劉麗娟 高輝
(西華師范大學(xué)環(huán)境科學(xué)與工程學(xué)院,南充 637002)
TCP家族基因研究進(jìn)展
劉麗娟 高輝
(西華師范大學(xué)環(huán)境科學(xué)與工程學(xué)院,南充 637002)
TCP 基因編碼植物特異性的轉(zhuǎn)錄因子,含有一個bHLH motif,能夠與DNA結(jié)合或者產(chǎn)生蛋白質(zhì)與蛋白質(zhì)的互作。TCP基因家族在單子葉植物中有5個成員,在雙子葉植物中有超過20個成員?;虻膹?fù)制和多樣化進(jìn)化出了兩類有輕微不同TCP domain 的TCP基因家族。越來越多關(guān)于TCP基因功能的研究使得將TCP基因作為工具,調(diào)整植物生長模式,產(chǎn)生新的農(nóng)業(yè)學(xué)性狀成為可能。簡要概括這一家族當(dāng)前的進(jìn)化、調(diào)控、蛋白的生化特性,以及部分成員的生化功能,特別是在控制發(fā)育組織的細(xì)胞增殖方面。旨在為更好的調(diào)節(jié)植物的生長模式和調(diào)控植物的生理特性的研究提供思路。
TPC基因;調(diào)控;生化功能
TCP基因家族被第一次描述是在1999年,作為植物基因的一個小組,編碼含TCP domain 的蛋白。含59個相同基因型(AA)殘基的bHLH motif,可以與DNA結(jié)合或者與蛋白質(zhì)互作[1,2]。這個domain最初經(jīng)鑒定有4個蛋白分別由不同的基因編碼,這也是TCP的命名起源,玉米(Zea mays)中的teosinte branched1(tb1)[3],金魚草(Antirrhinum majus)的CYCLOIDEA(CYC)[4],水稻(Oryza sativa)中的PROLIFERRATING CELL FACTORS 1和2(PCF1和PCF2)[1]。tb1基因是馴化玉米強(qiáng)頂端優(yōu)勢的主要因素[3]。CYC則與金魚草花的兩邊對稱有關(guān)[4]。PCF1和PCF2是結(jié)合水稻PROLIFERA-TING CELL NUCLEAR ANTIGEN(PCNA)基因的啟動子[1],PCNA編碼參與DNA復(fù)制和修復(fù),維持染色體結(jié)構(gòu),染色體分離,細(xì)胞周期進(jìn)程的蛋白。近10年來,對TCP基因的總結(jié)需要一個長焦顯微鏡來對這個成長著的家族進(jìn)行分析。
TCP基因已經(jīng)在多個物種中被發(fā)現(xiàn),它們在植物發(fā)育過程中所起得作用也漸漸被闡明。這些基因的發(fā)現(xiàn)強(qiáng)調(diào)了這一植物特異性的基因家族在植物形態(tài)進(jìn)化和發(fā)育控制中的重要性?;蚪M和轉(zhuǎn)錄組在非模式物種中的測序發(fā)現(xiàn)了更多位置功能的TCP基因,它們的功能部分根據(jù)目前在模式生物中所作的研究來決定。在此我們簡要分析當(dāng)前這一家族的知識,其進(jìn)化史、蛋白的生化功能,以及已知功能的一些家族成員在植物形態(tài)構(gòu)建和進(jìn)化中的調(diào)控作用,以期為更好的調(diào)節(jié)植物的生長模式和調(diào)控植物的生理特性的研究提供思路。
TCP轉(zhuǎn)錄因子是一類古老的蛋白。盡管沒有發(fā)現(xiàn)其在單細(xì)胞藻類Chlamydomonas 中出現(xiàn),但在綠藻中發(fā)現(xiàn),如Cosmarium and Chara,還有苔蘚植物Physcomitrella patens,蕨類植物及Lycophyte Selaginella[5,6]。在這些物種中,TCP基因形成含5-6個成員的小家族。在植物進(jìn)化過程中,重復(fù)和多樣化在裸子植物[6]和被子植物[7-16]中產(chǎn)生了由數(shù)十個成員組成的更大的家族,全基因組搜索發(fā)現(xiàn)了超過20個成員的該基因物種有擬南芥[8,14]、水稻[6,15,16]和白楊[6]等。根據(jù)它們的TCP domain可將TCP蛋白分為兩類:I類[17](PCF類或者TCP-P類),II類(TCP-C類)[6]。I類包含水稻PCF1和PCF2,II類包括CYC和tb1。這兩類最大的不同是I類蛋白比II類蛋白在TCP domain處有4個氨基酸的缺失。除了TCP domain,其他基序是保守的[2,6,11,16,18]。此外,在II類蛋白中發(fā)現(xiàn)一個富含18-20個精氨酸的基序[2]和一個谷氨酸-半胱氨酸-谷氨酸結(jié)構(gòu)(ECE motif)[11],功能未知。目前為止,還沒有定論說這兩類蛋白誰是祖先,因?yàn)榫G藻中這兩類TCP蛋白都有發(fā)現(xiàn)。
在被子植物中,I類是由一組相關(guān)度較高的蛋白組成;II類則可根據(jù)其TCP domain的不同而進(jìn)一步分為兩個亞類。CIN亞類,以金魚草中的CIN基因?yàn)槔?,包含與側(cè)生器官發(fā)育相關(guān)的一些基因[18-24];CYC/TB1亞類[11],包括與腋生分生組織(花和側(cè)枝)發(fā)育相關(guān)的一些基因。CIN亞類可能比CYC/TB1亞類更古老,因?yàn)?,以卷柏屬Selaginella和立碗蘚屬Physcomitrella為例,它們沒有花葉沒有分支。CYC/TB1亞類可能到被子植物之后進(jìn)化。在單子葉植物中,tb1基因及它的同源基因控制著腋生器官(花序原基,花,側(cè)生莖)的營養(yǎng)生長、發(fā)育和生殖[3,25-30]。系統(tǒng)進(jìn)化分析表明,CYC/TB1分枝經(jīng)歷了兩次重復(fù),從而引發(fā)了3種類型的基因:CYC1、CYC2和CYC3[11]。對擬南芥的遺傳研究表明,CYC1類保持了tb1的控制莖分枝的功能[31-33]。CYC2類包括CYCLOIDEA-like基因,在花的背腹對稱進(jìn)化中起關(guān)鍵作用[34-36]。這一類基因由于重復(fù)作用進(jìn)化出很多新的功能,以豆科(Leguminosae)[12,37-40]、紫菀目[41-43]和Lamiales[4,13,44-59]為例。CYC3類包含一些基因如擬南芥的BRANCHED2,在側(cè)枝和花原基中都有表達(dá),在莖分枝控制方面作用較小,在花發(fā)育方面功能還不是很清楚[31-33]。
