張玉芹,陸 翔,李擎天,陳受宜,張勁松
?
大豆品質調控基因克隆和功能研究進展
張玉芹,陸 翔,李擎天,陳受宜,張勁松
(中國科學院遺傳與發(fā)育生物學研究所,北京100101)
大豆(L.)是世界上重要的經濟作物,為人類生活提供所需的食用油和植物蛋白。大豆油脂、蛋白質和異黃酮含量決定了大豆的經濟價值,大豆品質的優(yōu)劣直接關系到食用者的身體健康,因此,越來越受到廣大科研工作者的關注。大豆油脂脂肪酸組成對油的營養(yǎng)價值、耐儲性及加工工藝等都有很大影響。油脂的組成和積累受脂肪酸合成途徑中多種酶活性的影響,這些基因的表達還受到轉錄前、轉錄和轉錄后水平的調控,有許多相關基因參與此過程。目前大豆油脂的轉錄調控研究較多。研究表明,和類轉錄因子可以激活乙酰輔酶A羧化酶和長鏈脂酰輔酶A合成酶,從而提高了種子油分含量。轉錄因子可以通過抑制GL2進而促進磷脂酶D的活性,增加了轉基因種子的油含量。轉錄因子主要通過誘導蔗糖轉運蛋白基因(、)和細胞壁轉化酶基因(、和)的表達,促進蔗糖從葉片到種子的運輸,為油脂合成提供更多原料和能量,從而提高種子油脂含量。轉錄因子通過激活及油脂合成相關基因,從而提高了種子油含量。大豆籽粒富含蛋白質,占籽粒干物質的40%左右(31%—55%)。大豆蛋白含有8種人體必需的氨基酸,是一種品質優(yōu)良的植物性蛋白質,在膳食中可以代替部分動物性蛋白質。植物中油分和蛋白質往往是負相關的,和類轉錄因子可以提高植物油份含量,但其直接結合啟動子,從而下調儲藏蛋白的表達。大豆異黃酮是大豆生長過程中形成次生代謝產物,具有多種生物活性,在動植物體內有著廣泛的生理作用。近年來大豆異黃酮已成為大豆最引人注目功能成分之一,也是食品與營養(yǎng)學研究熱點之一。類黃酮類物質可能通過調節(jié)結節(jié)的產生從而調控植物的根瘤發(fā)育、生長繁殖和固氮作用。大豆異黃酮對乳腺癌、前列腺癌、心血管疾病和骨質疏松癥的治療也表現出其他一些有益的效應。目前研究表明,可以調控的表達,而干擾的表達降低了大豆根毛中異黃酮的水平,這表明對于異黃酮的生物合成是必需的。本文綜述了大豆種子油分、蛋白以及異黃酮含量相關基因的研究進展,并對大豆種子油分、蛋白及異黃酮在轉錄水平和/或其他方面所受到的調控進行闡述。
大豆;油分;種子蛋白;異黃酮
大豆是人類生活的必需品,為人類提供大量的植物油和蛋白。大豆種子為世界上提供約44%的蛋白和27%的油。此外,大豆的次生代謝產物類黃酮類物質也對人類生活是不可或缺的。目前,關于油脂合成的生化途徑研究已經比較透徹,但其調控機制還不是很清楚。關于大豆種子蛋白調控的機理研究也相對較少。因此,利用生物工程技術手段,提高大豆種子中油分含量或者改善其脂肪酸組成、調整大豆種子蛋白比例以及異黃酮的合成對于提高大豆油分含量、改善大豆乳制品口感以及異黃酮在人類健康方面的應用具有重要意義。此外,大豆油還為當今世界新能源的發(fā)展提供了一種可能。本文對大豆種子發(fā)育過程中油分積累、蛋白合成和異黃酮等產生的調控機制進行了綜述,其中也包含其他油料作物的相關研究。
當植物由營養(yǎng)生長進入生殖生長,種子開始成熟,三大物質(包括淀粉、油分和蛋白質)不斷合成和積累,為種子萌發(fā)和幼苗的生長提供物質與能量。
1.1 油分合成關鍵酶的調控
油脂作為三大物質之一,其合成過程是復雜的。KE等[1]從油料作物油菜籽、大豆、芝麻和花生的cDNA文庫中收集到248 522個EST序列和106 835個轉錄本。油料作物EST數據庫可以為油料作物油脂合成和代謝提供比較分析。油脂可以為植物儲藏大量能量,等體積的油脂可以提供的能量是等體積蛋白質的數倍,所以對于油分調控的研究至關重要。然而大豆油分合成涉及多少基因并不清楚,WEI等[2]檢測了高油品種Zhongdou32和低油品種Youchun02-6的基因表達,結果表明,種子油含量隨著不同成熟階段而變化。在Zhongdou32中,開花22 d和43 d后油分含量大量升高。ZHOU等[3]通過對302個野生大豆、農家品種和栽培大豆進行重測序,測序深度為11倍,比較了230個選擇性區(qū)域和162個拷貝數變異區(qū),結合之前的QTL信息,發(fā)現230個選擇區(qū)域有96個和之前報道的油分QTL相關,其中21個含有脂肪酸生物合成基因。生物素羧化酶是乙酰輔酶A的重要亞基,是雙子葉植物中脂肪酸生物合成的限速酶,LI等[4]從油菜中克隆得到了編碼生物素羧化酶的4個基因,分別命名為、、和,對于解析乙酰輔酶A在蕓苔屬中的進化和調控具有重要作用。LIU等[5]研究發(fā)現向大豆中轉化可以使乙酰-TAG在種子油中含量比例增加從而降低大豆油粘度等改善其品質。DURRETT等[6]將轉化擬南芥,擬南芥種子油含量增加。編碼一個α/β水解酶,很可能具有脂肪水解酶活性,是人類中性脂質儲存疾病的缺陷基因,其紊亂會導致油滴在皮膚和血液細胞中聚集[7]。JAMES等[8]發(fā)現擬南芥同源類似物會導致中性油脂顆粒在成熟葉片中積聚。質譜分析發(fā)現功能突變體的TAG包含葉片特異的脂肪酸。成熟的植株葉片中TAG水平顯著增高,比野生型要高10倍左右。
1.2 油分合成的轉錄調控
