国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

荒漠灌木梭梭(Haloxylon ammodendron)周圍土壤微生物的空間分布

2016-05-23 05:55曹艷峰李晨華呂光輝
生態(tài)學(xué)報(bào) 2016年6期
關(guān)鍵詞:空間分布梭梭

曹艷峰,李 彥, 李晨華,呂光輝

1 中國(guó)科學(xué)院新疆生態(tài)與地理研究所,荒漠與綠洲生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 烏魯木齊 830011 2 新疆大學(xué)資源與環(huán)境學(xué)院, 烏魯木齊 830046 3 山西師范大學(xué)地理科學(xué)學(xué)院, 臨汾 041000 4 中國(guó)科學(xué)院大學(xué), 北京 100049

?

荒漠灌木梭梭(Haloxylon ammodendron)周圍土壤微生物的空間分布

曹艷峰1,2,3,4,李彥1,*, 李晨華1,呂光輝2

1 中國(guó)科學(xué)院新疆生態(tài)與地理研究所,荒漠與綠洲生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 烏魯木齊8300112 新疆大學(xué)資源與環(huán)境學(xué)院, 烏魯木齊8300463 山西師范大學(xué)地理科學(xué)學(xué)院, 臨汾0410004 中國(guó)科學(xué)院大學(xué), 北京100049

摘要:以古爾班通古特沙漠荒漠生態(tài)系統(tǒng)中主要優(yōu)勢(shì)種——梭梭(Haloxylon ammodendron)冠幅內(nèi)外的土壤為研究對(duì)象,通過分析從樹干基部向外水分和養(yǎng)分變化下土壤微生物生物量、多樣性和群落組成的變化規(guī)律,試圖揭示荒漠生態(tài)系統(tǒng)中土壤微生物空間分布的基本特征。微生物生物量和多樣性采用磷脂脂肪酸進(jìn)行測(cè)定。結(jié)果表明:從樹干基部向外,土壤微生物總生物量、多樣性以及不同微生物類群的生物量均隨土壤水分和養(yǎng)分含量降低而逐漸降低,指示了土壤微生物從裸地向內(nèi)集聚分布的特征。另外,在微生物群落組成中,不同類群微生物的生物量從樹干基部向外的減少程度有所不同,例如,從樹干基部附近5 cm處到冠外裸地200 cm處,真菌、細(xì)菌、革蘭氏陽(yáng)性菌、革蘭氏陰性菌的生物量分別減少了50.25%、84.06%、82.70%、92.57%,指示了細(xì)菌從裸地向內(nèi)集聚分布的程度強(qiáng)于真菌,革蘭氏陰性菌從裸地向內(nèi)集聚分布的程度也較強(qiáng)于革蘭氏陽(yáng)性菌。研究表明,在資源稀缺的荒漠生態(tài)系統(tǒng)中,土壤微生物傾向于分布在冠內(nèi)資源豐富的區(qū)域。土壤微生物的空間分布不僅與資源的豐富度有關(guān),而且與微生物自身對(duì)環(huán)境變化的忍耐性或敏感性有關(guān)。

關(guān)鍵詞:古爾班通古特沙漠;梭梭;微生物生物量;空間分布

在資源限制的荒漠環(huán)境中,荒漠植物和土壤資源形成了斑塊狀的分布格局,即“資源島”或“肥島”[1-3],從冠內(nèi)向冠外水分和養(yǎng)分含量呈降低趨勢(shì)[4]。土壤微生物是環(huán)境敏感的生物學(xué)指標(biāo),其生物量、多樣性和群落組成與水分、養(yǎng)分密切相關(guān)。普遍的觀點(diǎn)認(rèn)為,與冠外土壤相比,冠內(nèi)土壤擁有更高的碳、氮含量,從而支持了更高的微生物生物量和多樣性[5-7]。但也有研究認(rèn)為,冠內(nèi)土壤中微生物的生物量和多樣性高于冠外土壤,與水分和養(yǎng)分無關(guān),而與微氣候因子如溫度和輻射有關(guān)[8-9]。因此,土壤水分和養(yǎng)分是否是微生物生物量和多樣性從冠內(nèi)向冠外變化的決定性因子仍不確定,這需要進(jìn)一步研究。