2.1 TCP蛋白的生化特性
TCP因子的生化特性主要在水稻中明確[1,17]。PCF1,PCF2是識別PCNA啟動子的DNA結(jié)合蛋白[1]。TCP domain 的堿性區(qū)域,在所有家族成員中是高度保守的,是DNA結(jié)合所必須但不是高效的區(qū)域,因?yàn)槿笔н@一區(qū)域?qū)⑼耆拗平湍竼坞s交中的DNA結(jié)合活性。而且,水稻TCP蛋白能結(jié)合特異的DNA motif。隨機(jī)結(jié)合位點(diǎn)選擇實(shí)驗(yàn)和EMSAs電泳遷移位移實(shí)驗(yàn)揭示了I類和II類因子的不同的共有結(jié)合位點(diǎn)。I類的共有位點(diǎn)是GGNCCCAC,這個相同的基序[或者是更短的序列是(T)TGGGCC,GCCCR,GG(A/T)CCC]接著在擬南芥基因推測受I類因子控制的啟動子中被發(fā)現(xiàn)[60-64]。有趣的是,II類結(jié)合位點(diǎn)的共有序列與I類不同但存在共有序列:G(T/C)GGNCCC[17,65]。一段互補(bǔ)的基序是gGGaCCAC,通過體外選擇得到確認(rèn),作為II類AtTCP4的結(jié)合位點(diǎn),它的核心序列是GGACCA,在AtTCP4調(diào)控的基因中過度出現(xiàn)[24]。這預(yù)示著,包含這兩個位點(diǎn)的序列,G(T/C)GGNCCCAC可能被這兩類蛋白識別,從而同等的或者競爭性的調(diào)控轉(zhuǎn)錄調(diào)控[8,17,61]。最近有研究表明,II類因子CYC可以結(jié)合I類位點(diǎn)[66],這說明,這個序列的特異性是不完全的,TCP因子存在競爭的可能。
TCP蛋白形成同源或者異源二聚體起作用(目前只在同類的因子中有表述),在除TCPdomain之外,其他蛋白的缺失預(yù)防了二聚化作用,從而導(dǎo)致DNA結(jié)合能力喪失,因?yàn)镈NA結(jié)合需要形成二聚體[17]。因此,也有可能是,不同的異聚化組合結(jié)合不同的瞬時作用元件,以不同的親和力識別靶基因,或者調(diào)整其他的活性[7]。這將使得研究這些轉(zhuǎn)錄因子的調(diào)控網(wǎng)絡(luò)更加復(fù)雜。作為DNA結(jié)合蛋白,TCP因子預(yù)測是定位在細(xì)胞核內(nèi)。在這些因子中存在兩個或者多個核定位信號(NLS),免疫共沉淀核提取物或者GFP融合蛋白技術(shù)確定了少數(shù)TCP成員是定位于核中[1,17,31,62,67,68]。相反的,PTF1/TCP13的GFP融合蛋白發(fā)現(xiàn)定位于葉綠體[69]。其他少數(shù)TCP因子(AtTCP11、AtTCP15、AtTCP17、AtTCP22和 AtTCP23)被預(yù)測含有葉綠體靶向肽段(cTP)[6,70],因此這些因子極有可能是控制葉綠體基因的轉(zhuǎn)錄[69]。
2.2 TCP蛋白因子的轉(zhuǎn)錄
TCP蛋白結(jié)合數(shù)個基因的啟動子部分的功能順式調(diào)控元件[1,17,24,60-65,69,71]。但是具體被哪一個TCP蛋白控制轉(zhuǎn)錄的分子機(jī)制知之甚少。例如,TCP因子可否激活自身轉(zhuǎn)錄,少數(shù)TCP因子被報(bào)道具有自我激活功能,但是目前為止水稻蛋白I類沒有發(fā)現(xiàn)可以反式激活受I類位點(diǎn)控制的報(bào)告基因??梢?,至少一些TCP轉(zhuǎn)錄因子不是轉(zhuǎn)錄激活自身,而是需要和其他蛋白互作來控制轉(zhuǎn)錄。
TCP結(jié)合位點(diǎn)經(jīng)常與順式作用元件有關(guān),預(yù)示TCP因子可能作為調(diào)控復(fù)合物的一部分[60-72]。如,擬南芥CYCLINB1;1基因(AtCYCB1;1)的啟動子,TCP結(jié)合位點(diǎn)與M特異性激活元件(控制G2/M階段特異的表達(dá)周期)[73](MSA)合作促進(jìn)高水平轉(zhuǎn)錄[61]。TCP位點(diǎn)被發(fā)現(xiàn)與AtPCNA2,AtCYTOCHROME C-1和2,以及很多核糖體蛋白基因的啟動子的順式作用元件telo box 有關(guān)[63,72,74,75],并且它們與telo box協(xié)同作用于人工啟動子從而控制報(bào)告基因的表達(dá)[63]。例如,一個telo box結(jié)合因子,AtPURa在酵母雙雜交中與AtTCP20互作,表明這兩個蛋白可以一起作用于核糖體蛋白基因的啟動子[63]。另 一 個TCP因 子,CCA1 HIKING EXPEDITION(CHE),與CCA1啟動子結(jié)合,引起該基因的下調(diào)[62],與TIMING OF CAB EXPRESSION1(TOC1)(一個 CCA1的轉(zhuǎn)錄激活因子)互作[76]。認(rèn)為CHE使TOC1分離,防止了它在CCA1啟動子與其他轉(zhuǎn)錄因子互作[62]。AtTCP24與ABAP1互作負(fù)調(diào)控AtCDT1a和AtCDT1b的轉(zhuǎn)錄[65]。最后,金魚草中TCP-CUP互作蛋白(TIC),與CUPULIFORMIS(CUP),一個調(diào)控器官邊界形成的NAC-域轉(zhuǎn)錄因子結(jié)合,但是未被檢測到其轉(zhuǎn)錄作用。
