國(guó)立東,王麗群2,蔣琛,劉曉艷,劉莉莉
(1.黑龍江中醫(yī)藥大學(xué)藥學(xué)院,哈爾濱150040;2.黑龍江省農(nóng)業(yè)科學(xué)院食品加工研究所,哈爾濱150086)
乳酸菌調(diào)控體內(nèi)膽固醇代謝綜述
國(guó)立東1,王麗群2,蔣琛1,劉曉艷1,劉莉莉1
(1.黑龍江中醫(yī)藥大學(xué)藥學(xué)院,哈爾濱150040;2.黑龍江省農(nóng)業(yè)科學(xué)院食品加工研究所,哈爾濱150086)
心血管疾病已成為全球死亡率和發(fā)病率的首因,血清膽固醇水平過(guò)高是其主要危險(xiǎn)因素。目前,降低人體內(nèi)膽固醇水平的方法主要包括膳食干預(yù)和藥物治療,但藥物通常具有副作用。乳酸菌作為益生菌的主要來(lái)源,已通過(guò)動(dòng)物或人體臨床試驗(yàn)證實(shí)了其降膽固醇作用,至少能對(duì)血清總膽固醇、總甘油三酯、低密度脂蛋白膽固醇、高密度脂蛋白膽固醇中的一項(xiàng)及以上指標(biāo)有改善作用。乳酸菌可以通過(guò)調(diào)控體內(nèi)膽固醇的吸收轉(zhuǎn)運(yùn)、分解代謝和/或合成代謝相關(guān)基因表達(dá)的機(jī)制來(lái)降低機(jī)體內(nèi)膽固醇水平。不論是乳酸菌的體內(nèi)降膽固醇能力還是作用機(jī)制,都存在著菌株特異性。文中對(duì)上述內(nèi)容進(jìn)行了綜述,并對(duì)存在的問(wèn)題進(jìn)行了分析與展望,旨在為降膽固醇乳酸菌的深入研究提供參考。
乳酸菌;膽固醇;代謝;調(diào)控;機(jī)制
心血管疾病已成為中國(guó)乃至全球人群的主要死因之一[1,2],血清膽固醇過(guò)高是引發(fā)冠心病的主要危險(xiǎn)因素[3],人體血清總膽固醇每降低1%,冠心病發(fā)生的危險(xiǎn)性可降低2%~3%[4]。臨床應(yīng)用的他汀類降膽固醇藥物成本高且副作用明顯[5],故天然的非藥物方法相繼提出,如乳酸菌的使用。乳酸菌已被人類大規(guī)模安全消費(fèi)數(shù)以千年[6,7],為人體腸道正常有益菌群,在糖/脂代謝、肥胖、炎癥等方面發(fā)揮重要作用[8-10]。自Mann和Spoerry發(fā)現(xiàn)血清膽固醇與乳酸菌的相關(guān)性[11],大量體內(nèi)外研究均證明了乳酸菌的降膽固醇能力,然而體內(nèi)試驗(yàn)特別是臨床數(shù)據(jù)則更為關(guān)鍵。因此,文中對(duì)降膽固醇乳酸菌的動(dòng)物及臨床試驗(yàn)證據(jù),及其調(diào)控體內(nèi)膽固醇代謝機(jī)理進(jìn)行了總結(jié),并對(duì)其存在的問(wèn)題進(jìn)行了分析與展望。
動(dòng)物與人體模型用于評(píng)價(jià)乳酸菌對(duì)機(jī)體血清膽固醇水平的影響已進(jìn)行了數(shù)十年,已有充分證據(jù)證明乳酸菌的降膽固醇能力,并且在降膽固醇的菌種成員中仍有一些新的乳酸菌菌種不斷出現(xiàn)。
1.1 動(dòng)物模型數(shù)據(jù)
動(dòng)物模型數(shù)據(jù)通常能間接反映人體內(nèi)的實(shí)際發(fā)生情況。因此,臨床前適宜的動(dòng)物模型通常被構(gòu)建進(jìn)而評(píng)價(jià)乳酸菌的潛在降膽固醇作用,如大鼠、小鼠、倉(cāng)鼠、豬、兔等動(dòng)物模型[12-23]的應(yīng)用。如果單純研究乳酸菌的降膽固醇作用,通常是構(gòu)建高膽固醇血癥模型動(dòng)物[12-13,16,19-23],也有乳酸菌能降低酒精性肝病、II型糖尿病以及肥胖等模型動(dòng)物[14,17,18,24]體內(nèi)膽固醇水平的報(bào)道。