在微生物群落組成中,不同的微生物類群對(duì)水分和養(yǎng)分變化的忍耐性或敏感性與它們自身的生理特性有關(guān)。通常認(rèn)為,在水分短缺、養(yǎng)分貧瘠的環(huán)境中,細(xì)菌比真菌具有更強(qiáng)的忍耐力[10]。真菌具有更加靈活的適應(yīng)策略,它們有龐大的菌絲網(wǎng)絡(luò),這些菌絲有利于水分和養(yǎng)分進(jìn)行長(zhǎng)距離運(yùn)輸,并可深入植物根系不可到達(dá)的領(lǐng)域探索新的底物[11],使真菌能夠在一個(gè)地方獲得碳而在另一個(gè)地方獲得氮,就像植物從空氣中獲得碳而從土壤獲得水和營(yíng)養(yǎng)一樣[12]。相比之下,細(xì)菌具有機(jī)會(huì)主義的適應(yīng)策略:當(dāng)?shù)孜镓S富時(shí),細(xì)菌迅速地吸收可溶性底物,且快速生長(zhǎng)和分裂;當(dāng)面臨環(huán)境脅迫如干旱時(shí),它們不得不躲避在土壤的小孔隙中,或通過平衡土壤溶質(zhì)滲透勢(shì)的增加,甚至休眠[13]。因此,與細(xì)菌相比,真菌對(duì)水分和養(yǎng)分變化的敏感性較弱。另外,在細(xì)菌群落中,革蘭氏革蘭氏陽(yáng)性菌比革蘭氏革蘭氏陰性菌對(duì)水分和養(yǎng)分的脅迫具有更強(qiáng)的抵抗能力[13],被稱為“耐旱的廣布屬”[14]。總之,不同的微生物類群對(duì)水分和養(yǎng)分變化的忍耐性或敏感性明顯不同。那么,它們?cè)诨哪嗄局車绾畏植??為此,有必要進(jìn)行綜合評(píng)價(jià)。

本研究以荒漠生態(tài)系統(tǒng)優(yōu)勢(shì)種——梭梭冠幅內(nèi)外的土壤為研究對(duì)象,探討從冠內(nèi)向冠外水分和養(yǎng)分變化下土壤微生物生物量、多樣性和群落組成的變化特征,為加深認(rèn)識(shí)荒漠生態(tài)系統(tǒng)中土壤微生物的空間分布格局,以及植物-土壤-微生物之間的相互關(guān)系提供理論基礎(chǔ)。

1材料與方法

1.1研究地點(diǎn)

本實(shí)驗(yàn)開展于中國(guó)科學(xué)院新疆生態(tài)與地理研究所阜康荒漠生態(tài)試驗(yàn)站(44°17′N, 87°56′E, 475 m a.s.l)附近的梭梭(Haloxylonammodendron)原生棲息地,即古爾班通古特沙漠南緣。該區(qū)的氣候?qū)儆诖箨懶愿珊禋夂?,冬季?yán)寒而漫長(zhǎng),夏季炎熱而干燥,春秋溫涼而短暫,年平均降水量約為160 mm,年平均氣溫約為6.6 ℃。梭梭為荒漠生態(tài)系統(tǒng)中主要的優(yōu)勢(shì)種和初級(jí)生產(chǎn)者,在維持生態(tài)系統(tǒng)結(jié)構(gòu)和功能上具有極其重要的作用[15-16]。地帶性土壤為風(fēng)沙土,其質(zhì)地為壤質(zhì)細(xì)砂,砂粒、粉粒和粘粒的比例分別為81.68%、16.84%、1.47%。

圖1 土樣采集示意圖Fig.1 The sketch of soil sampling at individual scale 圖中心的黑色圓點(diǎn)表示樹干基部所在的位置;與樹干基部的距離為5、40、100、200 cm的黑色圓點(diǎn)表示采樣點(diǎn);黑色箭頭表示采樣方向,相鄰方向之間的夾角為90°

1.2野外采集

于2013年4月底,在古爾班通古特沙漠南緣北沙窩(距阜康荒漠生態(tài)系統(tǒng)試驗(yàn)站約20 km)的沙丘間平地,選擇基莖(9—10 cm)、冠幅(約200 cm × 200 cm)和株高(200—210 cm)相近的梭梭3株,采用土鉆法,采集0—20 cm深度的土樣。以樹干基部為中心,選擇相鄰之間夾角為90°的4個(gè)方向,沿這4個(gè)方向向外逐步畫圓采集土樣,將同一距離不同方向采點(diǎn)的土樣混合成一個(gè)土樣,采樣點(diǎn)與樹干基部的距離分別為5、40、100、200 cm,依次位于樹干基部附近、冠幅中央、冠幅邊緣、冠幅外裸地(圖1)。