2.3 TCP蛋白的生化功能
TCP蛋白可以作為轉(zhuǎn)錄激活子或者抑制子,但是這些功能似乎不是由它們的TCP域決定的:兩個亞家族的TCP因子都有轉(zhuǎn)錄激活作用(如第1亞家族的AtTCP20增強(qiáng)了CYCB1;1的轉(zhuǎn)錄,第2亞家族PTF1/AtTCP13促進(jìn)了PSBD的轉(zhuǎn)錄)和轉(zhuǎn)錄抑制作用(第1亞家族的CHE和第2亞家族的AtTCP24)。有些TCP蛋白甚至可能既有轉(zhuǎn)錄激活作用又有轉(zhuǎn)錄抑制作用,此外,有些TCP蛋白相互作用可能與轉(zhuǎn)錄控制無關(guān)聯(lián)。PTF1/AtTCP13在葉綠體中促進(jìn)PSBD的轉(zhuǎn)錄,經(jīng)酵母雙雜交鑒定與AHPs互作,(AHPs調(diào)停His-to-Asp信號轉(zhuǎn)導(dǎo),如細(xì)胞分裂素途徑[68])。這表示TCP家族在細(xì)胞分裂素轉(zhuǎn)導(dǎo)途徑中起作用的可能性。蛋白質(zhì)相互作用可通過保守的TCP域兩親性螺旋介導(dǎo)[2],該螺旋包含LxxLL特征或者是fxxLL特征,(L是亮氨酸殘基;x是任意氨基酸;F是一個疏水性氨基酸),這個結(jié)構(gòu)在動物中是介導(dǎo)轉(zhuǎn)錄共激活子與配體核受體結(jié)合[77]。但是,該類蛋白的其他部分,在某些情況下,增強(qiáng)了其特異性:ABAP1與AtTCP24互作而不是與其他關(guān)系親近的TCP因子,AtTCP3,AtTCP5,PTF1/TCP13,或者 AtTCP17,這些因子包含幾乎相同的TCP域[65]。這表明,在TCP域之外的高度的分化和快速的進(jìn)化結(jié)果,在某些情況下,是為了其功能特異性。相反的,金魚草CUP可以結(jié)合TIC和CYC,這兩個TCP蛋白分屬于不同的亞家族[78]。所有的這些相互作用,目前為止都只在體外得到證明,需要進(jìn)一步得到體內(nèi)實(shí)驗(yàn)的驗(yàn)證。
一直以來都認(rèn)為第一亞家族的基因促進(jìn)植物生長和分芽生殖,主要是根據(jù)水稻中PCF1/PCF2和AtTCP20在分生組織中的表達(dá),以及這些基因分別對PCNA和CYCB1;1的轉(zhuǎn)錄激活作用[1,60]。但是,對于這一功能的直接證據(jù)還沒有得到。大多數(shù)第一亞家族經(jīng)分析的單突變體有弱的或者是沒有表型缺失,可能是由于基因冗余導(dǎo)致的[60,61,79,80]。同時,在擬南芥中,AtTCP20 融合EAR抑制子的異位表達(dá)引起很特殊的表型,表明了TCP家族基因在細(xì)胞分裂、伸長和分化調(diào)控中起到重要作用[63]。
相比之下,基于觀察幾個單突變和多突變體的表型認(rèn)為第二亞家族的功能是防止植物生長和增殖。cyc-型突變體減少了花兩側(cè)對稱的生長[4,30,37,41,43,45,50,81],tb1/bra1-型突變體則表現(xiàn)出過度的莖分枝[3,26-29,31,32]。這些明顯不相關(guān)的表型都可歸因于響應(yīng)組織增殖模式的基因表達(dá)的改變。CIN-型基因在金魚草、擬南芥和番茄中發(fā)現(xiàn),限制了發(fā)育中的葉原基邊界的細(xì)胞增殖。在金魚草和擬南芥的突變體中發(fā)現(xiàn),與野生型相比,葉片保持更長時間的細(xì)胞分裂,因此產(chǎn)生更大的葉片,且葉片形狀發(fā)生改變,表面褶皺[18,20,22,24,65]。在番茄中,突變體的復(fù)葉有更多的葉緣持續(xù)生長的更大片的小葉[23]。金魚草中CYC基因減少了嫩花原基分生組織的背側(cè)區(qū)域的細(xì)胞的增殖,從而減少了在這一區(qū)域背側(cè)花器的數(shù)目,并進(jìn)一步引起背側(cè)雄蕊的敗育形成不育雄蕊[4,56]。玉米tb1和AtBRC1可以通過下調(diào)特定基因的表達(dá),使得腋芽生長停止被打破,從而生長成側(cè)枝[3,25,32,33]。第二亞家族基因與控制細(xì)胞增殖和生長有什么關(guān)系,有文獻(xiàn)報(bào)道稱第二亞家族的TCP基因mRNA水平與一些細(xì)胞周期標(biāo)志基因表達(dá)呈負(fù)相關(guān)[22,81,82],但是這也只是表明細(xì)胞在有細(xì)胞周期標(biāo)志基因表達(dá)的區(qū)域的分裂停止。目前為止,沒有證據(jù)表明,TCP基因直接抑制HISTONE或者是CYCLIND3基因轉(zhuǎn)錄。盡管有少數(shù)TCP靶基因已知[1,21,60,64-66,69],一些是直接參與到細(xì)胞周期進(jìn)程的。例如,II類AtTCP24負(fù)調(diào)節(jié)轉(zhuǎn)錄前復(fù)制控制(預(yù)RC)因子基因CDT1a和CDT1b,這是細(xì)胞進(jìn)入S期和DNA復(fù)制必須的[65]。此外,II類蛋白可以拮抗前面提到的I類因子在PCNA[1]和CYCB1[60]轉(zhuǎn)錄方面的作用。其他II類因子可以間接的影響細(xì)胞增殖,如PTF1/TCP13可能修正細(xì)胞分裂素信號途徑的應(yīng)答[67],從而影響細(xì)胞分裂。最近的一項(xiàng)研究利用葉成熟標(biāo)志基因表明,除了延緩增殖外,CIN-like基因可以促進(jìn)分化[22]?;蚪M廣義分子表明,I類基因結(jié)合位點(diǎn)在控制重要的細(xì)胞活動的基因的啟動子區(qū)有很多,如蛋白質(zhì)合成,線粒體氧化磷酸化,葉綠體基因轉(zhuǎn)錄,這些預(yù)示著I類基因可能控制這些進(jìn)程[60-62,69,75]。而II類蛋白則通過急劇的影響細(xì)胞和組織的增殖與生長率來干擾這些細(xì)胞活動。
