李 晨,萬志紅,辛紹杰
·綜 述·
TRAIL及其受體與HBV相關(guān)慢性肝病相關(guān)性的研究進展
李 晨,萬志紅,辛紹杰
腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TNF-related apoptosis inducing ligand, TRAIL)歸屬于腫瘤壞死因子超家族,與死亡受體結(jié)合后,激活caspase瀑布樣級聯(lián)反應(yīng),可誘導(dǎo)腫瘤細(xì)胞、轉(zhuǎn)化細(xì)胞及病毒感染細(xì)胞發(fā)生凋亡,而對正常組織及細(xì)胞無凋亡誘導(dǎo)作用。TRAIL及其受體通過與HBV、細(xì)胞因子等的相互作用,在HBV相關(guān)慢性肝病的發(fā)病機制中發(fā)揮著重要作用。此外,體內(nèi)TRAIL表達還與慢性乙型病毒性肝炎患者抗病毒治療存在一定的關(guān)聯(lián)性。本文對TRAIL及其受體與HBV相關(guān)慢性肝病的相關(guān)性進行綜述,為進一步明確兩者間的關(guān)系提供理論依據(jù)。
腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體;HBV;慢性肝病
1995年Wiley等[1]首先從外周血淋巴細(xì)胞和人心臟組織中克隆并發(fā)現(xiàn)腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TNF-related apoptosis inducing ligand, TRAIL),該配體與相應(yīng)受體結(jié)合后可誘導(dǎo)多種腫瘤細(xì)胞凋亡,對正常組織及細(xì)胞無凋亡誘導(dǎo)作用[2-3]。近些年發(fā)現(xiàn)TRAIL及其受體在HBV相關(guān)慢性肝臟疾病的發(fā)病過程中發(fā)揮重要作用。本文對TRAIL及其受體的基本情況、TRAIL及其受體介導(dǎo)的細(xì)胞凋亡機制、TRAIL及其受體與HBV相關(guān)慢性肝病的關(guān)系等方面的研究進展做如下綜述。
TRAIL基因定位于染色體3q26,與FasL類似,編碼281個氨基酸,屬于Ⅱ型跨膜蛋白,分為胞內(nèi)、跨膜和胞外3個區(qū)段,屬TNF超家族。N端位于胞內(nèi),第15~40位氨基酸殘基為疏水跨膜區(qū),沒有明顯的信號肽序列。C端第41~281位氨基酸為胞外區(qū)。胞外區(qū)在半胱氨酸蛋白酶作用下水解為只含有C端第114~281位氨基酸的可溶型TRAIL[4]。人體TRAIL以膜結(jié)合型、可溶型兩種形式存在,膜結(jié)合型TRAIL和可溶型TRAIL在體外均能誘導(dǎo)多種腫瘤細(xì)胞凋亡,發(fā)揮生物學(xué)功能。TRAIL在第137~152位氨基酸殘基形成一個具有12~16個氨基酸的插入環(huán),可插入受體的TRAIL相關(guān)結(jié)合位點,保證與受體特異性結(jié)合,這也是TRAIL與其他TNF家族成員在結(jié)構(gòu)上的主要區(qū)別[5]。TRAIL廣泛表達于人體多種細(xì)胞及組織,如NK細(xì)胞、T淋巴細(xì)胞、NKT細(xì)胞、樹突狀細(xì)胞、單核細(xì)胞和肺、脾、腎、前列腺、卵巢、小腸、結(jié)腸、心臟、胎盤和骨骼肌等,在腦、肝和睪丸等部位無表達[6]。
人類共有5種TRAIL特異性結(jié)合受體,按結(jié)構(gòu)和功能可分為以下3類:①死亡受體(death receptor, DR),包括DR4(TRAIL-R1)、DR5(TRAIL-R2)兩種受體。二者均含有細(xì)胞內(nèi)死亡結(jié)構(gòu)區(qū)域(death domain, DD),與TRAIL結(jié)合后能將TRAIL的死亡信息傳遞至細(xì)胞內(nèi),激活半胱氨酸蛋白酶系統(tǒng),最終導(dǎo)致細(xì)胞凋亡。DR4是由455個氨基酸組成的I型跨膜蛋白,主要表達于外周血淋巴細(xì)胞、脾、小腸及胸腺等部位。