將采集的土樣裝入無菌袋,并置于保鮮箱中,運(yùn)回實(shí)驗(yàn)室,立即過孔徑為2 mm的篩子,去除植物根系、石塊等雜物后,分成兩份,一份用于土壤理化因子的測(cè)定,另一份保存在4 ℃的恒溫冰箱中,用于土壤微生物生物量和群落組成的分析。

1.3室內(nèi)測(cè)定

土壤水分含量(SWC)采用烘干法,在105 ℃下持續(xù)烘干24 h;土壤有機(jī)碳(SOC)測(cè)定采用重鉻酸鉀外加熱法[17];土壤有效氮(AN)采用堿解擴(kuò)散法[17];土壤有效磷(AP)采用分光光度計(jì)分析法[17];土壤pH值和電導(dǎo)率(EC)采用水土比1∶5待測(cè)液測(cè)定[17];土壤質(zhì)地采用激光粒度儀分析(Sympatec GmbH, System-Partikel-Technik, and Clausthal-Zellerfeld, Germany)。

磷脂脂肪酸(PLFA)生物標(biāo)記法是一種定性和定量分析土壤微生物多樣性和群落組成的方法[18],故本研究采用該方法對(duì)土壤中微生物生物量和群落組成進(jìn)行評(píng)價(jià),基本過程為:運(yùn)用甲醇∶氯仿∶檸檬酸緩沖液=2∶1∶0.8的提取液將土樣中的總脂類提取出來,經(jīng)SPE硅膠柱分離純化得到磷脂脂肪酸(PLFAs),磷脂脂肪酸甲基化后轉(zhuǎn)化為脂肪酸甲酯,采用Agilent 6890N氣相色譜儀分析PLFAs的成分,內(nèi)標(biāo)為正十九烷酸甲酯(19∶0)[19-20]。PLFAs的鑒定采用美國(guó)MIDI公司開發(fā)的Sherlock MIS 4.5系統(tǒng)(Sherlock Microbial Identification System, Version 4.5, Inc., Newark, DE)。所有檢測(cè)到的PLFAs用來計(jì)算其總濃度(total PLFAs)和總數(shù)量(PLFA number)。以i12:0、i13:0、a13:0、i14:0、a14:0、i15:0、a15:0、i16:0、a16:0、i17:0、a17:0標(biāo)記革蘭氏革蘭氏陽(yáng)性菌[21-22],以16:1w5t、18:1w7c、17:1w8c、cy17:0、16:1 2OH標(biāo)記革蘭氏革蘭氏陰性菌[22-23],12:0、14:0、15:0、17:0標(biāo)記普通細(xì)菌[24,25]。革蘭氏陽(yáng)性菌、革蘭氏陰性菌和普通細(xì)菌綜合代表細(xì)菌。16:1w5t和18:1w9c標(biāo)記真菌[26-27]。

1.4統(tǒng)計(jì)分析

采用最小顯著差異性(LSD)比較土壤性質(zhì)和微生物指標(biāo)在不同距離點(diǎn)之間的差異性,由SPSS 16.0軟件完成。采用冗余分析法(redundancy analysis, RDA)分析土壤性質(zhì)與微生物生物量及相關(guān)指標(biāo)之間的相關(guān)性,由CANOCO 4.5(Microcomputer Power, NY)軟件完成。在RDA分析過程中,采用前向選擇(Forward selection)對(duì)土壤因子進(jìn)行逐個(gè)篩選,每一步均采用蒙特卡羅(Monte-Carlo)排列檢驗(yàn),排列重復(fù)次數(shù)為999次,顯著水平P<0.05。

2結(jié)果與分析

2.1土壤性質(zhì)