還有研究表明,NAC域轉(zhuǎn)錄因子家族與TCP家族有很近的關(guān)聯(lián),都是最為互作的部分和作為下游靶目標(biāo)。金魚草的NAC域蛋白CUP以I類TCP因子-TIC互作表明,基于NAC和TCP因子定位表達(dá)的器官邊界的建立存在一個模式[77]。已經(jīng)證明,擬南芥中AtTCP3、AtTCP2、AtTCP4、AtTCP5、AtTCP10、PTF1/TCP13、AtTCP17和 AtTCP24嵌合表達(dá)阻遏子減少了NAC域基因[CUP-SHAPED COTYLEDON(CUC)]的表達(dá)[24]。相比之下,At-TCP3的功能獲得抑制了CUC基因的表達(dá)并引起子葉融合[24],這個表型在前面對與AtTCP2和AtTCP4的超表達(dá)研究中也有發(fā)現(xiàn)[18]。在TCP3的dominant negative version 表達(dá)中,出現(xiàn)了miR164的下調(diào),導(dǎo)致CUC轉(zhuǎn)錄本的裂解。由此可見,CIN-like基因可以通過調(diào)控miR164的轉(zhuǎn)錄水平而控制CUC基因的表達(dá)[24]。而其他的TCP基因則可能促進(jìn)器官的融合。人們在紫菀目大丁草中發(fā)現(xiàn),GhCYC2基因與花瓣融合形成傘形花序小花有關(guān)。此外,減少GhCYC2功能導(dǎo)致頻繁分裂反花瓣,異位GhCYC2表達(dá)導(dǎo)致花瓣的融合和形成管形磁盤小花[41]。
對TCP基因的其他功能研究發(fā)現(xiàn),它們與細(xì)胞伸長[18,21,24,41,63,66],雌雄配體發(fā)育[80,83],胚胎發(fā)育[83],種子萌發(fā)[79],茉莉酸合成和葉片衰老[21]及光形態(tài)建成[84]有關(guān)。TCP家族基因是植物特有的一類轉(zhuǎn)錄因子,在植物界特別是高等植物中具有非常廣泛的分布,它控制著植物生長發(fā)育的大部分生物學(xué)功能。擬南芥TCP家族基因一共包括24個成員,如果按照氨基酸序列的保守性來區(qū)分,可以分為亞家族一和亞家族二,它們分別包含13個成員和11個成員。通過對TCP1的研究發(fā)現(xiàn)其對擬南芥植物激素油菜素內(nèi)酯的生物合成具有非常重要的調(diào)節(jié)作用。在擬南芥油菜素內(nèi)酯生物合成的途徑中,DWF4是其中的一個關(guān)鍵酶,DWF4的蛋白含量直接影響到
高等植物體內(nèi)油菜素內(nèi)酯的合成量,TCP1通過與DWF4啟動子相互作用,可以正向調(diào)節(jié)DWF4的轉(zhuǎn)錄水平,從而達(dá)到影響植物體內(nèi)油菜素內(nèi)酯的含量,進(jìn)而進(jìn)一步對植物的生長發(fā)育進(jìn)行調(diào)控[18,21,79,83]。TCP20是一個與葉片發(fā)育相關(guān)的轉(zhuǎn)錄因子,以往的研究中發(fā)現(xiàn)TCP20可能參與調(diào)控了葉片的衰老進(jìn)程。將TCP20和TIE1的C端融合后在擬南芥中表達(dá),轉(zhuǎn)基因植物表現(xiàn)出與tie1-D相類似葉片早衰表型,表明TIE1能和TCP20相互作用并參與調(diào)控葉片的衰老進(jìn)程。為了探究TIE1在衰老過程中行使的功能,我們把將TIE1的EAR基序突變或刪除后在野生型擬南芥中表達(dá)或再與病毒VP16蛋白的轉(zhuǎn)錄激活區(qū)融合后在擬南芥中表達(dá),最終獲得了使TIE1功能抑制的顯性缺失轉(zhuǎn)基因植株[18,21]。最后,CHE作為生物鐘的一個新的因素的功能鑒定[64]進(jìn)一步解釋了這個基因家族在植物中的多功能。
轉(zhuǎn)錄的數(shù)據(jù)表明,I類基因是廣泛在植物生長發(fā)育過程表達(dá),在轉(zhuǎn)錄后控制功能尚未見報(bào)道。相比之下,II類TCP基因的功能似乎嚴(yán)格控制在多個層面。這并不奇怪鑒于其對增殖和生長的強(qiáng)烈影響,它們在不同發(fā)育階段和不同組織的功能是收到嚴(yán)格限制的。II類基因顯示mRNA的分布動態(tài)和空間限制的模式[4,32,20]通過轉(zhuǎn)錄水平調(diào)控,同時也嚴(yán)格監(jiān)管mRNA的穩(wěn)定性。迄今在所有已分析的被子植物CIN型基因的一個子集是小分子RNAmiR319的靶目標(biāo)[18,21,22-24]。這種途徑進(jìn)化較晚,因?yàn)殡m在立碗蘚屬已檢測到miR319,CIN-類基因在這個物種沒有目標(biāo)序列[5,85]。異位或在自己的啟動子下表達(dá)CIN-miR319耐基因,導(dǎo)致強(qiáng)勁增長,減少子葉融合,莖頂端分生組織的發(fā)育受阻和致死,都說明該類基因在植物生存能力的控制方面的重要性[18,23,24]。