目前,已報(bào)道可有效降低模型動(dòng)物體內(nèi)膽固醇水平的乳酸菌菌種有十余種,主要分布于乳桿菌屬、雙歧桿菌屬和腸球菌屬,其中以乳桿菌屬和雙歧桿菌屬菌株報(bào)道最多,具體見表1。在有降膽固醇活性的乳桿菌屬中,以嗜酸乳桿菌、植物乳桿菌、羅伊氏乳桿菌、鼠李糖乳桿菌、干酪乳桿菌等為常見,而雙歧桿菌屬中以長(zhǎng)雙歧桿菌、動(dòng)物雙歧桿菌乳亞種等為常見,腸球菌屬中主要為屎腸球菌。這些降膽固醇乳酸菌菌株主要來(lái)源于兩方面:一是來(lái)源于健康人體腸道或唾液,包括嬰幼兒、成人;二是來(lái)源于傳統(tǒng)發(fā)酵食品,如酸奶、干酪、馬奶酒等乳制品,泡菜、酸菜等植物性食品,發(fā)酵魚、香腸等肉制品。受試動(dòng)物攝入乳酸菌的方式多樣,包括直接制成懸液(懸于生理鹽水或脫脂乳中)定量灌胃動(dòng)物,以發(fā)酵食品(發(fā)酵乳、發(fā)酵谷物醬、酸面團(tuán)等)的形式定量給予動(dòng)物,甚至將菌種直接加到水或飼料中由動(dòng)物自由采食。乳酸菌給予受試動(dòng)物的劑量也不盡相同,從每天最低的104g-1有效劑量到最高達(dá)1013g-1飼料的高有效劑量,有效的干預(yù)周期從最短14 d到最長(zhǎng)70 d不等。檢測(cè)指標(biāo)通常以血清中總膽固醇(TC)、總甘油三酯(TG)、低密度脂蛋白膽固醇(LDL-C)、高密度脂蛋白膽固醇(HDL-C)為主,這些供試乳酸菌中至少能對(duì)其中一項(xiàng)指標(biāo)有改善作用。
綜上所述,乳酸菌降低模型動(dòng)物體內(nèi)膽固醇水平是顯而易見的。但是,上述報(bào)道中因選取的供試乳酸菌菌株不同,干預(yù)周期不同,劑量和給藥方式不同,故無(wú)法比較各菌株間降膽固醇能力的差異。此外,關(guān)于乳酸菌體內(nèi)降膽固醇作用的劑量-效應(yīng)關(guān)系方面的數(shù)據(jù)比較缺乏,如高、中、低三個(gè)劑量的實(shí)驗(yàn)設(shè)計(jì)。
1.2 臨床數(shù)據(jù)
乳酸菌降膽固醇作用的研究終究是為人類服務(wù),而動(dòng)物模型數(shù)據(jù)并不能完全代表人體內(nèi)的真實(shí)情況,往往與人體試驗(yàn)數(shù)據(jù)存在一定偏差。因此,研究乳酸菌降膽固醇的作用,其人體臨床證據(jù)是非常必要與重要的。關(guān)于降膽固醇作用乳酸菌的臨床數(shù)據(jù),如表2所示。目前,已經(jīng)過(guò)人體臨床試驗(yàn)的降膽固醇乳酸菌菌株也同樣集中在乳桿菌屬[25-31]和雙歧桿菌屬[29-32]兩個(gè)菌屬,也有嗜熱鏈球菌[31,33]和屎腸球菌[33,34]的應(yīng)用。這些菌株通常是單一菌種或混合菌種,以發(fā)酵酸乳或口服膠囊的形式給予受試人群,每天服用劑量一般在109~1012,服用周期一般在4~56周。受試群體為兒童、成人或老年人,多為高膽固醇血癥人群,也有II型糖尿病、非酒精性脂肪肝及健康人群為受試對(duì)象,均證明了受試乳酸菌人體內(nèi)的降膽固醇作用。然而,臨床試驗(yàn)中也有發(fā)現(xiàn)乳酸菌無(wú)降膽固醇作用的報(bào)道[35],分析原因可能是人體臨床試驗(yàn)數(shù)據(jù)受外界因素影響較大,如受試人群飲食難于控制、個(gè)體差異大以及樣本數(shù)量少等。
表1 不同種屬代表性乳酸菌對(duì)模型動(dòng)物的降膽固醇作用
表2 乳酸菌降膽固醇作用的臨床證據(jù)
機(jī)體內(nèi)膽固醇平衡主要受三個(gè)方面的調(diào)控,即膽固醇的合成、分解與吸收轉(zhuǎn)運(yùn)。若篩選降膽固醇活性藥物或食品,以此為切入點(diǎn)則更為直接。乳酸菌對(duì)膽固醇代謝調(diào)控機(jī)制主要是基于細(xì)胞及動(dòng)物模型提出,益生乳酸菌對(duì)膽固醇代謝調(diào)控的可能途徑如圖1所示。
