龔麗燕,張秋園
(廣東工業(yè)大學(xué) 應(yīng)用數(shù)學(xué)學(xué)院,廣東 廣州 510520)
?
非自反Banach空間中的Lagrange型凸泛函
龔麗燕,張秋園
(廣東工業(yè)大學(xué) 應(yīng)用數(shù)學(xué)學(xué)院,廣東 廣州 510520)
摘要:在非自反Banach空間X中討論了Lagrange型凸泛函及其對(duì)偶的一些性質(zhì).引入了兩個(gè)廣義次微分概念,進(jìn)一步研究了它們之間的關(guān)系,并指出了非自反Banach空間中的Lagrange型凸泛函具有B自對(duì)偶性.
關(guān)鍵詞:非自反Banach空間; 弱*下半連續(xù); 凸泛函
凸函數(shù)是許多數(shù)學(xué)分支中的一個(gè)重要研究對(duì)象,其性質(zhì)的研究受到各學(xué)科領(lǐng)域的廣泛關(guān)注.1996年,Rockafellar[1]在Banach空間上研究了凸泛函的次微分及其一些性質(zhì).2008年,Ghoussoub[2-3]在凸泛函的條件下提出自反的Banach空間上用自對(duì)偶變分法解決一類不適合用Euler-Lagrange法的偏微分方程,隨后Galichon[4]、Ricceri[5]等對(duì)變分理論的研究均是建立在凸泛函的基礎(chǔ)上.可見(jiàn),凸泛函的應(yīng)用非常廣泛.
本文受此啟發(fā),參考文獻(xiàn)[6-8]中的變分理論,對(duì)非自反Banach空間中對(duì)Legendre-Fenchel對(duì)偶變換和某些向量場(chǎng)的性質(zhì)進(jìn)行了探討,這些結(jié)果對(duì)研究非自反Banach空間中的變分理論有著重要作用.
1預(yù)備知識(shí)
首先,回顧一些相關(guān)概念及定理,其他概念可參考文獻(xiàn)[9-11].
定義1[12]如果賦范空間X到X**的自然映射是滿射的,則稱X是自反的,記X=X**.
定義3[14]若X是實(shí)局部凸空間,泛函φ:X→R∪{+∞},則φ*:X*→R∪{+∞}為
定義4[14]若φ,ψ是Banach空間X中的的下半連續(xù)凸泛函,則
φ*ψ=inf{φ(y)+ψ(x-y);y∈x}.
引理1[12]任一賦范空間X與其二次對(duì)偶空間X**的某一子空間等距線性同構(gòu).
引理2[14]令h(x)=
引理3[14]定義在X×X上的函數(shù)g(x1,x2)=‖x1-x2‖2,其中X是Banach空間,則
φ**=φ;
2主要結(jié)果
定理1若X是非自反Banach空間,f1,f2:X*→R∪{+∞}是兩個(gè)弱*下半連續(xù)凸泛函,定義
h(x)=
h*(p)=
證明令F(x1,x2)=g1(x1,x2)+g2(x1,x2),
下證h(x)的Legendre對(duì)偶變換為h*(p).
由引理2可得
根據(jù)引理3可得
根據(jù)Legendre-Fenchel變換,可得
同理
應(yīng)用定理1的結(jié)論
h*(p)=
通過(guò)直接計(jì)算與使用定理1的結(jié)論求出h(x)的Legendre-Fenchel變換h*(p)結(jié)果相同.
δ*L(x)=
δ*L(x)可以是空集.命題[16]:x→δ*L(x)是單調(diào)映射.若X是自反Banach空間,則δ*L(x)=δL(x)[4],否則不一致[16].
L(x+y,p+q)-L(x,p)≥
令t→0+,得L(x+y,p+q)-L
又X**×X*?X×X*,
例1設(shè)
L:l∞×l1→R,l∞,l1均是非自反Banach空間,定義L(x,p)=‖x‖l∞+‖p‖l1,其中
(1) 求δ*L(x).
‖x+y‖l∞+‖p+q‖l1-‖x‖l∞-‖p‖l1≤
‖y‖l∞+‖q‖l1
(1)
其中x,y∈c0;p,q∈l1.
式(1)對(duì)任意(y,q)∈c0×l1均成立,則
可得,‖x‖l∞≤1時(shí),δ*L(x)=B(0,1),否則,δ*L(x)=?.
