
*通訊作者
Corresponding author.E-mail: txuning@163.com
收稿日期:2014- 08- 25; 網(wǎng)絡(luò)出版日期:2015- 07- 29
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(U1133003, 40776078)
蔡雨, 劉靜雅 , 秦俊蓮 , 孫樹剛 , 段舜山 , 徐寧.環(huán)境因子對(duì)東海原甲藻生長(zhǎng)及脲酶活性的影響.生態(tài)學(xué)報(bào),2016,36(6):1711- 1718.
Cai Y, Liu J Y, Qin J L, Sun S G, Duan S S, Xu N.Effects of environmental factors on the growth and urease activity of the harmful dinoflagellateProrocentrumdonghaiense.Acta Ecologica Sinica,2016,36(6):1711- 1718.