圖1 乳酸菌調(diào)控膽固醇代謝的可能途徑
2.1 調(diào)控膽固醇吸收與轉(zhuǎn)運(yùn)
這種調(diào)控作用主要發(fā)生在小腸,可通過(guò)抑制膽固醇吸收、促進(jìn)膽固醇外排來(lái)降低體內(nèi)膽固醇水平。小腸對(duì)膽固醇吸收轉(zhuǎn)運(yùn)的調(diào)控主要由肝臟X受體(LXR s)介導(dǎo),包括LXR-α和LXR-β(也稱作NR 1H 3和NR 1H 2),其屬于核受體,通過(guò)控制轉(zhuǎn)錄參與脂質(zhì)代謝。一旦被激活,LXR s能夠誘導(dǎo)膽固醇吸收、流出、轉(zhuǎn)運(yùn)和分泌相關(guān)的一系列基因的表達(dá)。比如,腸道膽固醇吸收的關(guān)鍵轉(zhuǎn)運(yùn)蛋白Niemann-Pick C1 Like 1(NPC1L1)[36],激活LXRs可下調(diào)NPC1L1表達(dá)進(jìn)而抑制腸道對(duì)膽固醇的吸收。此外,LXR s的激活可介導(dǎo)腺苷三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transpo rt)A 1(ABCA1)、G 1(ABCG 1)、G 5和G 8(ABCG 5/G 8)表達(dá)上調(diào)[37,38],ABCA 1、ABCG 1、ABCG 5/G 8的過(guò)表達(dá)將增加膽固醇從腸細(xì)胞內(nèi)排出進(jìn)入腸腔,促進(jìn)體內(nèi)膽固醇的清除。乳酸菌可通過(guò)激活LXR s,從而介導(dǎo)NPC 1L1表達(dá)下調(diào)[39-41]、ABCG 5/ G8[41,42]、ABCA1和ABCG1[43]表達(dá)上調(diào),進(jìn)而抑制膽固醇在體內(nèi)的吸收。除此之外,肝臟也可以調(diào)控膽固醇的吸收轉(zhuǎn)運(yùn)。肝臟低密度脂蛋白受體(LDLR)能調(diào)節(jié)機(jī)體血漿低密度脂蛋白膽固醇(LDL-C)的體內(nèi)平衡。肝臟LDLR表達(dá)增加,會(huì)通過(guò)受體介導(dǎo)的胞吞作用來(lái)提高血漿LDL-C的清除,LDLR表達(dá)主要受固醇調(diào)節(jié)元件結(jié)合蛋白(SREBPs,包括SREBP-1c和SREBP-2)的控制[44]。乳酸菌也可通過(guò)上調(diào)肝臟SREBP-2[24]和LDLR[24,45,46]表達(dá)的機(jī)理來(lái)降低動(dòng)物血清膽固醇水平。
2.2 促進(jìn)膽固醇分解代謝
降膽固醇的另一種方式就是促進(jìn)體內(nèi)膽固醇分解。膽固醇7α-羥化酶(CYP7A 1)是肝臟膽固醇分解代謝的限速酶,提高CYP7A 1活性便可降低體內(nèi)膽固醇濃度。膽酸(鹽)是膽固醇分解代謝的產(chǎn)物,在人體內(nèi)主要以牛磺膽酸鹽和甘氨膽酸鹽兩種結(jié)合態(tài)形式存在,并參與肝腸循環(huán)[47]。益生乳酸菌產(chǎn)生的BSH能將進(jìn)入腸道內(nèi)的結(jié)合型膽酸鹽水解成游離膽汁酸。一方面,生成的游離膽汁酸相比于結(jié)合型膽酸不容易被小腸吸收,大部分不參與肝腸循環(huán)而隨糞便直接排出體外,由于反饋調(diào)節(jié)作用導(dǎo)致膽固醇在肝臟內(nèi)被進(jìn)一步分解生成新的膽汁酸,從而降低體內(nèi)膽固醇水平[48]。另一方面,乳酸菌可通過(guò)提高肝臟CYP7A 1活性從而加速肝臟膽固醇分解來(lái)降低體內(nèi)膽固醇濃度[46,49,50],而乳酸菌對(duì)CYP7A 1的調(diào)控作用,主要是通過(guò)其BSH活性而生成的游離膽汁酸作用于法尼醇X受體(FXR),抑制FXR活性,并由FXR介導(dǎo)下調(diào)小異源二聚體伴侶受體(SHP)的表達(dá)來(lái)完成[50]。由此可見,乳酸菌自身產(chǎn)生的BSH活性對(duì)其體內(nèi)降膽固醇作用的貢獻(xiàn)是雙重的。因此,是否具有BSH活性便成為體外篩選降膽固醇益生菌的首要條件。