DR5是由411個氨基酸組成的I型跨膜蛋白,其結(jié)構(gòu)與DR4極為相似,胞外區(qū)高度同源,總體同源性為58%。兩者跨膜區(qū)后均為一個大小為70個氨基酸的DD。DR5主要表達于胎肝、胎肺、成人外周血淋巴細(xì)胞、脾及肝等部位。研究表明:DR4、DR5在肝癌、胰腺癌、卵巢癌、子宮癌、結(jié)腸癌、腦癌、肺癌、乳腺癌和淋巴瘤中均高表達[7-9]。體外實驗證實,相比較于DR4,DR5在TRAIL誘導(dǎo)的凋亡中可能發(fā)揮更為重要的作用。當(dāng)DR過度表達時,也可不依賴相應(yīng)的配體而直接誘導(dǎo)細(xì)胞凋亡[10]。②誘餌受體(decoy receptor, DcR),包括DcR1(TRAIL-R3)、DcR2(TRAIL-R4)兩種受體。DcR1是由259個氨基酸組成的I型跨膜蛋白,無胞漿區(qū)DD,主要表達于心臟、胎盤、肺、肝、腎、脾、外周血淋巴細(xì)胞和骨髓等部位。DcR2是由386個氨基酸組成的I型跨膜蛋白,其結(jié)構(gòu)與DcR1相似,但在胞內(nèi)含有1段大小為24個氨基酸的DD,約為正常DR中DD的1/3,可促進抗凋亡轉(zhuǎn)錄因子NF-κB的活化。DcR2 主要表達于多種正常組織,在大多數(shù)腫瘤細(xì)胞中不表達。DcR1、DcR2可與DR4、DR5競爭性地結(jié)合TRAIL,由于DcR1、DcR2缺少DD,與TRAIL結(jié)合后也不會誘導(dǎo)細(xì)胞凋亡,因此對正常細(xì)胞起到保護作用[11]。③可溶性受體(osteoprotegein, OPG),即骨保護素,是一種分泌型糖蛋白,作為TNF受體超家族的特征,OPG包含四個富含半胱氨酸域,但缺乏跨膜區(qū),不能分泌蛋白質(zhì)。此外,OPG包含兩個死亡域同源區(qū)以及一個肝素結(jié)合位點。OPG的死亡域同源區(qū)與TRAIL結(jié)合不能轉(zhuǎn)導(dǎo)細(xì)胞凋亡信號。OPG在體內(nèi)具有抑制破骨細(xì)胞發(fā)生、增加骨骼密度的作用[12]。OPG的結(jié)合位點與DR5重疊,但與TRAIL結(jié)合的親和力比DR5弱。OPG主要表達于肺、心、腎和胎盤等部位,能夠抑制TRAIL誘導(dǎo)的Jurkat細(xì)胞(人外周血白血病T細(xì)胞)凋亡[13],能通過siRNA途徑抑制TRAIL誘導(dǎo)的人乳腺癌細(xì)胞凋亡,同時TRAIL也能阻斷OPG,從而抑制破骨細(xì)胞發(fā)揮的生理作用[14]。
一般情況下,正常細(xì)胞高表達DcR,而腫瘤細(xì)胞、轉(zhuǎn)化細(xì)胞和病毒感染細(xì)胞不表達或低表達DcR。因此,正常細(xì)胞由于發(fā)揮DcR作用對TRAIL具有免疫性,腫瘤細(xì)胞、轉(zhuǎn)化細(xì)胞和病毒感染細(xì)胞由于缺乏DcR而被TRAIL識別并誘導(dǎo)凋亡。有研究顯示,TRAIL與DR結(jié)合受溫度因素調(diào)控,4 ℃時TRAIL與DR4、DR5、DcR1、DcR2和OPG結(jié)合力相同,37 ℃時TRAIL與DR5結(jié)合力最高,與OPG結(jié)合力最弱,由于37 ℃是人體恒溫溫度,因此這也可能是DR5在人體內(nèi)容易與TRAIL結(jié)合發(fā)揮重要生物活性的原因之一[15]。
TRAIL在人體內(nèi)主要參與機體的免疫抑制、免疫調(diào)節(jié)及免疫應(yīng)答等生理過程,最主要的生物學(xué)特點為選擇性細(xì)胞毒功能,即僅誘導(dǎo)腫瘤細(xì)胞、轉(zhuǎn)化細(xì)胞和病毒感染細(xì)胞發(fā)生凋亡,而不能誘導(dǎo)正常細(xì)胞凋亡[16]。TRAIL誘導(dǎo)細(xì)胞凋亡的途徑與機制尚不完全明確,目前認(rèn)為TRAIL通過與細(xì)胞膜上的DR結(jié)合而激活細(xì)胞凋亡,信號途徑與Fas途徑基本相似。