B:X**→X**是一有界線性算子,定義B*:X*→X*如下,且=
命題:B*是一有界線性算子,且‖B‖=‖B*‖,所以B*有界.
證明線性性顯然,令‖f‖=‖y‖=1,一方面,因?yàn)锽是有界線性算子,則有≤‖B‖‖f‖‖y‖,所以B*有界,且‖B*‖≤‖B‖;反之B*是有界線性算子,故
定理3若X是非自反Banach空間,設(shè)
φ*(Bx)+φ(p),L*(B*p,Bx)=
證明因?yàn)長(zhǎng)*(B*p,Bx)=
L(x,p)=φ*(Bx)+φ(p),所以有
L*(B*p,Bx)=
又φ**=φ,故L*(B*p,Bx)=L(x,p).證畢.
參考文獻(xiàn):
[1] ROCKAFELLAR R T.Characterization of the subdifferentials of convex funcions[J].Pacific Journal of Math,1966,17(3):497-509.
[2] GHOUSSOUB N. A variational theory for monotone vector fields[J]. Journal Fixed Point Theory Applications,2008,1(4):107-135.
[3] GHOUSSOUB N.Maximal monotone operators are selfdual vector fields and vice-versa[EB/OL].(2006-10-16)[2008-02-02].http:∥arxiv.ora/abs/math/0610494v1.
[4] GALICHON A, GHOUSSOUB N.Variational representations for N-cyclically monotone vector fields[EB/OL].(2012-07-10)[2013-10-02].http:∥arxiv.ora/abs/1207.2408v3.
[5] RICCERI B.A general variational principle and some of its applications[J].Journal of Computational and Applied Mathematics,2000,1(113):401-410.
[6] AUCHMUTY G.Duality for non-convex variational principles[J].Journal of Differential Equation,1983,1(50):80-145.
[7] HESTENSE M R.On variational theory and optimal control theory[J].SIAM,1965,3(1):23-48.
[8] LI S J,YANG X Q,CHEN G Y.Vector Ekeland variational principle[J].Nonconvex Optimization and Its Appl,2000,(38):321-333.
[9] CHEN Y Q,CHO Y J.Nonlinear Operator Theory in Abstract Spaces and Applications[M].New York: Nova Science Publishers,Inc,2004.
[10]ROCHAFELLAR R T.Convex Analysis[M].New Jersey:Princeton University Press,1972.
[11] EKELAND I.On the variational principle[J]. Journal of Mathematical Analysis and Applications,1974,47(2):324-353.
[12] 姚澤清,蘇曉冰,鄭琴,等.應(yīng)用泛函分析[M].北京:科學(xué)出版社,2007.
[13] 郭大鈞.非線性泛函分析[M].2版.山東:山東科學(xué)技術(shù)出版社,2001.
[14] GHOUSSOUB N.Self-dual Partial Differential Systems and Their Variational Principles (Springer Monographs in Mathematics)[M]. New York: Springer,2008.
[15] 蔣平川,王偉.非自反空間內(nèi)的自對(duì)偶lagrange凸泛函[J].廣東工業(yè)大學(xué)學(xué)報(bào),2013,30(4):107-110.
JIANG P C,WANG W. About the self-dual lagrangian convex functional within the non-reflexive space[J].Journal of Guangdong University of Technology,2013,30(4):107-110.
[16] CHEN Q Y, CHO Y J.Monotone type operators in non-reflexive Banach spaces[J].Fixed Point Theory Applications,2014:119.doi:10.1186/1687-1812-2014-119.
Lagrange Convex Functional in Non-reflexive Banach Space
Gong Li-yan, Zhang Qiu-yuan
(School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China)
Abstract:This paper discusses the Lagrange convex functional and the duality property in non-reflexive Banach space. In the discussion, two concepts about generalized subdifferential have been introduced and their relationship has been studied. Also it is pointed out that the Lagrange convex functional has the B-self-dual property.
Key words:non-reflexive Banach space; weak*lower semi-continuous; convex functional
中圖分類號(hào):O177.91
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-7162(2016)01- 0073- 04
doi:10.3969/j.issn.1007- 7162.2016.01.014
作者簡(jiǎn)介:龔麗燕(1989-),女,碩士研究生,主要研究方向?yàn)榉蔷€性泛函分析.
收稿日期:2014- 05- 29