從樹干基部向外,土壤各理化因子隨距離增加的變化趨勢(shì)有所不同(圖2),具體為:土壤水分、有機(jī)碳、有效磷、有效氮的含量隨距離增加而逐漸降低,并且在各距離之6間具有顯著的差異性(P<0.05);pH值隨距離增加而不斷增加,在各距離之間的差異性也顯著(P<0.05);EC值隨距離增加卻呈波動(dòng)變化,靠近樹干基部5 cm處的EC值低于冠下中央40 cm的EC值(可能與樹干莖流的長(zhǎng)期沖蝕有關(guān)),而從40 cm起到冠外200 cm處,EC值不斷下降,在不同距離之間沒有顯著的差異性(P>0.05)。

圖2 土壤水分、有機(jī)碳、有效氮、有效磷、pH和電導(dǎo)率從樹干基部向外的變化Fig.2 The changes of soil water content, organic carbon, available nitrogen, available phosphorus, pH and electric conductivity from tree base不同小寫字母表示差異達(dá)顯著水平(P<0.05)

2.2微生物生物量和群落結(jié)構(gòu)組成

磷脂脂肪酸的濃度(nmol/g)可表示微生物的生物量[28],磷脂脂肪酸的類別數(shù)量可表示微生物的多樣性[29]。從樹干基部向外,微生物的總生物量和多樣性以及真菌、細(xì)菌、革蘭氏陽(yáng)性和陰性細(xì)菌的生物量都從樹干基部向外隨距離增加呈減少趨勢(shì)(圖3,圖4),表明土壤微生物從冠外裸地向內(nèi)具有集聚分布的特征。

圖3 PLFA總濃度和數(shù)量從樹干基部向外的變化Fig.3 The changes of total PLFA concentration and number from tree base不同小寫字母表示差異達(dá)顯著水平(P<0.05)

圖4 細(xì)菌、真菌、革蘭氏革蘭氏陽(yáng)性菌和革蘭氏革蘭氏陰性菌的PLFA濃度從樹干基部向外的變化Fig.4 The changes of PLFA concentrations of bacteria, fungi, Gram-positive and Gram-negative bacteria from tree base不同小寫字母表示差異達(dá)顯著水平(P<0.05)

在微生物群落組成中,從樹干基部向外,主要類群微生物生物量的減少程度不同。例如,與樹干基部5 cm處相比,冠外200 cm之間處真菌、細(xì)菌、革蘭氏陽(yáng)性菌、革蘭氏陰性菌的生物量分別減少了50.25%、84.06%、82.70%、92.57%(圖4)。另外,不同類群微生物的生物量在各距離之間的差異性也有所不同,細(xì)菌和革蘭氏陰性菌的生物量在各距離之間均有顯著的差異性(P<0.05),真菌生物量在40 cm和100 cm 之間(P>0.05)、100 cm和200 cm之間(P>0.05)均無顯著的差異性,革蘭氏陽(yáng)性菌生物量在5 cm和40 cm之間(P>0.05)也沒有顯著的差異性(圖4)??梢?,從樹干基部向外隨距離增加,細(xì)菌生物量快速減少,而真菌生物量緩慢減少,表明從冠外裸地向內(nèi)細(xì)菌集聚分布的程度強(qiáng)于真菌;同樣,從樹干基部向外,革蘭氏陰性細(xì)菌生物量呈顯著減少,且減少速率較高,相比之下,革蘭氏陽(yáng)性細(xì)菌生物量的減少程度不夠顯著,且減少速率較低,表明從冠外裸地向內(nèi)革蘭氏陰性菌的集聚分布的程度也強(qiáng)于革蘭氏陽(yáng)性菌。

2.3相關(guān)性分析

圖5 微生物PLFA濃度與土壤性質(zhì)之間的冗余分析(RDA) Fig.5 The redundancy analysis (RDA) of microbial PLFA concentrations and soil propertiesTPA, PAn, Bac, Fun, G+, G-分別表示總PLFA總濃度,PLFA數(shù)量,細(xì)菌,真菌,革蘭氏陽(yáng)性菌,革蘭氏陰性菌;AP, AN, OC, SWC, pH分別表示有效磷,有效氮,有機(jī)碳,土壤水分含量,pH值