TRAIL與DR4、DR5胞外部分結(jié)合,形成配體/受體三聚復(fù)合物,誘導(dǎo)DR的DD與Fas相關(guān)蛋白的死亡結(jié)構(gòu)域(Fas-associating protein with death domain, FADD)結(jié)合。FADD招募起始caspase前體而形成死亡誘導(dǎo)信號復(fù)合物(death inducing signaling complex, DISC),caspase前體通過自身水解成活化的caspase,并進一步激活caspase瀑布樣級聯(lián)反應(yīng)。caspase-8首先被激活,可以通過線粒體非依賴型途徑,激活caspase-3、caspase-6和caspase-7而誘導(dǎo)細(xì)胞凋亡,也可以通過線粒體依賴型途徑,引起線粒體跨膜電位降低或破壞,促使線粒體釋放活性物質(zhì),促使caspase-9前體自身催化成有活性的caspase-9,進而傳遞細(xì)胞凋亡信號[17-19]。
除上述凋亡誘導(dǎo)信號途徑外,TRAIL與受體結(jié)合后,還能激活A(yù)Kt途徑、NF-κB、蛋白激酶C及促分裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)家族成員等,這些因子活化后可以對TRAIL誘導(dǎo)的凋亡途徑進行調(diào)節(jié)。值得一提的是,有研究表明TRAIL與內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)存在較為密切的聯(lián)系。一方面ERS可以通過CHOP上調(diào)DR5,從而促進TRAIL誘導(dǎo)的細(xì)胞凋亡,該種作用可被花姜酮、塞來考昔和槲皮素等藥物增強[20-21];另一方面TRAIL激活caspase后,B細(xì)胞受體相關(guān)蛋白31(BAP31)、免疫球蛋白結(jié)合蛋白基因等表達明顯增多,激活PERK (PKR-like ERkinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP(CCAAT-enhancer-binding protein homologous protein)等ERS途徑,從而誘導(dǎo)細(xì)胞凋亡[22]。
HBV感染可導(dǎo)致肝細(xì)胞死亡及肝損傷,從而進展至慢性肝炎、肝纖維化、肝硬化、肝癌,甚至發(fā)生肝衰竭。目前認(rèn)為肝細(xì)胞凋亡失衡是導(dǎo)致HBV相關(guān)慢性肝病的重要發(fā)病機制,肝細(xì)胞凋亡不足可能導(dǎo)致HBV不易被人體清除從而出現(xiàn)HBV感染慢性化;肝細(xì)胞凋亡過剩則可能導(dǎo)致肝細(xì)胞大量死亡從而出現(xiàn)HBV相關(guān)肝衰竭;TRAIL與DcR結(jié)合還可能導(dǎo)致腫瘤細(xì)胞凋亡減少從而出現(xiàn)免疫逃逸。TRAIL及其受體在其中均發(fā)揮了重要的作用。
3.1 TRAIL及其受體與HBV的關(guān)系 首先,HBV本身可調(diào)節(jié)TRAIL及其受體導(dǎo)致的肝細(xì)胞損傷。HBV是嗜肝DNA病毒家族的溶原性病毒,基因組呈松弛環(huán)狀雙鏈結(jié)構(gòu),含有4個開放讀碼框架區(qū),其中X區(qū)所編碼產(chǎn)物為HBx蛋白,該產(chǎn)物是一種多功能調(diào)節(jié)蛋白,具有廣泛的反式激活功能,在病毒復(fù)制轉(zhuǎn)錄、細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)、基因整合、組織損傷、細(xì)胞周期進程、細(xì)胞增殖與凋亡、蛋白降解以及肝細(xì)胞的遺傳穩(wěn)定性等進程中發(fā)揮重要作用。有研究表明HBx蛋白可通過上調(diào)MiR-125a,抑制A20 E3泛素蛋白連接酶,下調(diào)caspase-8 K-63連接多聚泛素化等方式作用TRAIL及其受體,促進肝細(xì)胞凋亡發(fā)生。