在這些基因中內(nèi)含子也可能具有調(diào)節(jié)作用。許多tb1-like和CYC-like基因含有內(nèi)含子,在某些情況下是定位在3' UTRs處[4,42]。UTRs調(diào)節(jié)mRNA的穩(wěn)定性,定位和翻譯效率,UTR的內(nèi)含子,這是比較少見的,已報(bào)道影響表達(dá)水平(如文獻(xiàn)[86,87])。通過選擇剪接的假定調(diào)控也被觀察到。例如,BRC1的cDNA已從腋芽以外的組織分離得到,并保留內(nèi)含子導(dǎo)致缺乏R結(jié)構(gòu)域的截?cái)嗟牡鞍踪|(zhì)(C. Poza 和P. Cubas,未發(fā)表)。最后,盡管還有待證明,高保守的TCP域在參與調(diào)控的DNA結(jié)合,亞細(xì)胞定位,蛋白質(zhì)的相互作用和蛋白質(zhì)降解有關(guān)。
植物特異性的TCP基因家族作為一個專利因子家族的出現(xiàn),在植物發(fā)育過程中起重要作用。這些基因,主要是II類因子,影響細(xì)胞增殖的定位模式,控制形態(tài)特征,如花的形狀、葉形和莖分枝。TCP基因還參與其他關(guān)鍵生物過程,如激素的合成和晝夜節(jié)律調(diào)控。
在過去的十多年中,已獲得了這個家族的演變和其分子功能的一些知識,但這些領(lǐng)域的研究仍處于早期階段。目前還不清楚這個新基因家族是如何出現(xiàn)的,新的順式調(diào)控元件與新的形態(tài)特征的產(chǎn)生是如何相關(guān)的,如花卉兩側(cè)對稱,側(cè)枝生長受阻。在整個植物王國里,TCP基因的種系基因組學(xué)比較和RNAi的功能分析應(yīng)幫助解決這些問題。
從力學(xué)的觀點(diǎn)來看,它仍然是證明I類和II類因子拮抗競爭共同的靶基因或結(jié)合位點(diǎn)。如果這種情況是真實(shí)的,TCP因子通過部分重疊的表達(dá)域,可以建立復(fù)雜的轉(zhuǎn)錄因子活性的組合網(wǎng)絡(luò),這需要闡明。生物意義的TCP同源和異源二聚體和其他的TCP蛋白質(zhì)伴侶可能會在不久的未來使用蛋白質(zhì)組學(xué)方法去鑒定,以及這些蛋白控制的靶基因的確定可通過體內(nèi)轉(zhuǎn)錄復(fù)合物高通量技術(shù),如染色質(zhì)免疫沉淀結(jié)合大規(guī)模parallel DNA sequencing(芯片SEQ)[88]實(shí)現(xiàn)。TCP蛋白質(zhì)伴侶和其下游基因的確定可能幫助研究人員了解哪些TCP基因影響增殖與細(xì)胞的分化狀態(tài)的遺傳途徑。
最后,由于I類的成員可能存在功能冗余現(xiàn)象,對這一類基因的分析可能需要由RNA誘導(dǎo)的基因沉默和嵌合阻遏沉默技術(shù)[21,60,89]。今后的工作應(yīng)該揭示該植物特有的基因家庭的新功能。此外,隨著對TCP基因的功能和調(diào)節(jié)機(jī)制的深入研究,研究人員可使用它們作為工具,調(diào)節(jié)植物的生長模式和生成新的農(nóng)藝性狀。
[1]Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. The Plant Cell Online, 1997, 9(9):1607-1619.
[2]Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2):215-222.
[3]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. 1997:
[4]Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603):794-799.
[5]Floyd SK, Bowman JL. The ancestral developmental tool kit of land plants[J]. International Journal of Plant Sciences, 2007, 168(1):1-35.
[6]Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants[J]. Journal of Molecular Evolution, 2007, 65(1):23-33.
[7]Citerne HL, Luo D, Pennington RT, et al. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae[J]. Plant Physiology, 2003, 131(3):1042-1053.
[8]Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[J]. Systematics Association Special Volume, 2002, 65:247-266.
[9]Damerval C, Le Guilloux M, Jager M, et al. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae[J]. Plant Physiology, 2007, 143(2):759-772.
[10]Gübitz T, Caldwell A, Hudson A. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives[J]. Molecular Biology and Evolution, 2003, 20(9):1537-1544.
[11]Howarth DG, Donoghue MJ. Phylogenetic analysis of the “ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proceedings of the National Academy of Sciences, 2006, 103(24):9101.