2.3 抑制膽固醇體內(nèi)自身合成
抑制肝臟中膽固醇合成的限速酶—3-羥基-3-甲基戊二酸單酰輔酶A(HMG-CoA)還原酶活性即可降低體內(nèi)膽固醇水平。臨床上應(yīng)用已久的他汀類藥物就是通過(guò)這種機(jī)理來(lái)達(dá)到降膽固醇功效的。有研究報(bào)道,乳酸菌可通過(guò)調(diào)控HMG-CoA還原酶活性進(jìn)而降低大鼠血清膽固醇水平[45,51],這種調(diào)控作用的可能機(jī)制是乳酸菌通過(guò)抑制SREBPs表達(dá)的途徑來(lái)降低HMG-CoA還原酶活性的[51]。
乳酸菌與體內(nèi)膽固醇代謝的關(guān)系已進(jìn)行了半個(gè)世紀(jì)的研究與探討,目前已有充分的證據(jù)證明乳酸菌可有效降低動(dòng)物或人體內(nèi)膽固醇水平,這是毋庸置疑的,盡管存在著菌株特異性。從整體上看,乳酸菌對(duì)模型動(dòng)物體內(nèi)膽固醇水平的降低程度普遍高于人體模型,這可能與模型動(dòng)物個(gè)體之間差異小和飲食易控制等因素有關(guān)。迄今為止,已有大量的降膽固醇乳酸菌保健食品或發(fā)酵產(chǎn)品在全球上市,如VSL#3[31]、Gaio[33],以及上海光明乳業(yè)股份有限公司生產(chǎn)的“光明暢優(yōu)植物乳酸菌飲品”,其中具有獨(dú)立自主知識(shí)產(chǎn)權(quán)的植物乳桿菌ST-III是從傳統(tǒng)食品泡菜中篩選獲得的降膽固醇功能乳酸菌[52]。
相比于體外,乳酸菌體內(nèi)降膽固醇機(jī)制的研究相對(duì)滯后。近五年,隨著研究的深入,乳酸菌調(diào)控體內(nèi)膽固醇代謝的機(jī)制逐漸被揭示,研究人員主要從三個(gè)方面對(duì)此進(jìn)行了探究,即對(duì)體內(nèi)膽固醇的吸收轉(zhuǎn)運(yùn)、分解代謝以及合成代謝的影響。乳酸菌對(duì)體內(nèi)膽固醇代謝的調(diào)控機(jī)制,也同樣存在著菌株特異性。目前,乳酸菌對(duì)體內(nèi)膽固醇代謝調(diào)控機(jī)制的研究尚停留在現(xiàn)象階段,即經(jīng)過(guò)乳酸菌干預(yù)后,體內(nèi)膽固醇代謝相關(guān)基因出現(xiàn)了差異表達(dá),便認(rèn)為乳酸菌是通過(guò)調(diào)控這些差異表達(dá)的基因來(lái)降低體內(nèi)膽固醇水平,缺乏本質(zhì)的發(fā)現(xiàn)。此外,乳酸菌對(duì)體內(nèi)膽固醇代謝調(diào)控的活性物質(zhì)是代謝產(chǎn)物還是細(xì)胞壁組分,是直接調(diào)控還是間接調(diào)控,間接調(diào)控又是怎樣的作用機(jī)理,這些都有待于深入挖掘。同時(shí),隨著組學(xué)技術(shù)的發(fā)展,乳酸菌與體內(nèi)膽固醇代謝的關(guān)系將會(huì)得到更好的澄清。
[1]HE J,GU D,WU X,et al.Major causes of death amongmen and women in China[J].The New England Journal of Medicine,2005, 353(11):1124-1134.