一項對HepG2、HepG2.2.15細(xì)胞的體外研究證實,HBV復(fù)制可以依賴HBxAg上調(diào)TRAIL-DR4受體,從而增加TRAIL所致細(xì)胞凋亡。運用拉米夫定抑制HBV復(fù)制,可下調(diào)TRAIL-DR4受體表達,并使TRAIL誘導(dǎo)的細(xì)胞凋亡功能減弱[23]。此外,HBV基因組、HBV前S2蛋白、羧基末端截短型HBV表面抗原中蛋白均可上調(diào)TRAIL及其受體導(dǎo)致的細(xì)胞凋亡[24-25]。一項研究顯示,轉(zhuǎn)染攜帶HBV核心蛋白(HBc)基因質(zhì)粒的人肝細(xì)胞癌BEL7402以及轉(zhuǎn)染了HBc的急性乙型肝炎(乙肝)模型細(xì)胞系表面DR5表達均明顯下降,DR4、DcR1和DcR2表達均無變化,細(xì)胞對TRAIL介導(dǎo)的凋亡作用不敏感;敲除了HBc基因的該種細(xì)胞及模型細(xì)胞系對TRAIL介導(dǎo)的凋亡敏感性明顯增加。81%慢性乙型病毒性肝炎(chronic hepatitis B, CHB)患者血清中HBc檢測呈陽性,同時血清DR5水平低于正常人。上述研究結(jié)果表明HBc可以下調(diào)DR5表達,從而抑制TRAIL介導(dǎo)的肝細(xì)胞凋亡[26]。
其次,細(xì)胞因子可調(diào)節(jié)TRAIL及其受體導(dǎo)致的肝細(xì)胞損傷。研究發(fā)現(xiàn)IL-8、IL-33、IFN-α及IFN-γ對TRAIL誘導(dǎo)的細(xì)胞凋亡均有增強作用[27-28],而在HBV相關(guān)慢性肝病患者體內(nèi),特別是HBV相關(guān)肝衰竭患者體內(nèi),存在促炎因子與抑炎因子表達失衡[29-32]。當(dāng)出現(xiàn)HBV相關(guān)慢性肝病時,眾多細(xì)胞因子上調(diào)TRAIL及其受體表達,從而導(dǎo)致肝細(xì)胞凋亡過剩,最終發(fā)生肝損傷。
再次,機體主要依靠HBV抗原表位特異性細(xì)胞毒T淋巴細(xì)胞(cytotoxic T lymphocytes, CTL)發(fā)揮細(xì)胞裂解和非細(xì)胞裂解兩種作用清除感染HBV的肝臟細(xì)胞,在發(fā)生HBV相關(guān)慢加急性肝衰竭(acute on chronic liver failure, ACLF)時,往往存在CTL缺乏和活性不足,從而導(dǎo)致不能有效控制HBV感染導(dǎo)致的肝臟炎癥[33]。人體肝臟和外周血含有大量與天然免疫有關(guān)的免疫細(xì)胞,其中NK細(xì)胞約占肝內(nèi)淋巴細(xì)胞的30%~50%,約占外周血淋巴細(xì)胞的5%~10%。在HBV相關(guān)ACLF患者CTL功能低下時,天然免疫系統(tǒng)在該類疾病的發(fā)生發(fā)展中可能起著重要作用[34]。有研究顯示,在CHB急性發(fā)作期,機體可以通過肝臟NK細(xì)胞表面的TRAIL,與肝細(xì)胞DR結(jié)合,導(dǎo)致肝損傷[35]。因此NK細(xì)胞介導(dǎo)的TRAIL表達增多,可能是慢性HBV感染導(dǎo)致肝臟炎癥的發(fā)病機制之一。
3.2 TRAIL及其受體與CHB、乙肝肝衰竭的關(guān)系 目前在臨床層面關(guān)于TRAIL及其受體與CHB、乙肝肝衰竭等HBV相關(guān)慢性肝病患者的研究相對較少,且結(jié)果并不完全統(tǒng)一,甚至出現(xiàn)截然相反的結(jié)果。有研究顯示,CHB患者外周血可溶性DR5水平明顯低于正常人,與ALT、TBIL水平呈負(fù)相關(guān),與白蛋白/球蛋白比值、HBsAg滴度及HBeAg滴度呈正相關(guān),輕度CHB患者外周血可溶性DR5水平高于中度及重度CHB患者[36]。另一項研究則發(fā)現(xiàn)輕中度CHB患者、重度重型CHB患者和乙肝肝硬化患者的血清可溶型TRAIL(sTRAIL)水平均低于正常對照人群,但外周血單個核細(xì)胞TRAIL mRNA水平均高于正常對照人群[37]。與之相反,來自Han等[38]的報道顯示CHB患者sTRAIL水平顯著高于正常對照人群。