以磷脂脂肪酸分析獲得的微生物總生物量、多樣性和各類群微生物生物量組成微生物參數(shù)矩陣,以土壤性質(zhì)作為環(huán)境變量矩陣,來分析微生物與土壤性質(zhì)之間的相關(guān)性(圖5)。第一軸(RDA 1)解釋了總變異的90.9%,第二軸(RDA 2)解釋了總變異的2.1%。土壤微生物生物量和多樣性與水分(SWC)(P=0.002)、有機(jī)碳(OC)(P=0.002)、有效氮(AN)(P=0.002)、有效磷(AP)(P=0.002)顯著正相關(guān),與pH值顯著負(fù)相關(guān)(P=0.002),而與電導(dǎo)率(EC)無顯著的相關(guān)性(P=0.512)。在微生物群落組成中,不同的微生物類群與土壤水分和養(yǎng)分的相關(guān)性有所不同。與真菌相比,細(xì)菌和革蘭氏陰性菌與土壤水分、有效氮和有機(jī)碳的相關(guān)性較強(qiáng)。與革蘭氏陽(yáng)性菌相比,革蘭氏陰性菌與土壤水分、有效氮和有機(jī)碳的相關(guān)性較強(qiáng)。

4討論

土壤養(yǎng)分如有機(jī)質(zhì)、氮是土壤中微生物種群數(shù)量的空間分布具有主要的控制作用[30]。在本研究中,微生物生物量和多樣性從樹干基部向外逐漸減少,其變化模式與水分和養(yǎng)分的變化模式類似,而且RDA結(jié)果也表明土壤水分和養(yǎng)分對(duì)微生物生物量和多樣性變化具有顯著影響,這與微生物生物量和多樣性主要受土壤碳、氮影響的普遍觀點(diǎn)基本一致[5-7]。從樹干基部向外,水分含量的降低減少了含水孔隙的比例,降低了養(yǎng)分在土壤的遷移效率,減弱了土壤微生物與底物之間的聯(lián)系[31],導(dǎo)致土壤微生物的生物量和活性降低。相比之下,提高水分含量可以激發(fā)微生物的活性,有利于微生物生存和發(fā)育。此外,在土壤養(yǎng)分中,有機(jī)碳是微生物重要的食物資源[32]。當(dāng)距樹干基部越近時(shí),有機(jī)碳的含量越高,提高了微生物的生物量和多樣性[7];相反,當(dāng)離樹干基部越遠(yuǎn)時(shí),微生物可能會(huì)面臨食物資源的短缺,使微生物的生物量和多樣性降低??傊?,當(dāng)前結(jié)果表明,微生物的生物量和多樣性隨水分和養(yǎng)分含量的減少而降低,這與地中海區(qū)和半干旱草原區(qū)的研究結(jié)果一致[33-35]。然而,別的研究表明,微生物生物量和多樣性從冠內(nèi)向冠外的降低是溫度和輻射的作用結(jié)果,與水分和養(yǎng)分無關(guān)[9]。事實(shí)上,土壤因子如有機(jī)碳、水分對(duì)生活于土壤中的微生物的影響更為直接,而溫度和輻射是通過改變土壤水分和養(yǎng)分的含量和有效性,進(jìn)而對(duì)微生物產(chǎn)生影響[25]。

在微生物類群中,從冠外裸地向內(nèi),真菌的集聚程度弱于細(xì)菌,RDA結(jié)果也顯示水分和養(yǎng)分與細(xì)菌的相關(guān)性較強(qiáng)于真菌,表明真菌對(duì)水分和養(yǎng)分變化的敏感性弱于細(xì)菌。Schimel 等[13]和Strickland 等[36]研究表明,與細(xì)菌相比,真菌具有低水分和養(yǎng)分需求的特征,在資源稀缺的環(huán)境中仍能很好地生存和發(fā)育,在資源豐富的環(huán)境中也不會(huì)快速地生長(zhǎng),這支持了上述結(jié)果。由于龐大的菌絲網(wǎng)絡(luò),真菌能夠從更大的土壤空間中吸取水分和養(yǎng)分,從而減弱了真菌對(duì)土壤資源的依賴性,使得它們比細(xì)菌擁有更為靈活的適應(yīng)策略。相比之下,細(xì)菌屬于機(jī)會(huì)主義適應(yīng)策略的類群,對(duì)水分和養(yǎng)分的變化有較強(qiáng)的敏感性和依賴性[12]。另外,真菌和細(xì)菌可能具有不同的生長(zhǎng)型。當(dāng)土壤環(huán)境中有大量的營(yíng)養(yǎng)被供給時(shí),r-策略者將最大程度地汲取營(yíng)養(yǎng),并快速生長(zhǎng)和發(fā)育;當(dāng)營(yíng)養(yǎng)變得稀缺時(shí),r-策略者將生長(zhǎng)速率降低,而此時(shí)k-策略者對(duì)營(yíng)養(yǎng)的吸取才獲得競(jìng)爭(zhēng)優(yōu)勢(shì)[37]?;诖耍?xì)菌應(yīng)歸于r-策略生長(zhǎng)型,而真菌應(yīng)屬于k-策略生長(zhǎng)型。