[12]K?lsch A, Gleissberg S. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceaes. str[J]. Plant Biology, 2006, 8(5):680-687.
[13]Reeves PA, Olmstead RG. Evolution of the TCP gene family in Asteridae:cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution[J]. Molecular Biology and Evolution, 2003, 20(12):1997-2009.
[14]Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105.
[15]Xiong Y, Liu T, Tian C, et al. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Molecular Biology, 2005, 59(1):191-203.
[16]Yao X, Ma H, Wang J, et al. Genome-Wide Comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. Journal of Integrative Plant Biology, 2007, 49(6):885-897.
[17]Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. The Plant Journal, 2002, 30(3):337-348.
[18]Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263.
[19]Crawford BCW, Nath U, Carpenter R, et al. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J]. Plant Physiology, 2004, 135(1):244-253.
[20]Efroni I, Blum E, Goldshmidt A, et al. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development[J]. The Plant Cell Online, 2008, 20(9):2293-2306.
[21]Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J]. The Plant Cell Online, 2007, 19(2):473-484.
[22]Nath U, Crawford BCW, Carpenter R, et al. Genetic control of surface curvature[J]. Science, 2003, 299(5611):1404.
[23]Ori N, Cohen AR, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39(6):787-791.
[24]Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9):e230.
[25]Hu WJ, Zhang SH, Zhao Z, et al. The analysis of the structure and expression of OsTB1 gene in rice[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(6):507-514.
[26]Hubbard L, McSteen P, Doebley J, et al. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte[J]. Genetics, 2002, 162(4):1927.
[27]Lewis JM, Mackintosh CA, Shin S, et al. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development[J]. Plant Cell Reports, 2008, 27(7):1217-1225.
[28]Peng HZ, Lin EP, Sang QL, et al. Molecular cloning, expression analyses and primary evolution studies of REV-and TB1-like genes in bamboo[J]. Tree Physiology, 2007, 27(9):1273-1281.
[29]Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3):513-520.
[30]Yuan Z, Gao S, Xue DW, et al. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiology, 2009, 149(1):235-244.
[31]Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell Online, 2007, 19(2):458-472.