過表達脂肪酸合成的單一基因并不能大幅提高脂肪酸的生物合成[9-10]。在高等植物中,大多數脂肪酸的生物合成和種子發(fā)育相偶聯。遺傳和分子研究表明,脂肪酸合成被幾個主要的轉錄因子所調控,包括、、、和[11-12]。LEC1是一類NFYB類型或者結合CCAAT的轉錄因子家族,LEC2、ABI3和FUS3均屬于植物特異的B3類轉錄因子家族。在擬南芥中過表達歐洲油菜的2個類似基因提高了擬南芥種子中脂肪酸含量,因此,和類似基因在協(xié)調脂肪酸生物合成基因的表達過程中是關鍵因子[13]。的過表達可以激活、和,但是不能激活,因此,LEC1調控的脂肪酸生物合成可能部分依賴于、和。ABI3、FUS3 和LEC2可以調控油分合成基因的表達和脂質積累[14-17]。LEC1和LEC2作為、和的上游調控子,可以共同調控種子儲藏蛋白和脂肪酸相關基因的表達。近期的研究表明,LEC2可以直接調控,進而調控糖酵解、脂肪酸生物合成,還可調控生物素和硫辛酸生物合成的一系列基因的表達[15]。所有這些調控因子均參與涉及種子成熟過程中脂肪酸生物合成的級聯調控[13, 18-20]。ABI3是一個種子特異蛋白,和位于和的上游,通過對和的調控來調節(jié)的表達[19, 21]。此外蛋白激酶AKIN10可以與FUS3互作來調控脂肪酸的合成。而可以部分挽救營養(yǎng)生長和萌芽的轉變以及器官發(fā)育的缺陷[22]。編碼一個AP2家族的轉錄調控子,其目標基因涉及糖酵解和質體中脂肪酸的生物合成。研究發(fā)現,在突變體中,轉化成TAGs的Suc和Glc有所減少,推測主要是因為糖分解酶活性降低造成的,包括己糖激酶和焦磷酸鹽依賴的磷酸果糖激酶[12]。的過表達使TAG在種子中的含量升高。除上述脂肪酸和TAG生物合成中主要的調控因子以外,也有很多其他的轉錄因子對于脂肪酸生物合成產生了重要的調控作用。AGARWAL等[23]報道,轉錄因子包括NAC、MYB、bZIP、ARF和AP2等均與種子發(fā)育和成熟以及種皮等有關。因此,脂肪酸從頭合成過程中轉錄因子的調控是一個復雜的網絡[24]。DENG等[25]發(fā)現轉錄調控子BnTT16在植物發(fā)育中起到很多作用,涉及油分合成和胚胎發(fā)育。此外,表達量降低的植株中油分含量降低,且脂肪酸組成成分也被改變。SHI等[26]研究發(fā)現GL2是一個轉錄因子,可以調控種子油分的水平,GL2功能缺失突變體使得植物種子的含油量比野生型升高,推測突變體種子之所以能夠產生更多的油分是因為分配到胚中的碳含量增多。此外,鄒洪峰等[27]發(fā)現擬南芥Dof類轉錄因子和,不但影響擬南芥分枝和角果長度,還調控油體蛋白和其他儲藏蛋白基因的表達。PENG等[28]研究檢測到在脂肪酸生物合成途徑基因的啟動子中,含有LEC1、DOF、GATA和MYB等轉錄因子的結合元件,推測脂肪酸生物合成和轉錄因子的調控有關。LE等[29]鑒定出289個種子特異基因,其中48個編碼轉錄因子,有7個與種子發(fā)育相關,包括LEC1、LEC1-like、LEC2和FUS3,其他基因在種子發(fā)育過程中功能未知,推測可能對種子發(fā)育的進程非常重要。
迄今為止,豆科植物中關于脂肪酸合成和積累的轉錄因子的研究還不是很多。BOBB等[30]研究發(fā)現,菜豆基因編碼一個與ABI3和VP1類似的蛋白,在被子植物種子成熟和休眠過程中具有重要作用。過表達可以激活和,而這兩個基因在菜豆的成熟過程中被調控[30-31]。CHERN等[32]研究發(fā)現ROM2可以結合啟動子的增強子區(qū)域,從而抑制PvALF對的激活作用。WANG等[33]通過RACE分析得到了一個命名為,編碼的蛋白屬于AP2/ERF轉錄因子家族,是AtABI4的類似物。與野生型相比,過表達可以使得ABA處理的擬南芥種子萌發(fā)率增大,上調和的表達。
通過轉錄組測序和Microarray分析,獲得大豆種子特異表達基因,其中,轉錄因子、、、和的過表達提高了轉基因種子的油分含量[34-36]。SONG等[35]研究發(fā)現,GmbZIP123可以直接結合編碼蔗糖運輸蛋白基因、的啟動子和3個細胞壁蔗糖轉化酶基因、和的啟動子。在轉基因植株角果中,細胞壁轉化酶的活性和糖含量均有升高。在轉基因植株種子中,葡萄糖、果糖和蔗糖的含量也有提高,結果表明,可能通過調控糖類從光自養(yǎng)組織運輸到種子實現了大豆種子中脂質的高積累。LIU等[34]對進行了功能鑒定,發(fā)現過表達使轉基因擬南芥植株的種子和葉片中的油分含量升高。進一步研究發(fā)現,GmMYB73可以與GL3和EGL3互作,從而抑制油分積累的負調控子,最終促進了的表達。PLDα1促進磷脂酰膽堿(PC)水解為磷脂酸(PA)并最終形成DAG和TAG,從而實現了油分的積累。研究還發(fā)現,的過表達也增加了轉基因植株的種子長度和千粒重。WANG等[36]研究發(fā)現GmDOF4和GmDOF11類轉錄因子可以激活乙酰輔酶A羧化酶和長鏈脂酰輔酶A合成酶,從而提高了種子油分含量和千粒重。研究表明,大豆GmDOF4和GmDOF11可以直接結合啟動子,從而下調儲藏蛋白的表達。ZHANG等[37]將大豆轉錄因子轉化橢圓小球藻,發(fā)現GmDOF4可以將油分含量提高到46.4%—52.9%,且不影響混合培養(yǎng)條件下小球藻的生長。通過轉錄組分析,還發(fā)現過表達顯著上調了22個油分和脂肪酸代謝相關基因。LU等[38]研究發(fā)現,在大豆馴化過程中受到正選擇,在栽培大豆和部分野生大豆的啟動子中具有約1 500 bp的插入變異,并導致具有這種插入變異的品種高表達,進而提高了栽培大豆油分含量。此外,在擬南芥中過表達能顯著提高轉基因植物種子的油分含量,并且植株生長沒有受到明顯影響。