一項針對HBV DNA>17 000 IU/ml的CHB患者的研究顯示,在開展48周聚乙二醇IFNα-2a聯(lián)合阿德福韋酯抗病毒治療后,對于取得HBsAg血清學(xué)轉(zhuǎn)換的患者,初始治療時存在CD56brightNK細(xì)胞高表達,CD56dimNK細(xì)胞低表達;CD56brightNK細(xì)胞上趨化因子受體CX3CR1低表達,CD56dimNK細(xì)胞上抑制性受體NKG2A低表達。治療結(jié)束時CD56brightNK細(xì)胞上TRAIL、IFN-γ高表達[39]。另一項單用聚乙二醇IFNα-2a治療HBeAg陰性CHB患者的研究顯示,治療過程中患者CD8+T淋巴細(xì)胞絕對值、HBV特異性CD8+T淋巴細(xì)胞絕對值均明顯下降,而CD56brightNK細(xì)胞數(shù)量明顯增加,NK細(xì)胞通過IL-15、NKP46使TRAIL、IFN-γ表達均增高。取得TRAIL應(yīng)答(較治療前至少增加10×TRAIL CD56brightNK 個/ml)患者的HBV DNA載量、HBsAg滴度下降更為顯著[40]。提示CD56brightNK細(xì)胞TRAIL表達與CHB患者抗病毒治療應(yīng)答相關(guān),CD56brightNK細(xì)胞可能通過高表達TRAIL,使CHB患者取得更好的抗病毒效果。
一項研究顯示,慢性乙型重型肝炎(即HBV相關(guān)肝衰竭)患者外周血單個核細(xì)胞(peripheral blood mononuclear cell, PBMC)TRAIL mRNA水平明顯高于健康對照組,存活組患者PBMC TRAIL mRNA水平明顯高于死亡組[41]。另一項研究顯示重型肝炎患者(其中乙肝肝衰竭患者占50%)PBMC TRAIL mRNA的水平及血清sTRAIL的水平均明顯高于健康對照組。血漿置換治療后患者PBMC TRAIL mRNA水平下降,而血清sTRAIL水平無明顯變化。治療有效組PBMC TRAIL mRNA水平、血清sTRAIL水平較治療無效組下降更為明顯[42]。一項對CHB、乙肝肝硬化和乙肝肝衰竭患者肝臟病理的研究發(fā)現(xiàn),HBV相關(guān)慢性肝病患者肝臟TRAIL表達整體高于健康對照者,其中CHB患者肝臟TRAIL表達明顯高于健康對照者和乙肝肝硬化、乙肝肝衰竭患者,而乙肝肝硬化、乙肝肝衰竭患者肝臟表達TRAIL與健康對照者則無明顯差異。上述研究提示乙肝肝衰竭患者PBMC TRAIL mRNA水平、血清sTRAIL水平可能與疾病嚴(yán)重程度、預(yù)后及治療應(yīng)答相關(guān),而肝臟TRAIL表達與疾病嚴(yán)重程度可能無相關(guān)性[43]。
綜上所述,TRAIL在人體中主要通過與死亡受體結(jié)合的方式,針對腫瘤細(xì)胞、轉(zhuǎn)化細(xì)胞及病毒感染細(xì)胞發(fā)揮誘導(dǎo)凋亡作用,而對正常細(xì)胞無影響,具有很強的免疫特異性?,F(xiàn)有研究表明,TRAIL及其受體在HBV相關(guān)慢性肝病的發(fā)病過程中起到非常重要的作用,但仍有一些問題尚待解決。①目前關(guān)于TRAIL及其受體與HBV相關(guān)慢性肝病,特別是與HBV相關(guān)肝衰竭的臨床研究較少,且研究結(jié)果不完全一致,尚不能為臨床相關(guān)領(lǐng)域充分運用。②TRAIL及其受體誘導(dǎo)肝細(xì)胞凋亡失衡可能是HBV相關(guān)慢性肝病的重要發(fā)病機制,如果TRAIL及其受體發(fā)揮的誘導(dǎo)凋亡作用較弱,可能導(dǎo)致HBV感染慢性化、肝癌細(xì)胞免疫逃逸;如果這一作用較強,又可能導(dǎo)致肝臟損害過重,甚至出現(xiàn)肝衰竭。因此,尋找到TRAIL及其受體誘導(dǎo)HBV感染肝細(xì)胞凋亡的平衡點至關(guān)重要,也是有效預(yù)防治療該類疾病的關(guān)鍵點。