[32]Finlayson SA. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1[J]. Plant and Cell Physiology, 2007, 48(5):667.
[33]Poza-Carrión C, Aguilar-Martínez JA, Cubas P. Role of TCP gene BRANCHED1 in the control of shoot branching in Arabidopsis[J]. Plant Signaling & Behavior, 2007, 2(6):551.
[34]Cubas P. Floral zygomorphy, the recurring evolution of a successful trait[J]. Bio Essays, 2004, 26(11):1175-1184.
[35]Jabbour F, Nadot S, Damerval C. Evolution of floral symmetry:a state of the art[J]. Comptes Rendus Biologies, 2009, 332(2-3):219-231.
[36]Preston JC, Hileman LC. Developmental genetics of floral symmetry evolution[J]. Trends in Plant Science, 2009, 14(3):147-154.
[37]Feng X, Zhao Z, Tian Z, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13):4970.
[38]Fukuda T, Yokoyama J, Maki M. Molecular evolution of cycloidealike genes in Fabaceae[J]. Journal of Molecular Evolution, 2003, 57(5):588-597.
[39]Qin LJ, Guo XZ, Feng XZ, et al. Cloning of LjCYC1 gene and nuclear localization of LjCYC1 protein in Lotus japonicus[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(5):523-532.
[40]Wang Z, Luo Y, Li X, et al. Genetic control of floral zygomorphy in pea(Pisum sativum L. )[J]. Proceedings of the National Academy of Sciences, 2008, 105(30):10414.
[41]Broholm SK, T?htiharju S, Laitinen RAE, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera(Asteraceae)inflorescence[J]. Proceedings of the National Academy of Sciences, 2008, 105(26):9117.
[42]Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family[J]. Molecular Biology and Evolution, 2008, 25(7):1260-1273.
[43]Kim M, Cui ML, Cubas P, et al. Regulatory genes control a key morphological and ecological trait transferred between species[J]. Science, 2008, 322(5904):1116.
[44]Citerne HL, M?ller M, Cronk QCB. Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry[J]. Annals of Botany, 2000, 86(1):167.
[45]Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749):157-161.
[46]Du ZY, Wang YZ. Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii(Gesneriaceae)[J]. Journal of Systematics and Evolution, 2008, 46(1):23-31.
[47]Gao Q, Tao JH, Yan D, et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha(Gesneriaceae)[J]. Development Genes and Evolution, 2008, 218(7):341-351.
[48]Hileman LC, Baum DA. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae(Veronicaceae)[J]. Molecular Biology and Evolution, 2003, 20(4):591-600.
[49]Hileman LC, Kramer EM, Baum DA. Differential regulation of symmetry genes and the evolution of floral morphologies[J]. Proceedings of the National Academy of Sciences, 2003, 100(22):12814.
[50]Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry inflowers of Antirrhinum[J]. Cell, 1999, 99(4):367-376.
[51]Moller M, Clokie M, Cubas P, et al. Integrating molecular phylogenies and developmental genetics:a Gesneriaceae case study[M]. Francis, London:Molecular Systematics and Plant Evolution. Taylor and 1999:375-402.
[52]Picó F, M?ller M, Ouborg N, et al. Single nucleotide polymorphisms in the coding region of the developmental gene Gcyc in natural populations of the relict Ramonda myconi(Gesneriaceae)[J]. Plant Biology, 2002, 4(5):625-629.
[53]Preston JC, Kost MA, Hileman LC. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies[J]. New Phytologist, 2009, 182(3):751-762.
[54]Smith JF, Hileman LC, Powell MP, et al. Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae(Gesneriaceae)[J]. Molecular Phylogenetics and Evolution, 2004, 31(2):765-779.
[55]Song CF, Lin QB, Liang RH, et al. Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra(Gesneriaceae)[J]. BMC Evolutionary Biology, 2009, 9(1):244.
[56]Vieira CP, Vieira J, Charlesworth D. Evolution of the cycloidea gene family in Antirrhinum and Misopates[J]. Molecular Biology and Evolution, 1999, 16(11):1474-1483.
[57]Wang CN, M?ller M, Cronk QCB. Phylogenetic position of Titanotrichum oldhamii(Gesneriaceae)inferred from four different gene regions[J]. Systematic Botany, 2004, 29(2):407-418.
[58]Wang L, Gao Q, Wang YZ, et al. Isolation and sequence analysis of two CYC-like genes, SiCYC1A and SiCYC1B, from zygomorphic and actinomorphic cultivars of Saintpaulia ionantha(Gesneriaceae)[J]. Acta Phytotaxonomica Sinica, 2006, 44(4):353-361.
[59]Zhou XR, Wang YZ, Smith JF, et al. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea(Gesneriaceae)[J]. New Phytologist, 2008, 178(3):532-543.
[60]Hervé C, Dabos P, Bardet C, et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development[J]. Plant Physiology, 2009, 149(3):1462-1477.
[61]Li C, Potuschak T, Colón-Carmona A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12978.
[62]Pruneda-Paz JL, Breton G, Para A, et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock[J]. Science, 2009, 323(5920):1481.
[63]Trémousaygue D, Garnier L, Bardet C, et al. Internal telomeric repeats and ‘TCP domain’protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells[J]. The Plant Journal, 2003, 33(6):957-966.