大豆高油酸的生產是通過重組突變體和實現的,盡管獲得高油酸含量,但是亞麻酸的含量在4%—6%,使油不穩(wěn)定,易于氧化[39-40]。因此,將1個或2個突變體融合到高油酸背景的大豆株系中來減少亞麻酸的含量[39-41]。PHAM等[41]研究發(fā)現,不同來源的突變體可以獲得高油酸和低亞麻酸含量的大豆植株。GOETTEL等[42]發(fā)現活性缺失和點突變帶來的錯義突變可以分別使得大豆M23株系和FAM94-41株系的油酸和硬脂酸水平升高。大豆油一般包含2%—4%的硬脂酸,硬脂酸達20%的種子油可以用于固體脂肪的形成,通過雜交獲得了一些高硬脂酸的大豆株系。RUDDLE等[43]發(fā)現D9-硬脂酰-ACP-去飽和酶的突變可以影響大豆油的組分,使硬脂酸含量升高。ECKERT等[44]研究發(fā)現,共表達琉璃苣-6去飽和酶和擬南芥-15去飽和酶可以使得轉基因大豆種子中十八碳四烯酸積累增加。CHEN等[45]發(fā)現在藍藻中過表達delta-6和delta-15脂肪酸去飽和酶可以使omega-3多不飽和脂肪酸積累增加。SONG等[46]在酵母中表達和,為在高等植物中D6D進化自D8D這一假說提供了證據,且加速了在微生物和植物中產生更多對人類健康有益的多不飽和脂肪酸這一進程。LI等[47]研究發(fā)現,DGAT1A和DGAT1B的表達對于大豆種子油分生物合成和積累具有重要作用。LARDIZABAL等[48]將油脂菌DGAT2A轉化大豆,可以使成熟種子的油分增加1.5%。RAO等[49]研究發(fā)現,在大豆中表達酵母可以改變油組分。γ亞麻酸屬于ω家族,廣泛存在于植物油中,D6去飽和酶是γ亞麻酸合成的關鍵酶。SONG等[50]從黑醋栗中分離得到5個編碼D6去飽和酶類似序列的基因,、、、和,在酵母和擬南芥中異源表達,對其功能進行研究,為植物中γ亞麻酸的合成和積累提出了新見解。此外,李明春等[51]將深黃被孢霉Δ6-脂肪酸脫氫酶基因轉化大豆,使得γ-亞麻酸的含量最高可達27.067%。
植物中油分和蛋白質往往是負相關的。XU等[52]利用蛋白質組學分析大豆高油品種JY73中球蛋白的表達情況,檢測到700多個蛋白,并成功鑒定出363個。在JY73中鑒定的球蛋白還有18個是和脂肪酸合成相關的,如,烯醇酶、磷酸甘油酸激酶、甘油醛-3-磷酸脫氫酶、磷酸丙糖異構酶、葡萄糖磷酸變位酶。葡萄糖磷酸變位酶是糖酵解酶。糖酵解為脂肪酸合成提供前體。此外,油脂蛋白在脂質體和油脂儲藏細胞器中也發(fā)揮重要作用。ASAKURA等[53]用發(fā)育中的大豆種子作為研究對象,檢測其基因表達,鑒定出625個種子蛋白。據其可能的功能分為11組。含量最豐富的一組是種子儲藏蛋白,有197個蛋白,其中,球蛋白(11S)和β-半球蛋白(7S)占到整個種子蛋白的53.1%。因此,儲藏蛋白是成熟大豆種子蛋白的主要組成成分。11S和7S的比例介于0.5—1.7,隨大豆品種的不同而有所變化[54]。此外,糖化作用可以增強富含11S蛋白的組分泡沫程度和乳化程度[55],還可以調控11S蛋白和7S蛋白的熱聚集能力[56]。在萌發(fā)和早期生長中,種子儲藏蛋白被蛋白酶降解,為植物體提供能量。種子儲藏蛋白基因的表達隨種子的大小而不同。第二組是一些脅迫響應蛋白,約占到11.3%,如在胚胎發(fā)生晚期大量積累的LEA蛋白等。其余的25.9%組成另外的10組蛋白,涉及代謝、細胞生長和分裂、能量運輸、蛋白合成、細胞結構、信號轉導、油分合成、水解作用、抗氧化以及轉錄和蛋白合成等。大豆種子儲藏蛋白是最重要的植物蛋白,其中,11S和7S是各種農作物種子蛋白的重要組成成分。擬南芥中有3個編碼11S蛋白的基因,分別為、和[57]。JAWORSKI等[58]純化并結晶了擬南芥11S蛋白,并對其結構和熱穩(wěn)定性等進行了分析。7S蛋白的β亞基的含量會影響11S和7S的比例,對于增強大豆蛋白品質和加工品性都具有重要作用[59]。KRISHNAN等[53]研究發(fā)現,β亞基是唯一不含有胱氨酸、半胱氨酸的過敏原。另外,β亞基在大豆食品加工過程中可以增強熱穩(wěn)定性和乳化性能。種子儲藏蛋白對于大豆品質以及豆制品加工后的口感等影響重大,因此,利用生物工程在基因水平上對其進行改造以改善大豆品質具有可行性。WANG等[60]通過QTL分析將定位于第20染色體,并發(fā)現可以調控大豆種子儲藏蛋白。轉錄激活子PvALF可以調控種子成熟相關基因和的表達。CHERN等[61]研究發(fā)現ROM1可以通過拮抗PvALF來抑制和。KROJ等[20]研究發(fā)現,B3類轉錄因子FUS3和LEC2可以通過直接結合的啟動子來激活其表達。而ABI3對于的調控不是直接的,可能是作為一個輔助因子起作用。CROWE等[17]研究發(fā)現,將全長和融合了GUS的油質蛋白共同進行轉化時,GUS的表達量增高4—6倍。PARCY等[62]對在擬南芥中組成型表達時的結果進行分析發(fā)現,種子特異的基因包括和儲藏蛋白基因和在植物的葉片組織中都有表達。其他研究表明FUS3和LEC1可以與ABI3互作實現組織特異性和發(fā)育階段特異的表達[63-65]。此外,LEC1和L1L可以激活()的啟動子,編碼種子儲藏蛋白12S球蛋白,可以被LEC1和L1L調控。在擬南芥中,LEC1、LEC2、FUS3和ABI3在胚胎發(fā)育成熟過程中作用很大。這些基因中的任何一個被突變都會使得種子成熟過程產生缺陷,因此,被認為是種子成熟的主要調控因子。在這些基因的突變體中,編碼種子儲藏蛋白12S球蛋白和2S的基因在轉錄水平的表達量都被降低。是一個種子成熟特異的基因。KAGAYA等[19]研究報道,LEC1可以和FUS3以及ABI3一起調控和其他種子儲藏蛋白基因的表達,FUS3可以調控擬南芥中種子儲藏蛋白基因的表達。除了ABI3外,Lotan等[66]和Soderman等[67]研究發(fā)現ABI4和LEC1調控種子儲藏蛋白的表達。ZHANG等[68]研究發(fā)現的過表達可以上調胚胎發(fā)生時期大量積累蛋白的基因,說明可能在胚胎發(fā)生種子成熟過程中發(fā)揮重要作用。CHE等[69]發(fā)現油質蛋白僅在種子發(fā)育階段大量積累,LCE2可以調控其表達,且需要2個RY元件。此外,ZOU等[27]關于的研究表明,過表達可以上調、、和等編碼種子蛋白的基因的表達。張玉芹關于大豆轉錄因子的研究,發(fā)現GmDREBL可以調控晚期胚胎發(fā)生蛋白LEA的表達。為提高大豆蛋白質品質,EL- SHEMY等[70]將和在大豆植株中過表達,發(fā)現和非轉基因植株相比大豆球蛋白積累增加。LI等[71]將玉米編碼c-玉蜀黍蛋白的基因轉化大豆,發(fā)現乙醇提取蛋白占種子總蛋白的2.54%—6.49%,而非轉基因植株僅占0.35%。DINKINS等[72]將一個編碼15 kD玉蜀黍蛋白的基因在大豆中過表達,發(fā)現可以使得大豆植株的含硫氨基酸含量增加。