③TRAIL以膜結(jié)合型、可溶型兩種方式表達,兩者均能發(fā)揮生物學(xué)功能,現(xiàn)有研究未明確兩者在HBV相關(guān)慢性肝病患者體內(nèi)表達是否存在一致性,是否與該類患者疾病嚴(yán)重程度及預(yù)后存在相關(guān)性。④NK細(xì)胞是肝臟中重要的免疫細(xì)胞,發(fā)生HBV相關(guān)慢性肝病時,患者肝內(nèi)及外周血NK細(xì)胞均會發(fā)生變化。既往研究提示NK細(xì)胞TRAIL表達可能與CHB患者抗病毒治療應(yīng)答相關(guān),有理由相信NK細(xì)胞表達TRAIL很有可能是機體誘導(dǎo)HBV感染肝細(xì)胞凋亡的重要途徑,須要進行更加深入的研究,為今后治療提供新靶點。⑤針對TRAIL及其受體發(fā)揮的誘導(dǎo)細(xì)胞凋亡作用是否能夠開發(fā)新藥運用于臨床,目前尚無定論。針對腫瘤,外源性TRAIL治療已進入臨床研究階段,但療效尚不確切,而HBV相關(guān)肝衰竭主要由于細(xì)胞凋亡過多所致,因此應(yīng)用TRAIL治療策略也不同,是否可以運用c-FLIP蛋白、Bax蛋白等物質(zhì)阻斷TRAIL誘導(dǎo)肝細(xì)胞凋亡途徑,從而減少肝細(xì)胞凋亡,最終減輕肝損傷,值得今后探討。
[1]Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis[J]. Immunity, 1995, 3(6):673-682.
[2]Wang P, Song JH, Song DK, et al. Role of death receptor and mitochondrial pathways in conventional chemotherapy drug induction of apoptosis[J]. Cell Signal, 2006, 18(9):1528-1535.
[3]Liedtke C, Gr?ger N, Manns MP, et al. Interferon-alpha enhances TRAIL-mediated apoptosis by up-regulating caspase-8 transcription in human hepatoma cells[J]. J Hepatol, 2006, 44(2):342-349.
[4]Pitti RM, Marsters SA, Ruppert S, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family[J]. J Biol Chem, 1996, 271(22):12687-12690.
[5]Taimr P, Higuchi H, Kocova E, et al. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis[J]. Hepatology, 2003, 37(1):87-95.
[6]Fulda S. Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)[J]. Adv Exp Med Biol, 2014, 818:167-180.
[7]Rowinsky EK. Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents[J]. J Clin Oncol, 2005, 23(36):9394-9407.
[8]Ichikawa K, Liu W, Zhao L, et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity[J]. Nat Med, 2001, 7(8):954-960.
[9]Yamanaka T, Shiraki K, Sugimoto K, et al. Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines[J]. Hepatology, 2000, 32(3):482-490.