[64]Welchen E, Gonzalez DH. Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery[J]. Plant Physiology, 2006, 141(2):540-545.
[65]Masuda HP, Cabral LM, De Veylder L, et al. ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription[J]. The EMBO Journal, 2008, 27(20):2746-2756.
[66]Costa MMR, Fox S, Hanna AI, et al. Evolution of regulatory interactions controlling floral asymmetry[J]. Development, 2005, 132(22):5093-5101.
[67]Koroleva OA, Tomlinson ML, Leader D, et al. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions[J]. The Plant Journal, 2005, 41(1):162-174.
[68]Suzuki T, Sakurai K, Ueguchi C, et al. Two types of putative nuclear factors that physically interactwith histidine-containing phosphotransfer(Hpt)domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2001, 42(1):37.
[69]Baba K, Nakano T, Yamagishi K, et al. Involvement of a nuclearencoded basic helix-loop-helix protein in transcription of the lightresponsive promoter ofpsbD[J]. Plant Physiology, 2001, 125(2):595-603.
[70]Wagner R, Pfannschmidt T. Eukaryotic transcription factors in plastids--Bioinformatic assessment and implications for the evolution of gene expression machineries in plants[J]. Gene,2006, 381:62-70.
[71]Welchen E, Gonzalez DH. Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. Evidence for the involvement of TCP-domain protein-binding elements in antherand meristem-specific expression of the Cytc-1 gene[J]. Plant Physiology, 2005, 139(1):88-100.
[72]Vandepoele K, Casneuf T, Van de Peer Y. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics[J]. Genome Biology, 2006, 7(11):R103.
[73]Ito M, Iwase M, Kodama H, et al. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription[J]. The Plant Cell Online, 1998, 10(3):331-342.
[74]Tatematsu K, Ward S, Leyser O, et al. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis[J]. Plant Physiology, 2005, 138(2):757-766.
[75]Tremousaygue D, Manevski A, Bardet C, et al. Plant interstitial telomere motifs participate in the control of gene expression in root meristems[J]. The Plant Journal, 1999, 20(5):553-561.
[76]Strayer C, Oyama T, Schultz TF, et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog[J]. Science, 2000, 289(5480):768.
[77]Heery DM, Kalkhoven E, Hoare S, et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors[J]. Nature, 1997, 387(6634):733-736.
[78]Weir I, Lu J, Cook H, et al. CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum[J]. Development, 2004, 131(4):915.
[79]Takeda T, Amano K, Ohto M, et al. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development[J]. Plant Molecular Biology, 2006, 61(1):165-177.
[80]Tatematsu K, Nakabayashi K, Kamiya Y, et al. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana[J]. The Plant Journal, 2008, 53(1):42-52.
[81]Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara[J]. Proceedings of the National Academy of Sciences, 2007, 104(42):16714.
[82]Gaudin V, Lunness PA, Fobert PR, et al. The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene[J]. Plant Physiology, 2000, 122(4):1137-1148.
[83]Ruuska SA, Girke T, Benning C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. The Plant Cell Online, 2002, 14(6):1191-1206.
[84]López-Juez E, Dillon E, Magyar Z, et al. Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis[J]. The Plant Cell Online, 2008, 20(4):947-968.
[85]Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss[J]. The Plant Journal, 2005, 43(6):837-848.
[86]Chung B, Simons C, Firth A, et al. Effect of 5’UTR introns on gene expression in Arabidopsis thaliana[J]. BMC Genomics, 2006, 7(1):120.
[87]Kim MJ, Kim H, Shin JS, et al. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron[J]. Molecular Genetics and Genomics, 2006, 276(4):351-368.
[88]Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions[J]. Science, 2007, 316(5830):1497.
[89]Hiratsu K, Matsui K, Koyama T, et al. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis[J]. The Plant Journal, 2003, 34(5):733-739.
(責(zé)任編輯 狄艷紅)
Research Progress on the Family of TCP Genes
LIU li-juan GAO Hui
(College of Environmental Science and Engineering,China West Normal University,Nanchong 637002)
The TCP genes encode plant specific transcription factors,containing a bHLH motif,which binds with DNA or produces the interactions between protein and protein. In the family of TPC genes there are 5 members in monocotyledons and over 20 members in dicotyledons. The duplication and diversification of genes evolve two types of TCP gene families with slightly different TCP domains. Here,we just briefly summarize the evolution on the family,their regulations,the biochemical properties of their proteins,and the biochemical functions of some members,especially on cell proliferation controlling developmental tissue. Growing studies on the functions of TCP genes make it possible to adjust plants growth patterns and create new agricultural science character by regarding TCP gene as a tool,to provide ideas for better regulation of plant growth patterns and regulation of physiological characteristics of plants.
TCP gene;regulation;biochemical function
10.13560/j.cnki.biotech.bull.1985.2016.09.003
2016-03-03
西華師范大學(xué)青年資助專項(xiàng)(14D011)
劉麗娟,女,碩士研究生,研究方向:環(huán)境科學(xué)與植物生理學(xué);E-mail:1282019384@qq.com
高輝,男,研究方向:環(huán)境科學(xué)與植物生理生態(tài)學(xué);E-mail:hubeigaohui@163.com