大豆半胱氨酸合成的最后一步由OAS-TL催化,ZHANG等[73]從一種野生大豆材料中克隆得到一個,為進一步解析大豆OAS-TL的功能和進化提供了新信息。ZHANG等[74]還從大豆中獲得6個OAS-TL類似的基因,分別命名為、、、、和,結果表明,大豆半胱氨酸的合成可能是通過多個的協(xié)作進行。NING等[75]通過在煙草中過表達大豆,提高了煙草半胱氨酸水平。此外,OASTL不僅和半胱氨酸的合成相關,還增強了抵御鎘脅迫的能力。為了鑒定基因組序列和蛋白含量以及大豆中水溶蛋白含量相關,ZHANG等[76]鑒定出4個主要的SPC特異的位點,約占表型差異的8.5%—15.1%,解釋了為什么有些大豆含有高磷脂酰膽堿和低卵磷脂。
大豆中富含異黃酮,因其可以與雌激素受體結合而被認為是一種植物雌激素。LANE等[77]通過喂食昆蟲類黃酮類物質發(fā)現類黃酮類的威懾活性與其立體化學結構相關。CHO等[78]證實根部類黃酮類物質的產生和大豆結節(jié)的產生密切相關,類黃酮類物質可能通過調節(jié)結節(jié)的產生從而調控植物的根瘤發(fā)育、生長繁殖和固氮作用。目前,因異黃酮在治療癌癥和其他人類慢性疾病中的潛在作用而備受關注。大豆異黃酮和乳腺癌、前列腺癌、心血管疾病和骨質疏松癥相關,并且也表現出其他一些有益的效應[79]。ASHTON等[80]研究發(fā)現,大豆中的蛋白和類黃酮類物質影響高密度脂蛋白和低密度脂蛋白濃度,進而影響癌癥的發(fā)生。MASILAMANI等[81]認為異黃酮在免疫反應中具有調節(jié)作用,在免疫功能紊亂中具有潛在的臨床應用價值。REGAL等[82]通過富含異黃酮類物質的飲食證實異黃酮可以調控免疫應答反應。異黃酮發(fā)揮作用的機制不僅與其雌激素的特性相關,還與其作為色氨酸類蛋白激酶抑制劑、基因表達的調控因子、轉錄因子的調節(jié)子以及改變一些酶活性相關。
異黃酮對于人類的生活活動具有如此重要的作用,在分子水平上研究調控其合成與積累的分子機制意義重大。是一個編碼異黃酮合酶的基因,JUNG等[83]將轉入擬南芥,擬南芥中異黃酮含量增加。將轉入大豆胚細胞中,提高了轉基因大豆中異黃酮含量。此外,PANDEY等[84]研究發(fā)現,和協(xié)同作用可以增大異黃酮的生物合成。YI等[85]通過比較不同栽培大豆中的表達量和異黃酮含量,證實的表達水平決定了大豆種子中異黃酮水平。后來的研究發(fā)現,大豆轉錄因子可以最大程度地激活啟動子。在大豆胚的原生質體中瞬時表達,在48 h內使CHS8的表達量增殖169倍。干擾的表達降低了大豆根毛中異黃酮的水平,表明對于異黃酮的生物合成是必需的。然而JEZ等[86]研究發(fā)現,單一過量表達異黃酮合成途徑中的基因并不一定可以顯著增加異黃酮含量。DHAUBHADEL等[87]通過雙分子熒光互補和酵母雙雜交試驗,表明通過與14-3-3蛋白互作來實現其功能。YU等[88]研究發(fā)現,大豆中異黃酮的水平通過苯丙素的生物合成途徑的代謝工程而被增加,大豆種子中玉米轉錄因子C1和R的表達可以激活苯丙素途徑的基因,從而降低染料木黃酮含量、增加黃豆苷元含量,最終實現異黃酮水平的增高。CHENG等[89]從16種野生大豆和17種栽培大豆中克隆并分析了IFS1和IFS2基因組序列。IFS1中的3個SNP和IFS2中的2個SNP和種子中異黃酮的水平密切相關,導致上述33種大豆種子中的異黃酮含量從536.6到5 509.1 mg·g-1高低不同。田玲等[90]克隆得到和,通過real-time PCR鑒定這兩個基因在種子發(fā)育過程中的表達規(guī)律,發(fā)現的表達水平與異黃酮積累趨勢一致,證實可能參與異黃酮含量的調控。此外,通過大豆毛狀根體系,還證明鋅指調控蛋白Gm20ZF-1可能是調控異黃酮含量積累的主要效應因子。楊文杰等[91]通過RACE-PCR方法分離克隆得到了MYB類轉錄因子基因,并對其功能進行了研究,發(fā)現GmMYBJ7具有明顯的轉錄激活活性,可能參與植物類黃酮合成的調控。上述MYB類轉錄因子對于異黃酮的積累都具有正向調控的作用,而LIU等[92]研究發(fā)現,過表達大豆抑制了異黃酮的生物合成。
大豆作為人類生產活動的重要作物,不但為人類提供生活所需的食用油和蛋白制品等,同時植物油作為燃料和化工原料的用途越來越受到重視。由于大豆基因組測序已經完成,且大豆轉化技術越來越完善,利用基因工程手段來提高大豆油分含量、改善大豆蛋白品質并利用異黃酮為人類的健康服務成為一種可能。
但是,大豆品質相關性狀的調控具有一定的關聯性和復雜性。FERNANDEZ等[93]檢測了10種重要的栽培大豆和與其關系較近的野生大豆,發(fā)現在馴化過程中,栽培大豆的種子在維生素E和脂肪酸的種類和含量上同野生大豆類似,然而栽培大豆中類胡蘿卜素包括葉黃素和玉米黃質均有所下降,平均下降48%。此外,類胡蘿卜素的組成成分也有所變化。改善大豆油作為生物柴油的品質和性能取決于脂肪酸的組成成分,需要增高單不飽和脂肪酸含量并降低多不飽和脂肪酸含量。MURAD等[40]研究發(fā)現,FAD2-1和FatB可以改善脂肪酸中油酸和軟脂酸比例,為更好地使用生物能源作出了貢獻。ZHANG等[39]研究得出和MURAD等類似的結果。BHUNIA等[94]比較了芝麻2S白蛋白基因的啟動子和大豆啟動子的活性,發(fā)現前者可以使在煙草種子組織中的表達量更高。利用芝麻2S白蛋白基因的啟動子使大豆在芝麻中過表達,提高了芝麻中-亞麻酸的積累。