[2]WOR LD HEALTH ORGAN IZATION,WORLD HEART FEDERATION,WORLD STROKE ORGAN IZATION.Global atlas on cardiovascular disease prevention and control.Geneva:World Health Organization,2011.
[3]WORLD HEALTH ORGANIZATION.Cardiovascular disease;fact sheet no 317.Geneva:World Health Organization,2009.
[4]M ANSON JE,TOSTESON H,R IDKER P M,et al.The primary prevention of myocardial infarction[J].The New England Journal of Medicine,1992,326:1406-1416.
[5]BLIZNAKOV E G.Lipid-lowering drugs(statins),cholesterol,and coenzyme Q10.The Baycol case-a modern Pandora’s box[J].Biomedicine and Pharmacotherapy,2002,56(1):56-59.
[6]PARVEZ S,MALIK KA,AH KANG S,et al.Probiotics and their fermented food products are beneficial for health[J].Journal of Applied Microbiology,2006,100(6):1171-1185.
[7]Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria.Health and Nutritonal Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria.Geneva:World Health Organization,2001.
[8]WALLACE T C,GUARNER F,MADSEN K,et al.Human gut microbiota and its relationship to health and disease[J].Nutrition Review,2011,69(7):392-403.
[9]JANSSEN AW,KERSTEN S.The role of the gut microbiota in metabolic health[J].The journal of the Federation of American Societies for Experimental Biology,2015,doi:10.1096/fj.14-269514.
[10]CAMMAROTA G,IAN IRO G,CIANCIR,et al.The involvement of gutm icrobiota in inflammatory bowel disease pathogenesis: Potential for therapy[J].Pharmacology&Therapeutics,2015,149: 191-212.
[11]MANN GV,SPOERRY A.Studies of a surfactant and cholesteremia in the Maasai[J].The American Journal of Clinical Nutrition,1974, 27(5):464-469.
[12]DE RODASB Z,GILLILAND SE,MAXW ELL C V.Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet[J].Journal of Dairy Science,1996,79(12):2121-2128.
[13]TARANTO M P,MEDICI M,PERDIGON G,et al.Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in mice [J].Journal of Dairy Scence,2000,83(3):401-403.
[14]SCHNEIDER A C,MACHADO A B,DEASSISA M,et al.Effects of Lactobacillus rhamnosus GG on hepatic and serum lipid profiles in zebrafish exposed to ethanol[J].Zebrafish,2014,11(4):371-378.
[15]IVANOVIC N,M IN IC R,DIM ITRIJEVIC L,et al.Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influencem etabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis[J].Food&Function,2015,6(2):558-565.
[16]GUO C F,LIJY.Hypocholesterolaemic action of Lactobacilluscasei F0822 in rats fed a cholesterol-enriched diet[J].International Dairy Journal,2013,32(2):144-149.
[17]KOMATSUZAKIN,SHIMA J.Effects of live Lactobacillus paracasei on plasma lipid concentration in rats fed an ethanol-containing diet[J].Bioscience,Biotechnology,and Biochemistry,2012,76(2): 232-237.
[18]TOMARO-DUCHESNEAU C,SAHA S,MALHOTRA M,et al. Effect of orally administered L.fermentum NCIMB 5221 on markers of metabolic syndrome:an in vivo analysis using ZDF rats[J].Applied Microbiology and Biotechnology,2014,98(1):115-126.
[19]ABD EL-GAWAD IA,EL-SAYED EM,HAFEZ SA,et al.The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet[J].International Dairy Journal,2005,15(1):37-44.
[20]LEEDO K,JANG S,BAEK EH,et al.Lactic acid bacteria affect serum cholesterol levels,harm ful fecal enzyme activity,and fecal water content[J].Lipidsin Health and Disease,2009,8:21.
[21]AL-SHERAJISH,ISMAIL A,MANAPM Y,et al.Hypocholesterolaemic effect of yoghurt containing Bifidobacterium pseudocatenulatum G4 or Bifidobacteriumlongum BB536[J].Food Chemistry, 2012,135(2):356-361.