[10]Lawrence D, Shahrokh Z, Marsters S, et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions[J]. Nat Med, 2001, 7(4):383-385.
[11]Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells[J]. J Immunol, 1998, 161(5):2195-2200.
[12]Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density[J]. Cell, 1997, 89(2):309-319.
[13]Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL[J]. J Biol Chem, 1998, 273(23):14363-14367.
[14]Weichhaus M, Chung ST, Connelly L. Osteoprotegerin in breast cancer: beyond bone remodeling[J/OL]. Mol Cancer, 2015, 14:117 [2016-10-21]. https://www.ncbi.nlm.gov/pmc/articles/ PMC4460694. DOI:10.1186/s12943-015-0390-5
[15]Truneh A, Sharma S, Silverman C, et al. Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor[J]. J Biol Chem, 2000, 275(30):23319-23325.
[16]Pan G, Ni J, Wei YF, et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL[J]. Science, 1997, 277(5327):815-818.
[17]Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC)[J]. EMBO J, 1997, 16(10):2794-2804.
[18]Barczyk K, Kreuter M, Pryjma J, et al. Serum cytochrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy[J]. Int J Cancer, 2005, 116(2):167-173.
[19]Falschlehner C, Schaefer U, Walczak H. Following TRAIL's path in the immune system[J]. Immunology, 2009, 127(2):145-154.
[20]Edagawa M, Kawauchi J, Hirata M, et al. Role of activating transcription factor 3 (ATF3) in endoplasmic reticulum (ER) stress-induced sensitization of p53-deficient human colon cancer cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through up-regulation of death receptor 5 (DR5) by zerumbone and celecoxib[J]. J Biol Chem, 2014, 289(31):21544-21561.
[21]Yi L, Zongyuan Y, Cheng G, et al. Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway[J]. Cancer Sci, 2014, 105(5):520-527.
[22]Lee DH, Sung KS, Guo ZS, et al. TRAIL-induced caspase activation is a prerequisite for activation of the endoplasmic reticulum stress-induced signal transduction pathways[J]. J Cell Biochem, 2016, 117(5):1078-1091.
[23]Janssen HL, Higuchi H, Abdulkarim A, et al. Hepatitis B virus enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity by increasing TRAIL-R1/death receptor 4 expression[J]. J Hepatol, 2003, 39(3):414-420.
[24]Liang X, Qu Z, Zhang Z, et al. Blockade of preS2 down-regulates the apoptosis of HepG2.2.15 cells induced by TRAIL[J]. Biochem Biophys Res Commun, 2008, 369(2):456-463.
[25]Liang X, Du J, Liu Y, et al. The hepatitis B virus protein MHBs(t) sensitizes hepatoma cells to TRAIL-induced apoptosis through ERK2[J]. Apoptosis, 2007, 12(10):1827-1836.
[26]Du J, Liang X, Liu Y, et al. Hepatitis B virus core protein inhibits TRAIL-induced apoptosis of hepatocytes by blocking DR5 expression[J]. Cell Death Differ, 2009, 16(2):219-229.
[27]Herr I, Schemmer P, Büchler MW. On the TRAIL to therapeutic intervention in liver disease[J]. Hepatology, 2007, 46(1):266-274.
[28]Shin EC, Ahn JM, Kim CH, et al. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway[J]. Int J Cancer, 2001, 93(2):262-268.
[29]Zou Z, Li B, Xu D, et al. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection[J]. J Clin Gastroenterol, 2009, 43(2):182-190.
[30]李晨,王慧芬,萬謨彬. HBV相關(guān)慢加急性肝衰竭患者體內(nèi)細(xì)胞因子表達及動態(tài)變化的研究[J]. 傳染病信息,2011,24(3):151-155.
[31]李晨,王慧芬,胡瑾華,等. 乙型肝炎病毒相關(guān)慢加急性肝衰竭患者外周血調(diào)節(jié)性T細(xì)胞、血清白細(xì)胞介素-6表達及動態(tài)變化的研究[J]. 中華臨床醫(yī)師雜志(電子版),2012,6(20):6232-6237.
[32]李晨,劉鴻凌,臧紅,等. 外周血髓源性抑制細(xì)胞在HBV相關(guān)慢加急性肝衰竭患者中表達的研究[J]. 傳染病信息,2013,26(7):343-347.