從研究層面來說,應繼續(xù)運用基因組、轉錄組、關聯分析、突變體分析、反向遺傳學分析和基因組編輯等多種多樣的技術手段和途徑繼續(xù)鑒定相關基因并研究其在調控油分合成代謝、脂肪酸組成、蛋白含量和組成以及次生代謝物的含量和組成等營養(yǎng)品質方面的作用。利用目前已經研究的基因,通過檢測其在不同野生和栽培品種中的等位變異來鑒定優(yōu)異等位基因并通過雜交導入等手段培育新的優(yōu)異種質。進一步鑒定、合成或改造大豆種子特異并有效的啟動子,運用合成生物學手段將目的基因轉化大豆等油料作物進而實現提高或改善品質等方面的要求。也可利用不同種植區(qū)域間的光周期及環(huán)境等差異,鑒定當地品種不易觀測到的其他優(yōu)質性狀并用于品種和/或品質改良。通過比較多種不同大豆資源中脂肪酸和蛋白等品質和產量等性狀,尋找潛在底盤品種,利用雜交導入、生物工程、合成生物學及基因組編輯等多種技術手段和途徑對其進行改造,從而培育出新的高產優(yōu)質高效抗逆并適應新的機械收割或特殊用途的大豆新品種也將成為一種趨勢。
[1] Ke T, Yu J, DongC, Mao H, Hua W, Liu S. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism, 2015, 15: 19.
[2] Wei W H, Chen B, Yan X H, Wang L J, Zhang H F, Cheng J P, Zhou X A, Sha A H, Shen H. Identification of differentially expressed genes in soybean seeds differing in oil content, 2008, 175(5): 663-673.
[3] Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S H, Wang W, Tian Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean, 2015, 33(4): 408-414.
[4] Li Z G, Yin W B, Song L Y, Chen Y H, Guan R Z, Wang J Q, Wang R R, Hu Z M. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase fromand parental species: cloning, expression patterns, and evolution, 2011, 54(3): 202-211.
[5] Liu J, Rice A, McGlew K, Shaw V, Park H, Clemente T, Pollard M, Ohlrogge J, Durrett T P. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value, 2015, 13(6): 858-865.
[6] Durrett T P, McClosky D D, Tumaney A W, Elzinga D A, Ohlrogge J, Pollard M. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils inand transgenic seeds, 2010, 107(20): 9464-9469.
[7] Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss J G, Gorkiewicz G, Zechner R. Adipose triglyceride lipase- mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome, 2016, 3(5): 309-319.
[8] James C N, Horn P J, Case C R, Gidda S K, Zhang D, Mullen R T, Dyer J M, Anderson R G, Chapman K D. Disruption of theCGI-58 homologue produces Chanarin- Dorfman-like lipid droplet accumulation in plants, 2010, 107(41): 17833-17838.
[9] Romero P, Rodrigo M J, Alferez F, Ballester A R, Gonzalez-Candelas L, Zacarias L, Lafuente M T. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (L. Osbeck) using a fruit-specific ABA-deficient mutant, 2012, 63(7): 2753-2767.
[10] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross- talk between two stress signaling pathways, 2000, 3(3): 217-223.
[11] Cernac A, Benning C.encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in, 2004, 40(4): 575-585.
[12] Focks N, Benning C.: A novel, low-seed-oil mutant ofwith a deficiency in the seed-specific regulation of carbohydrate metabolism, 1998, 118(1): 91-101.