在細(xì)菌群落中,從冠外裸地向內(nèi),與革蘭氏陽(yáng)性菌相比,革蘭氏陰性菌集聚程度分布的程度較強(qiáng),且RDA結(jié)果也顯示水分、養(yǎng)分與革蘭氏陰性菌的相關(guān)性強(qiáng)于革蘭氏陽(yáng)性菌。這表明,在冠外土壤資源較為稀缺的微生境中,革蘭氏陽(yáng)性菌比陰性菌具有更為較強(qiáng)的適應(yīng)優(yōu)勢(shì)。Schimel等[13]和Lennon等[14]研究表明,革蘭氏陽(yáng)性菌是適應(yīng)干旱的廣布屬,在資源稀缺甚至脅迫的環(huán)境中,它們具有較強(qiáng)的忍耐性和抵抗能力,相比之下,革蘭氏陰性菌對(duì)資源脅迫的抗性較弱,更傾向于在資源豐富的環(huán)境中生存和發(fā)育,這支持了當(dāng)前的研究結(jié)果??傊锾m氏陽(yáng)性菌對(duì)環(huán)境變化的忍耐性較強(qiáng),而革蘭氏陰性菌的忍耐性較弱。

5結(jié)論

(1)在資源稀缺的荒漠生態(tài)系統(tǒng)中,微生物的空間分布對(duì)土壤資源如水分和養(yǎng)分具有很強(qiáng)的依賴性,為了滿足基本的生存需求,其傾向于集聚在冠內(nèi)資源豐富的區(qū)域。

(2)微生物的空間分布不僅取決于資源的豐富程度,而且也取決于微生物自身對(duì)資源變化的忍耐性或敏感性。從冠外裸地向內(nèi),敏感型微生物類群(如革蘭氏陰性菌)集聚分布的程度強(qiáng)于忍耐型微生物類群(如真菌、革蘭氏陽(yáng)性菌)。

參考文獻(xiàn)(References):

[1]Maestre F T, Bowker M A, Puche M D, Hinojosa M B, Martínez I, García-Palacios P, Castillo A P, Soliveres S, Luzuriaga A L, Sánchez A M, Carreira J A, Gallardo A, Escudero A. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 2009, 12(9): 930- 941.

[2]李君, 趙成義, 朱宏, 王鋒. 檉柳(Tamarixspp.)和梭梭(Haloxylonammodendron)的“肥島”效應(yīng). 生態(tài)學(xué)報(bào), 2007, 27(12): 5138- 5147.

[3]Aguiar M R, Sala O E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology & Evolution, 1999, 14(7): 273- 277.

[4]Moro M J, Pugnaire F I, Haase P, Puigdefábregas J. Mechanisms of interaction between a leguminous shrub and its understorey in a semi-arid environment. Ecography, 1997, 20(2): 175- 184.

[5]Schaeffer S M, Billings S A, Evans R D. Responses of soil nitrogen dynamics in a Mojave desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia, 2003, 134(4): 547- 553.

[6]Schaeffer S M, Evans R D. Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrubland. Oecologia, 2005, 145(3): 425- 433.

[7]Ewing S A, Southard R J, Macalady J L, Hartshorn A S, Johnson M J. Soil microbial fingerprints, carbon, and nitrogen in a Mojave Desert creosote-bush ecosystem. Soil Science Society of America Journal, 2007, 71(2): 469- 475.

[8]Clark J S, Campbell J H, Grizzle H, Acosta-Martìnez V, Zak J C. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microbial Ecology, 2009, 57(2): 248- 260.

[9]Bachar A, Soares M I M, Gillor O. The effect of resource islands on abundance and diversity of bacteria in arid soils. Microbial Ecology, 2012, 63(3): 694- 700.

