黃明輝
(廣州華夏職業(yè)學院 基礎部,廣東 廣州 510935)
?
多時滯的非線性微分方程的漸近穩(wěn)定性
黃明輝
(廣州華夏職業(yè)學院 基礎部,廣東 廣州 510935)
摘要:以時滯的非線性微分方程為研究對象,利用不動點定理證明了時滯的非線性微分方程的漸近穩(wěn)定性,并得到了零解漸近穩(wěn)定的充分條件.
關鍵詞:時滯; 漸近穩(wěn)定性; 不動點; 非線性
1問題的提出
近年來,時滯微分方程的研究得到了數學、物理以及化學等多個領域學者的關注[1-2].研究下列多時滯非線性微分方程的漸近穩(wěn)定性
(1)
其中bi∈C(R+,R)和τi∈C(R+,R+),f連續(xù)可導及滿足Lipschitz條件,當t→∞時,t-τi(t)→∞,i=1,2,…,N.
關于方程(1)的研究已經取得了很多研究成果[3-8].例如,Jin C H、Luo J W[3]利用Banach不動點定理證明了以下時滯微分方程的漸近穩(wěn)定性
(2)
上述方程(2)是方程(1)中f(x)=x的特殊情況.當N=1和N=2,τ1=0時,方程(1)相應地改變?yōu)?/p>
x′(t)=-b(t)x(t-τ(t))
(3)
和
x′(t)=-b1(t)x(t)-b2(t)x(t-τ(t)).
(4)
Yorke J A[4]對方程(3)證明了:如果存在正數β和q,使得
(5)
20世紀以來,Lyapunov直接法是研究微分方程零解穩(wěn)定性的主要方法[10-15]. 但是,仍然存在很多問題并沒有得到解決.本文仿用Jin C H和Luo J W[15]的方法,利用Banach不動點建立了新的漸近穩(wěn)定性條件,并且不要求τi(t)有界,也不要求bi(t)恒正或者恒負.
2主要結論
其中bi(t)在區(qū)間[m(0),∞)連續(xù),i=1,2,…,N.
方程(1)的解漸近穩(wěn)定當且僅當
將方程(1)轉換為以下形式:
定義算子P:S→S,當t∈[m(t0),t0]時,(Px)(t)=φ(t)和t≥t0時,
(6)
由(4) 可知,存在T3>T1,當t≥T3時
接下來,證明P是壓縮映射.對任意x,y∈S,
根據壓縮映射原理,P在S中存在唯一的不動點x,x是方程(1)的解,即在[m(t0),t0]上且初始函數為φ(s)的解x(t)=x(t,t0,φ)→0,當t→∞時.
(7)
設
s≥0.
由3)可知,
從而,有
其中δ0>0,滿足2δ0KeJ+α<1.
(8)
這與式(8)相矛盾,所以(4)是方程(1)的零解漸近穩(wěn)定的必要條件.證明完畢.
3算例
考察以下標量方程
x′(t)=-b1(t)f(x(t-τ1(t)))-b2(t)f(x(t-τ2(t))),
(9)
γ為充分小的正數.
以及
令α=0.373 8 + 0.373 8 + 0.207 2 +
因為γ是足夠小的正數,可以選取充分小的γ,使得α<1,由定理1可知,方程(9)的零解漸近穩(wěn)定.
參考文獻:
[1] 彭世國. 中立型泛函微分方程的周期解[J]. 廣東工業(yè)大學學報,1997,14(1):8-13.
PENG S G. Periodic solutions of nonlinear neutral functional differential equations[J]. Journal of Guangdong University of Technology, 1997, 14(1):8-13.
[2] 彭世國.n維無究延滯的 Liénard 型方程的周期解[J]. 廣東工業(yè)大學學報,1997,14 (2):20-26.
PENG S G. Periodic solutions ofn-dimensional liénard equations with infinite retardation [J]. Journal of Guangdong University of Technology, 1997, 14 (2):20-26.
[3] JIN C H, LUO J W. Asymptotic stability of differential equations with several delays [J]. Publ Math Debrecen, 2011, 78(1):89-102.
[4] YORKE J A. Asymptotic stability for one-dimensional functional differential-delay equations [J]. Differential Equations, 1970, 7(1):189-202.
[5] KRISZTIN T. On the stability properties for one dimensional functional equations [J]. Funkcial Ekvac, 1991, 34(2):241-256.
[6] YONEYAMA T. On the stability theorem for one-dimensional functional delay-differential equation [J]. J Math Anal, 1987, 125(4):161-173.
[7] YONEYAMA T. On the stability for the delay-differential equation [J]. J Math Anal Appl, 1986, 120(1):271-275.
[8] HARA T, YONEYAMA T, MIYAZAKI R. Some refinements of Razumikhin’s method and their applications[J]. Funkciak Ekvac,1992(2), 35: 279-305.
[9] MUROYA Y. On Yoneyama’s stability theorems for one-dimensional delay differential equations[J]. J Math Anal Appl, 2000, 247(1):314-322.
[10]GRAEF J R, QIAN C, ZHANG B. Asymptotic behavior of solutions of differential equations with variable delays[J]. Proc London Math Soc, 2000, 81(1):72-92.
[11] BURTON T A. Stability by fixed point theory or Liapunocv’s theory: a comparison[J]. Fixed Point Theory , 2003, 4(1):15-32.
[12] BURTON T A, Furumochi T. Krasnoselskii’s fixed point theorem and stability[J]. Nonlinear Anal,2002, 49(4):445-454.
[13] BURTON T A. Stability by Fixed Point Theory for Functional Differential Equations[M]. New York:Dover Pubilications , 2006.
[14] ZHANG B. Fixed points and stability in differential equations with variable delay[J]. Nonlinear Anal, 2005, 63(5-7):233-242.
[15] JIN C H, LUO J W. Fixed points and stability in neutral differential equations with variable delays[J]. Proc Amer Math Soc, 2008, 136(6):909-918.
Asymptotic Stability of Nonlinear Differential Equation with Time Delays
Huang Ming-hui
(Department of Basic Education, Guangzhou Huaxia Technical College, Guangzhou 510935, China)
Abstract:This paper takes the nonlinear delay differential equation as the research subject and uses the fixed point theorem to prove asymptotic stability of nonlinear differential equations with delays. Some sufficient conditions for asymptotic stability of the trivial solution are also established.
Key words:time delays; asymptotic stability; fixed point; nonlinear
中圖分類號:O175.14
文獻標志碼:A
文章編號:1007-7162(2016)01- 0062- 05
doi:10.3969/j.issn.1007- 7162.2016.01.012
作者簡介:黃明輝(1988-),男,助教,碩士研究生,主要研究方向為微分動力系統(tǒng).
基金項目:廣東省自然科學基金資助項目(S2011010005029)
收稿日期:2014- 09- 23