[33]Maini MK, Boni C, Lee CK, et al. The role of virus-specific CD8+cells in liver damage and viral control during persistent hepatitis B virus infection[J]. J Exp Med, 2000, 191(8):1269-1280.
[34]Tian Z, Chen Y, Gao B. Natural killer cells in liver disease[J]. Hepatology, 2013, 57(4):1654-1662.
[35]Zhang Z, Zhang S, Zou Z, et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients[J]. Hepatology, 2011, 53(1):73-85.
[36]Du J, Wang L, Han J, et al. Serum soluble death receptor 5 concentration in patients with chronic hepatitis B is associated with liver damage and viral antigen level[J]. Clin Biochem, 2012, 45(10-11):845-847.
[37]毛麗萍,王惠民,張子玉,等. 外周血單個核細(xì)胞TRAIL mRNA和血清sTRAIL水平與HBV感染肝損傷的相關(guān)性[J].世界華人消化雜志,2007,15(6):641-645.
[38]Han LH, Sun WS, Ma CH, et al. Detection of soluble TRAIL in HBV infected patients and its clinical implications[J]. World J Gastroenterol, 2002, 8(6):1077-1080.
[39]Stelma F, de Niet A, Tempelmans Plat-Sinnige MJ, et al. Natural killer cell characteristics in patients with chronic hepatitis B virus (HBV) infection are associated with HBV surface antigen clearance after combination treatment with pegylated interferon alfa-2a and adefovir[J]. J Infect Dis, 2015, 212(7):1042-1051.
[40]Micco L, Peppa D, Loggi E, et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B[J]. J Hepatol, 2013, 58(2):225-233.
[41]周春艷,王振華. 慢性乙型重型肝炎患者外周血單個核細(xì)胞TRAIL mRNA水平的臨床研究[J]. 中國社區(qū)醫(yī)師:醫(yī)學(xué)專業(yè),2012,14(29):207-208.
[42]魏屏,張景輝,劉薇,等. TRAIL在重型肝炎患者PBMC和血清中的表達及血漿置換治療前后的變化[J]. 世界華人消化雜志,2011,19(19):2063-2067.
[43]Liu FW, Wu DB, Chen EQ, et al. Expression of TRAIL in liver tissue from patients with different outcomes of HBV infection[J]. Clin Res Hepatol Gastroenterol, 2013, 37(3):269-274.
(2016-11-08收稿 2016-12-02修回)
(責(zé)任編委 李 軍 本文編輯 趙雅琳)
Advances in the correlation between TRAIL and its receptors and HBV-related chronic liver disease
LI Chen, WAN Zhi-hong*, XIN Shao-jie*
Liver Failure Treatment and Research Centre, 302 Military Hospital of China, Beijing 100039, China
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) belongs to the tumor necrosis factor (TNF) superfamily. After TRAIL bound to death receptor, waterfall-like cascade reaction of caspase can be activated. Tumor cells, transformed cells and virus-infected cells can be induced to undergo apoptosis by this reaction, but it has not produce apoptosis function in normal tissues and cells. By interacting with hepatitis B virus (HBV), cytokines and other factors, TRAIL and its receptors play an important role in the pathogenesis of HBV-related chronic liver disease. In addition, it has a correlation between TRAIL expression in vivo and chronic hepatitis B (CHB) patients with antiviral treatment. This review focuses on the correlation between TRAIL and its receptors and HBV-related chronic liver disease, and provides a theoretical basis for their relationship.
TRAIL; HBV; chronic liver disease
R512.6
A
1007-8134(2016)06-0370-05
10.3969/j.issn.1007-8134.2016.06.013
國家自然科學(xué)基金面上項目(81371800);解放軍第三〇二醫(yī)院創(chuàng)新課題(YNKT2014007)
100039 北京,解放軍第三〇二醫(yī)院肝衰竭診療與研究中心(李晨、萬志紅、辛紹杰)
萬志紅,E-mail: wanzhihong302@163.com;辛紹杰,E-mail: xinshaojie302@163.com
*Corresponding author. WAN Zhi-hong, E-mail: wanzhihong302@163.com; XIN Shao-jie, E-mail: xinshaojie302@163.com