[13] Mu J Y, Tan H L, Zheng Q, Fu F Y, Liang Y, Zhang J A, Yang X H, Wang T, Chong K, Wang X J, Zuo J R. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in, 2008, 148(2): 1042-1054.
[14] Wang H Y, Guo J H, Lambert K N, Lin Y. Developmental control ofseed oil biosynthesis, 2007, 226(3): 773-783.
[15] Baud S, Mendoza M S, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in, 2007, 50(5): 825-838.
[16] Mendoza M S, Dubreucq B, Miquel M, Caboche M, Lepiniec L. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs inleaves, 2005, 579(21): 4666-4670.
[17] Crowe A J, Abenes M, Plant A, Moloney M M. The seed-specific transactivator, ABI3, induces oleosin gene expression, 2000, 151(2): 171-181.
[18] Pan Y, Tchagangl A, Berube H, Phan S, Shearer H, Liu Z, Fobert P, Famili F. Integrative data mining in functional genomics ofand, 2010, 6098: 92-101.
[19] Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3, 2005, 46(3): 399-406.
[20] Kroj T, Savino G, Valon C, Giraudat J, Parcy F. Regulation of storage protein gene expression in, 2003, 130(24): 6065-6073.
[21] To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F. A network of local and redundant gene regulation governsseed maturation, 2006, 18(7): 1642-1651.
[22] Tsai A Y, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in, 2012, 69(5): 809-821.
[23] Agarwal P, Kapoor S, Tyagi A K. Transcription factors regulating the progression of monocot and dicot seed development, 2011, 33(3): 189-202.
[24] Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of, 2009, 47(6): 448-455.
[25] Deng W, Chen G, Peng F, Truksa M, Snyder C L, Weselake R J.plays multiple roles in plant development and is involved in lipid synthesis and embryo development in Canola, 2012, 160(2): 978-989.
[26] Shi L, Katavic V, Yu Y, Kunst L, Haughn G.mutant seeds deficient in mucilage biosynthesis produce more oil, 2012, 69(1): 37-46.
[27] Zou H F, Zhang Y Q, Wei W, Chen H W, Song Q X, Liu Y F, Zhao M Y, Wang F, Zhang B C, Lin Q, Zhang W K, Ma B, Zhou Y H, Zhang J S, Chen S Y. The transcription factorregulates shoot branching and seed coat formation in, 2013, 449(2): 373-388.
[28] Peng F Y, Weselake R J. Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in, 2011, 12: 286.
[29] Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews G N, Fischer R L, Okamuro J K, Harada J J, Goldberg R B. Global analysis of gene activity duringseed development and identification of seed- specific transcription factors, 2010, 107(18): 8063-8070.
[30] Bobb A J, Chern M S, Bustos M M. Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF, 1997, 25(3): 641-647.
[31] Ng D W K, Hall T C.and3 activate expression from the phaseolin promoter by different mechanisms, 2008, 66(3): 233-244.
[32] Chern M S, Bobb A J, Bustos M M. The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription, 1996, 8(2): 305-321.
[33] Wang Q, Qi W, Wang Y, Sun F, Qian X, Luo X, Yang J. Isolation and identification of anfactor that binds an allelic cis-element of rice gene LRK6, 2011, 93(5): 319-332.
[34] Liu Y F, Li Q T, Lu X, Song Q X, Lam S M, Zhang W K, Ma B, Lin Q, Man W Q, Du W G, Shui G H, Chen S Y, Zhang J S. Soybeanpromotes lipid accumulation in transgenic plants, 2014, 14: 73.
[35] Song Q X, Li Q T, Liu Y F, Zhang F X, Ma B, Zhang W K, Man W Q, Du W G, Wang G D, Chen S Y, Zhang J S. Soybeangene enhances lipid content in the seeds of transgenicplants, 2013, 64(14): 4329-4341.
[36] Wang H W, Zhang B, Hao Y J, Huang J, Tian A G, Liao Y, Zhang J S, Chen S Y. The soybean Dof-type transcription factor genes,and, enhance lipid content in the seeds of transgenicplants, 2007, 52(4): 716-729.
[37] Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, Xu L, Guo X, Fan C, Chen Y, Ruan J, Hao S, Li Y, Wang R R C, Hu Z. Overexpression of the soybean transcription factorsignificantly enhances the lipid content of Chlorella ellipsoidea, 2014, 7(1): 1-16.
[38] Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals genetic basis of seed trait adaptation during domestication, 2016, 86(6): 530-544.
[39] Zhang L, Yang X D, Zhang Y Y, Yang J, Qi G X, Guo D Q, Xing G J, Yao Y, Xu W J, Li H Y, Li Q Y, Dong Y S. Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing, 2014: 921-950.
[40] Murad A M, Vianna G R, Machado A M, da Cunha N B, Coelho C M, Lacerda V A, Coelho M C, Rech E L. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds, 2014, 406(12): 2873-2883.
[41] Pham A T, Shannon J G, Bilyeu K D. Combinations of mutantandgenes to produce high oleic acid and low linolenic acid soybean oil, 2012, 125(3): 503-515.
[42] Goettel W, Xia E, Upchurch R, Wang M L, Chen P, An Y Q. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content, 2014, 15: 299.
[43] Ruddle P, Whetten R, Cardinal A, Upchurch R G, Miranda L. Effect of a novel mutation in a Delta9-stearoyl-ACP- desaturase on soybean seed oil composition, 2013, 126(1): 241-249.
[44] Eckert H, Vallee B L, Schweiger B J, Kinney A J, Cahoon E B, Clemente T. Co-expression of the borageand theresults in high accumulation of stearidonic acid in the seeds of transgenic soybean, 2006, 224(5): 1050-1057.
[45] Chen G, Qu S, Wang Q, Bian F, Peng Z, Zhang Y, Ge H, Yu J, Xuan N, Bi Y, He Q. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803, 2014, 7(1): 32.
[46] Song L Y, Zhang Y, Li S F, Hu J, Yin W B, Chen Y H, Hao S T, Wang B L, Wang R R, Hu Z M. Identification of the substrate recognition region in the Delta(6)-fatty acid and Delta(8)-sphingolipid desaturase by fusion mutagenesis, 2014, 239(4): 753-763.