[10]Manzoni S, Schimel J P, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology, 2012, 93(4): 930- 938.

[11]Joergensen R G, Wichern F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry, 2008 40(12): 2977- 2991.

[12]Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag, 2002.

[13]Schimel J, Balser T C, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 2007, 88(6): 1386- 1394.

[14]Lennon J T, Aanderud Z T, Lehmkuhl B K, Schoolmaster D R. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 2012, 93(8): 1867- 1879.

[15]Xu H, Li Y. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant and Soil, 2006, 285(1- 2): 5- 17.

[16]Xu H, Li Y, Xu G Q, Zou T. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment, 2007, 30(4): 399- 409.

[17]鮑士旦. 土壤農(nóng)化分析(第三版). 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.

[18]張秋芳, 劉波, 林營(yíng)志, 史懷, 楊述省, 周先冶. 土壤微生物群落磷脂脂肪酸PLFA生物標(biāo)記多樣性. 生態(tài)學(xué)報(bào), 2009, 29(8): 4127- 4137.

[19]Frosteg?rd A, Tunlid A, B??th E. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 1991, 14(3): 151- 163.

[20]Wu Y P, Ding N, Wang G, Xu J M, Wu J J, Brookes P C. Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses. Geoderma, 2009, 150(1- 2), 171- 178.

[21]Zogg G P, Zak D R, Ringleberg D B, MacDonald N W, Pregitzer K S, White D C. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal, 1997, 61(2): 475- 481.

[22]Kourtev P S, Ehrenfeld J G, H?gblom M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology and Biochemistry, 2003, 35(7): 895- 905.

[23]Zelles L, Bai Q Y, Ma R X, Rackwitz R, Winter K, Beese F. Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biology and Biochemistry, 1994, 26(4): 439- 446.

[24]Zak D R, Ringelberg D B, Pregitzer K S, Randlett D L, White D C, Curtis P S. Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecological Applications, 1996, 6(1): 257- 262.

[25]Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytologist, 2014, 201(3): 916- 927.

[26]Frosteg?rd A, B??th E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22(1- 2): 59- 65.

[27]Tornberg K, B??th E, Olsson S. Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biology and Fertility of Soils, 2003, 37(3): 190- 197.

[28]Thoms C, Gleixner G. Seasonal differences in tree species′ influence on soil microbial communities. Soil Biology and Biochemistry, 2013, 66: 239- 248.

[29]Cordova-Kreylos A L, Cao Y P, Green P G, Hwang H M, Kuivila K M, LaMontagne M G, Van De Werfhorst L C, Holden P A, Scow K M. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Applied and Environmental Microbiology, 2006, 72(5): 3357- 3366.

[30]Herman R P, Provencio K R, Herrera-Matos J, Torrez R J. Resource islands predict the distribution of heterotrophic bacteria in Chihuahuan desert soils. Applied and Environmental Microbiology, 1995, 61(5): 1816- 1821.

[31]Schj?nning P, Thomsen I K, Moldrup P, Christensen B T. Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Science Society of America Journal, 2003, 67(1): 156- 165.

[32]Fierer N, Schimel J P, Holden, P A. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 2003, 35(1): 167- 176.

[33]Yuste J, Penelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, Pujol M, Sardans J. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Global Change Biology, 2011, 17(3): 1475- 1486.

[34]Sheik C S, Beasley W H, Elshahed M S, Zhou X, Luo Y, Krumholz L R. Effect of warming and drought on grassland microbial communities. The ISME Journal, 2011, 5(10): 1692- 1700.

[35]Alster C J, German D P, Lu Y, Allison S D. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biology and Biochemistry, 2013, 64: 68- 79.

[36]Strickland M S, Rousk J. Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010, 42(9): 1385- 1395.

[37]Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition?. Soil Biology and Biochemistry, 2003, 35(6): 837- 843.