[22]CAVALLINID C U,ABDALLA D SP,VENDRAM IN IR C,et al.Effectsof isoflavone-supplemented soy yogurton lipid parameters and atherosclerosis development in hypercholesterolemic rabbits:a random ized double-blind study[J].Lipids in Health and Disease, 2009,8:40.
[23]GUO LD,LITT,TANG YR,et al.Probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China[J].Microbial Biotechnology,2015,doi:10.1111/ 1751-7915.12306.
[24]SONG M,PARK S,LEEH,et al.Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice[J]. Journal of Dairy Science,2015,98(3):1492-1501.
[25]ANDERSON JW,GILLILAND SE.Effect of fermented milk(yogurt)containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans[J].Journal of the American College of Nutrition,1999,18(1):43-50.
[26]JONESM L,MARTONIC J,PRAKASH S.Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242:a randomized controlled trial[J].European Journalof Clinical Nutrtion,2012,66(11):1234-1241.
[27]FUENTES MC,LAJO T,CARR IóN JM,et al.Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527,7528 and 7529 in hypercholesterolaemic adults[J].British Journal of Nutrition, 2013,109(10):1866-1872.
[28]RAJKUMAR H,KUMAR M,DASN,et al.Effect of probiotic Lactobacillus salivarius UBL S22 and prebiotic fructo-oligosaccharide on serum lipids,inflammatory markers,insulin sensitivity,and gut bacteria in healthy young volunteers:a randomized controlled single-blind pilot study[J].Journal of Cardiovascular Pharmacology and Therapeutics,2015,20(3):289-298.
[29]MOHAMADSHAHI M,VEISSI M,HAIDARI F,et al Effects of probiotic yogurt consumption on lipid profile in type 2 diabetic patients:A random ized controlled clinical trial[J].Journal of Research in Medical Sciences,2014,19(6):531-536.
[30]NABAVI S,RAFRAF M,SOM IM H,et al.Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease[J].Journal of Dairy Science,2014,97(12): 7386-7393.
[31]RAJKUMAR H,MAHMOOD N,KUMAR M,et al.Effect of probiotic(VSL#3)and omega-3 on lipid profile,insulin sensitivity,inflammatory markers,and gut colonization in overweight adults:a randomized,controlled trial[J].Mediators of Inflammation,2014,doi: 10.1155/2014/348959.
[32]GUARDAM AGNA O,AMARETTIA,PUDDU P E,et al.Bifidobacteria supplementation:effects on plasma lipid profiles in dyslipidemic children[J].Nutrition,2014,30(7-8):831-836.
[33]BERTOLAM IM C,FALUDIA A,BATLOUNIM.Evaluation of the effects of a new fermented milk product(Gaio)on primary hypercholesterolem ia[J].European Journal of C linical N utrition,1999,53 (2):97-101.
[34]HLIVAK P,ODRASKA J,FERENCIK M,etal.One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels[J].BratislavskéLekárske Listy,2005,106(2):67-72. [35]IVEY K L,HODGSON JM,KERR D A,et al.The effect of yoghurt and its probiotics on blood pressure and serum lipid profile;a randomized controlled trial[J].Nutrition,Metabolism and Cardiovascular Diseases,2015,25(1):46-51.
[36]ALTMANN SW,DAVISH R JR,ZHU L J,etal.Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption[J]. Science,2004,303(5661):1201-1204.
[37]PLOSCH T,KOK T,BLOKS V W,et al.Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1[J].Journal of Biology Chemistry, 2002,277(37):33870-33877.
[38]REPA J J,BERGE K E,POMAJZL C,et al.Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptorsalpha and beta[J].Journal of Biology Chemistry,2002,277(21):18793-18800.
[39]HUANG Y,WANG J,CHENG Y,etal.The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in ratsaremediated by the down-regulation of Niemann-Pick C1-like 1[J].British Journalof N utrition,2010,104(6):807-812.
[40]HUANG Y,WU F,WANG X,et al.Characterization of Lactobacillusplantarum Lp27 isolated from Tibetan kefir grains:a potentialprobiotic bacterium with cholesterol-lowering effects[J].Journal of Dairy Science,2013,96(5):2816-2825.
[41]GOREN JAK M,GRADI?N IK L,TRAPEA R M,et al.Improvement of lipid profile by probiotic/protective cultures:study in a non-carcinogenic small intestinal cellmodel[J].The New M icrobiologica,2014,37(1):51-64.