[47] Li R, Hatanaka T, Yu K, Wu Y, Fukushige H, Hildebrand D. Soybean oil biosynthesis: Role of diacylglycerol acyltransferases, 2013, 13(1): 99-113.
[48] Lardizabal K, Effertz R, Levering C, Mai J, Pedroso M C, Jury T, Aasen E, Gruys K, Bennett K. Expression ofin seed increases oil in soybean, 2008, 148(1): 89-96.
[49] Rao S S, Hildebrand D. Changes in oil content of transgenic soybeans expressing the yeastgene, 2009, 44(10): 945-951.
[50] Song L Y, Lu W X, Hu J, Zhang Y, Yin W B, Chen Y H, Hao S T, Wang B L, Wang R R, Hu Z M. Identification and functional analysis of the genes encoding Delta6-desaturase from, 2010, 61(6): 1827-1838.
[51] 李明春, 卜云萍, 王廣科, 胡國武, 邢來君, 深黃被孢霉Δ6-脂肪酸脫氫酶基因在大豆中的表達遺傳學報, 2004, 31(8): 858-863.
LI M C, Bu Y P, Wang G K, Hu G W, Xing L J. Heteologous expression ofdelta6 -fatty acid desaturase gene in soybean., 2004, 31(8): 858-863. (in Chinese)
[52] Xu X P, Liu H, Tian L, Dong X B, Shen S H, Qu L Q. Integrated and comparative proteomics of high-oil and high-protein soybean seeds, 2015, 172: 105-116.
[53] Krishnan H B, Oehrle N W, Natarajan S S. A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: A case study using, 2009, 9(11): 3174-3188.
[54] Ruíz-Henestrosa V P, Sánchez C C, Escobar M D M Y, Jiménez J J P, Rodríguez F M, Patino J M R. Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength, 2007, 309(1/3): 202-215.
[55] Achouri A, Boye J I, Yaylayan V A, Yeboah F K. Functional properties of glycated soy 11S glycinin, 2005, 70(4): C269-C274.
[56] Xu C H, Yang X Q, Yu S j, Qi J r, Guo R, Sun W W, YaoY J, Zhao M M. The effect of glycosylation with dextran chains of differing lengths on the thermal aggregation of β-conglycinin and glycinin, 2010, 43(9): 2270-2276.
[57] Withana-Gamage T S, Hegedus D D, Qiu X, Yu P, May T, Lydiate D, Wanasundara J P D. Characterization oflines with altered seed storage protein profiles using synchrotron-powered FT-IR spectromicroscopy, 2013, 61(4): 901-912.
[58] Jaworski A F, Aitken S M. Expression and characterization of the11S globulin family, 2014, 1844(4): 730-735.
[59] Paek N C, Imsande J, Shoemaker R C, Shibles R. Nutritional control of soybean seed storage protein, 1997, 37(2): 498-503.
[60] Wang J, Liu L, Guo Y, Wang Y H, Zhang L, Jin L G, Guan R X, Liu Z X, Wang L L, Chang R Z, Qiu L J. A dominant locus,controls β subunit content of seed storage protein in soybean ((L.) Merri.), 2014, 13(9): 1854-1864.
[61] Chern M S, Eiben H G, Bustos M M. The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos, 1996, 10(1): 135-148.
[62] Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. Regulation of gene expression programs duringseed development: roles of the ABI3 locus and of endogenous abscisic acid, 1994, 6(11): 1567-1582.
[63] Parcy F, Valon C, Kohara A, Miséra S, Giraudat J. The,, andloci act in concert to control multiple aspects ofseed development, 1997, 9(8): 1265-1277.
[64] Kirik V, K?lle K, Balzer H J, B?umlein H. Two new oleosin isoforms with altered expression patterns in seeds of themutant fus3, 1996, 31(2): 413-417.
[65] B?umlein H, Miséra S, Luer?en H, K?lle K,Horstmann C, Wobus U, Müller A J. Thegene ofis a regulator of gene expression during late embryogenesis, 1994, 6(3): 379-387.
[66] S?derman E M, Brocard I M, Lynch T J, Finkelstein R R. Regulation and function of thegene in seed and abscisic acid response signaling networks, 2000, 124(4): 1752-1765.
[67] Lotan T, Ohto M A, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J.is sufficient to induce embryo development in vegetative cells, 1998, 93(7): 1195-1205.
[68] Zhang Y, Cao G, Qu L J, Gu H. Involvement of antranscription factor gene, 2009, 28(3): 337-346.
[69] Che N, Yang Y, Li Y, Wang L, Huang P, Gao Y, An C. Efficientactivation ofexpression requires two neighboringelements on its promoter, 2009, 52(9): 854-863.
[70] El-Shemy H A, Khalafalla M M, Fujita K, Ishimoto M. Improvement of protein quality in transgenic soybean plants, 2007, 51(2): 277-284.
[71] Li Z, Meyer S, Essig S J, Liu Y, Schapaugh A M, Muthukrishnan S, Hainline E B, Trick N H. High-level expression of maize γ-zein protein in transgenic soybean (), 2005, 16(1): 11-20.
[72] Dinkins R D, Srinivasa Reddy M S, Meurer C A, Yan B, Trick H, Thibaud-Nissen F, Finer J J, Parrott W A, Collins G B. Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein, 2001, 37(6): 742-747.
[73] Zhang C, Meng Q, Gai J, Yu D. Cloning and functional characterization of an O-acetylserine(thiol)lyase-encoding gene in wild soybean (), 2008, 35(4): 527-534.
[74] Zhang C, Meng Q, Zhang M, Huang F, Gai J, Yu D. Characterization of O-acetylserine(thiol)lyase-encoding genes reveals their distinct but cooperative expression in cysteine synthesis of soybean [(L.) Merr.], 2008, 26(4): 277-291.
[75] Ning H, Zhang C, Yao Y, Yu D. Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene, 2010, 32(4): 557-564.
[76] Zhang D, Kan G, Hu Z, Cheng H, Zhang Y, Wang Q, Wang H, Yang Y, Li H, Hao D, Yu D. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean, 2014, 127(9): 1905-1915.