ThespatialdistributionofsoilmicrobesaroundadesertshrubofHaloxylon ammodendron

CAOYanfeng1,2,3,4,LIYan1, *,LIChenhua1,LVGuanghui2

1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumq 830011, China 2 College of Resources and Environment Science, Xinjiang University, Urmuqi 830046, China 3 College of Geographical Science, Shanxi Normal University, Linfen 041000, China 4 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract:‘Fertile islands’ or ‘resource islands’ are considered to be a featured pattern in desert ecosystems. Water and nutrient contents are found to be higher in under- than inter-shrub soils. One general idea is that soil water and nutrients have a close correlation with microbes. However, it remains controversial on whether the spatial distribution of soil microbes around shrubs is determined by soil water and nutrients of fertile islands. In addition, different microbial groups, such as fungi, bacteria, Gram-positive and Gram-negative bacteria, have distinct sensitivity or tolerance to the changes of soil water and nutrients. How these microbes distribute around shrubs and their relations with soil water and nutrients calls for further study. In the current study, under- and inter-shrub soils of Haloxylon ammodendron (height 200—210 cm, basal diameter 9—10 cm and crown width 200 × 200 cm), a dominant species in desert ecosystems of Gurbantunggut Desert, were studied. Soil samples were collected in circles with radii of 5, 40, 100 and 200 cm respectively from tree base in horizontal directions, and from depths of 0—20 cm. The sampling points of 5, 40, 100 and 200 cm represent the vicinity of tree base, the center of canopy, the edge of canopy and barren interspaces of shrubs, respectively. Soil samples from four directions, with angles between the adjacent directions at 90°, were mixed to obtain one composted sample. By analyzing changes in soil microbial biomass, diversity and community composition with changes of soil water and nutrients outward from tree base, the features of spatial distribution of soil microbes around shrubs was revealed. Microbial biomass, abundance and community composition were examined using phospholipid fatty acids. Redundancy analysis (RDA) was conducted to assess the correlations between soil properties and microbes. With the decreasing of soil water and nutrient content from the vicinity of tree base to interspaces of shrubs, total microbial biomass and diversity, as well as the biomass of different microbial groups, decreased gradually, indicating an increase of soil microbes inward from interspaces of shrubs. In addition, for the microbial composition in the soil, the biomass of different microbial groups had different reduction rate outward from tree base. For example, from the vicinity of tree base (i.e. 5 cm) to interspaces (i.e. 200 cm), the biomass of fungi, bacteria, Gram-positive and Gram-negative bacteria reduced 50.25%、84.06%、82.70%、92.57%, respectively. RDA results also showed that soil water, available nitrogen and organic carbon had a stronger correlation with bacteria comparing to fungi, and Gram-negative bacteria also correlated stronger than Gram-positive bacteria. This demonstrated that inward from interspaces, the increases of bacteria was more significant than fungi, and that of Gram-negative bacteria was more significant than Gram-positive bacteria. Our study suggested that soil microbes tended to distribute in soil resource-rich areas under the shrub canopy in resource-poor desert ecosystems. The spatial distribution of soil microbes was influenced more directly by soil properties than microclimate factors. Furthermore, the spatial distribution of soil microbes was not only determined by soil resource abundance, but also by the tolerance or sensitivity of different groups of microbes to environmental variations.

Key Words:Gurbantunggut Desert; Haloxylon ammodendron; microbial biomass; spatial distribution

DOI:10.5846/stxb201408041552

*通訊作者

Corresponding author.E-mail: liyan@ms.xjb.ac.cn

收稿日期:2014- 08- 04; 網(wǎng)絡(luò)出版日期:2015- 04- 16

基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(41301102, 41371079)

曹艷峰,李彥, 李晨華,呂光輝.荒漠灌木梭梭(Haloxylonammodendron)周圍土壤微生物的空間分布.生態(tài)學(xué)報(bào),2016,36(6):1628- 1635.

Cao Y F, Li Y, Li C H, Lü G H.The spatial distribution of soil microbes around a desert shrub ofHaloxylonammodendron.ActaEcologicaSinica,2016,36(6):1628- 1635.

猜你喜歡
空間分布梭梭
梭梭的建筑課
與生命賽跑的“沙漠植被之王”——梭梭
木壘縣沙漠區(qū)域提高梭梭成活率的幾點(diǎn)建議
沙漠梭梭的守望者
基于SWAT的滇池流域農(nóng)業(yè)非點(diǎn)源污染空間分布特征研究
白龜山濕地重金屬元素分布特征及其來源分析
江蘇省臭氧污染變化特征
基于Kriging插值的礦區(qū)周邊土壤重金屬空間分布規(guī)律研究
環(huán)保志愿者在阿拉善種梭梭固沙
梭梭的葉子哪兒去了?