[42]YOON H,JU J,KIM H,et al.Lactobacillus rhamnosus BFE 5264 and Lactobacillus p lantarum NR 74 promote cholesterol excretion through the up-regulation of ABCG5/8 in Caco-2 cells[J].Probioticsand AntimicrobialProteins,2011,3:194-203.
[43]YOON H S,JU JH,LEE JE,et al.The probiotic Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 promote cholesterolefflux and suppressinflammation in THP-1 cells[J].Journalof the Science of Food and Agriculture,2013,93(4):781-787.
[44]KONG W,W EI J,ABIDI P,et al.Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J].NatureMedicine,2004,10(12):1344-1351.
[45]KUMAR M,RAKESH S,NAGPALR,etal Probiotic Lactobacillus rhamnosus GG and Aloe vera gel improve lipid profiles in hypercholesterolem ic rats[J].Nutrition,2013,29(3):574-579.
[46]LIC,DING Q,NIESP,etal.Carrot juice fermented with Lactobacillus plantarum NCU 116 ameliorates type 2 diabetes in rats[J].Journalof Agriculturaland Food Chemistry,2014,62(49):11884-11891.
[47]KOK T,HULZEBOSC V,WOLTERSH,etal.Enterohepatic circulation of bile salts in farnesoid X receptor-deficientm ice:efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein[J].Journal of Biology Chem istry,2003,278(43): 41930-41937.
[48]JONESM L,TOMARO-DUCHESNEAU C,MARTON IC J,et al.Cholesterol loweringw ith bile salthydrolase-active probiotic bacteria,mechanism of action,clinical evidence,and future direction for heart health applications[J].Expert Opinion on Biological Therapy, 2013,13(5):631-642.
[49]JEUN J,KIM S,CHO SY,etal.Hypocholesterolem ic effectsof Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6m ice[J].Nutrition,2010,26(3):321-330.
[50]DEGIROLAMO C,RAINALDIS,BOVENGA F,et al.Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice[J].Cell Reports,2014, 7(1):12-18.
[51]KIM Y,YOON S,LEESB,et al.Fermentation of soy milk via Lactobacillus plantarum improves dysregulated lipid metabolism in rats on a high cholesterol diet[J].PLoS ONE,2014,9(2):e88231.
[52]孫立國(guó),莫蓓紅,蔣能群.植物乳桿菌ST-III對(duì)實(shí)驗(yàn)性動(dòng)物高膽固醇血癥影響的研究[J].乳業(yè)科學(xué)與技術(shù),2004,(4):150-152.
Regulation of cholesterol metabolism in vivo by Lactic acid bacteria:A review
GUO Li-dong1,WANG Li-qun2,JIANG Chen1,LIU Xiao-yan1,LIU Li-li1
(1.College of Pharmacy,Heilongjiang University o f Chinese Medicine,Harbin 150040,China;2.Food Processing Institute,Heilongjiang Academy of Agricultural Sciences,Harbin 150086,China)
Cardiovascular diseases(CVD)are the leading cause of global mortality and morbidity.Elevated serum cholesterol level is a contributory risk factor for the development of CVD.In human,current cholesterol-lowering methods include dietary intervention and drug therapy.However,all the drugs have severe side effects.As a main source of probiotic bacteria,lactic acid bacteria have shown a positive effect on the serum cholesterol levels in animal and/or human model.They could improve one or more of the serum lipid profiles,including total cholesterol,triglyceride,low-density lipoprotein cholesterol and high-density lipoprotein cholesterol.Lacticacid bacteria could reduce cholesterol levels by regulating relative gene expression of the absorption and transportation,catabolism and/or synthetic metabolism of cholesterol in vivo.The cholesterol-lowering effect and mechanism of Lactic acid bacteria is strain-specific.The purpose of this paper is to provide a comprehensive overview on the above contents,and to describe its future prospects of current problem.It’s also a reference of cholesterol-lowering lactic acid bacteria for further research.
Lactic acid bacteria;cholesterol;metabolism;regulation;mechanism
Q939.11+7
:B
:1001-2230(2016)02-0032-05
2015-07-31
黑龍江省教育廳面上項(xiàng)目(12531631);黑龍江中醫(yī)藥大學(xué)??蒲谢痦?xiàng)目(201104;201316);黑龍江省自然科學(xué)基金項(xiàng)目(C201233)。
國(guó)立東(1982-),男,副教授,研究方向?yàn)楣δ苄允称放c食品生物技術(shù)。