[77] Lane G A, Biggs D R, Russell G B, Sutherland O R W, Williams E M, Maindonald J H, Donnell D J. Isoflavonoid feeding deterrents for costelytra zealandica structure- activity relationships, 1985, 11(12): 1713-1735.
[78] Cho M J, Harper J E. Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots, 1991, 95(2): 435-442.
[79] Pregelj L, McLanders J R, Gresshoff P M, Schenk P M. Transcription profiling of the isoflavone phenylpropanoid pathway in soybean in response toinoculation, 2010, 38(1): 13-24.
[80] Ashton E, Ball M. Effects of soy as tofu vs meat on lipoprotein concentrations, 2000, 54(1): 14-19.
[81] Masilamani M, Wei J, Sampson H A. Regulation of the immune response by soybean isoflavones, 2012, 54(1): 95-110.
[82] Regal J F, Fraser D G, Weeks C E, Greenberg N A. Dietary phytoestrogens have anti-inflammatory activity in a Guinea pig model of asthma, 2000, 223(4): 372-378.
[83] Jung W, Yu O, Lau S M C, O'Keefe D P, Odell J, Fader G, McGonigle B. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes, 2000, 18(2): 208-212.
[84] Pandey A, Misra P, Khan M P, Swarnkar G, Tewari M C, Bhambhani S, Trivedi R, Chattopadhyay N, Trivedi P K. Co-expression oftranscription factor,, and soybean, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity, 2014, 12(1): 69-80.
[85] Yi J, Derynck M R, Li X, Telmer P, Marsolais F, Dhaubhadel S. A single-repeattranscription factor,regulatesgene expression and affects isoflavonoid biosynthesis in soybean, 2010, 62(6): 1019-1034.
[86] Jez J M, Bowman M E, Dixon R A, Noel J P. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase, 2000, 7(9): 786-791.
[87] Dhaubhadel S, Li X. A new client for 14-3-3 proteins: GmMYB176, an R1 MYB transcription factor, 2010, 5(7): 921-923.
[88] Yu O, Shi J, Hession A O, Maxwell C A, McGonigle B, Odell J T. Metabolic engineering to increase isoflavone biosynthesis in soybean seed, 2003, 63(7): 753-763.
[89] Cheng H, Yu O, Yu D. Polymorphisms ofandgene are associated with isoflavone concentrations in soybean seeds, 2008, 175(4): 505-512.
[90] 田玲. 調控大豆異黃酮合成相關轉錄因子基因的克隆與表達模式分析[D]. 北京: 中國農業(yè)科學院, 2014.
Tian L. Cloning and expression profile analysis of transcription factor genes regulating isoflavone synthesis in soybean [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[91] 楊文杰, 吳燕民, 唐益雄. 大豆基因的克隆及表達分析華北農學報, 2011, 26(5): 107-111.
YANG W J, WU Y M, TANG Y X. Cloning and characterization of thegenefrom soybean., 2011, 26(5): 107-111. (in Chinese)
[92] Liu X, Yuan L, Xu L, Xu Z, Huang Y, He X, Ma H, Yi J, Zhang D. Over-expression ofleads to an inhibition of the isoflavonoid biosynthesis in soybean (L.), 2013, 7(4): 445-455.
[93] Fernández-Marín B, Milla R, Martín-Robles N, Arc E, Kranner I, Becerril J M, García-Plazaola J I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts, 2014, 14(1): 1-11.
[94] Bhunia R K, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti M K, Sen S K. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops, 2014, 86(4): 351-365.
(責任編輯 李莉)
Recent advances in identification and functional analysis of genes responsible for soybean nutritional quality
ZHANG Yu-qin, LU Xiang, LI Qing-tian, CHEN Shou-yi, ZHANG Jin-song
(Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101)
Soybean is one of the most important cash crops and provides edible oil and vegetable proteins for human beings. The study of soybean is recently focused by researchers, breeders and public people, because its value is mainly determined by the content of oil, protein and isoflavones and the quality of soybean is directly related to the health of the human body. The profile of fatty acids in soybean oil has a great influence on the nutritional value, storage and processing technology. And the profile and accumulation of soybean oil was determined by activity of oil-biosynthesis-related genes, which regulated by many genes at pre-transcriptional, transcriptional and post-transcriptional levels. Recent study reveals thatandwere found to increase the content of total fatty acids and lipids inandtransgenic Arabidopsis seeds, which activated the acetyl CoA carboxylase gene and long-chain-acyl CoA synthetase gene.overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants by promotingexpression whose promoter can be bound and inhibited by GL2. Thetransgene promoted expression of two sucrose transporter genes (and) and three cell-wall invertase genes (,, and) by binding directly to the promoters of these genes, and increased seed oil-content. Andpromoted master regulatorand oil-biosynthesis-related genes to increase seed oil-content. Soybean protein contains 8 kinds of essential amino acids, and is a kind of excellent quality of vegetable protein which can replace some animal protein in the diet. The accumulation of plant oil and protein is often negatively related.anddown-regulated the storage protein gene,, through direct binding promoter althoughandenhanced seed oil-content. Soybean isoflavones are secondary metabolites formed during the growth of soybean, which have a wide range of biological activities and physiological functions in animals and plants. In recent years, soybean isoflavones have become one of the most attractive functional components, and are also one of the hot spots in food and nutrition research. Flavonoids may regulate the development, growth, propagation and nitrogen fixation of plants by regulating the production of nodules. Beneficial effects of soybean isoflavones are shown in the treatment of breast cancer, prostate cancer, cardiovascular disease and osteoporosis.can regulate the expression of, and the interference ofexpression decreased the soybean isoflavones levels in hair, indicating thatis essential for isoflavones biosynthesis. This review summarized the recent progresses in the gene cloning and regulation of soybean oil, storage protein and isoflavones accumulation. Other relevant advances and prospects were also compared and discussed. This review may give the current status of the studies on the regulatory mechanisms of soybean nutritional quality.
soybean; oil; seed storage protein; isoflavones
2016-08-12;接受日期:2016-09-21
轉基因專項(2016ZX08009-003-004,2014ZX0900926B)
張玉芹,E-mail:yvzi1016@163.com。通信作者張勁松,E-mail:jszhang@genetics.ac.cn