李盛楠,張華菁,霍 波,張 丁
1中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院口腔科,北京 100730 2北京理工大學(xué)宇航學(xué)院生物力學(xué)系,北京 100081
?
·論著·
間隙連接蛋白Connexin43對力刺激下人牙周膜細(xì)胞成骨相關(guān)轉(zhuǎn)錄因子表達(dá)的影響
李盛楠1,張華菁1,霍波2,張丁1
1中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院北京協(xié)和醫(yī)院口腔科,北京 1007302北京理工大學(xué)宇航學(xué)院生物力學(xué)系,北京 100081
摘要:目的研究間隙連接蛋白Connexin43(Cx43)在牽張力刺激下對牙周膜成纖維細(xì)胞成骨相關(guān)轉(zhuǎn)錄因子表達(dá)的影響。方法對體外培養(yǎng)的人牙周膜成纖維細(xì)胞(hPDLFs)施加變形量為5%的牽張力,在受力1、2、4、8、24 h后檢測成骨相關(guān)轉(zhuǎn)錄因子Osterix、RUNX2及Cx43 mRNA的表達(dá)。分別采用間隙連接的阻斷劑18α-GA和基因沉沒Cx43的方法阻斷Cx43后觀察Osteix、RUNX2 mRNA表達(dá)的變化。結(jié)果對hPDLFs施加牽張力時,hPDLFs內(nèi)的Cx43、Osterix和RUNX2 mRNA水平隨加力時間增加表達(dá)均明顯增強(qiáng)(P均 關(guān)鍵詞:牙周膜細(xì)胞;機(jī)械力;Connexin 43;成骨轉(zhuǎn)錄因子 ActaAcadMedSin,2016,38(1):22-26 在正畸牙移動的相關(guān)理論中,關(guān)于牙周膜細(xì)胞對牙周組織改建的生物學(xué)作用已有了較為深入的研究。當(dāng)外力作用于牙齒時,牙周膜及牙槽骨隨著外界應(yīng)力的變化而不斷改建以適應(yīng)其功能的需要。在改建過程中,機(jī)械信號轉(zhuǎn)化為生化信號,并傳遞到骨改建相關(guān)效應(yīng)細(xì)胞,引起牙槽骨的改建并最終引起牙齒的移動。牙周膜細(xì)胞是機(jī)械力的直接效應(yīng)細(xì)胞,具有成骨樣細(xì)胞表型,受到機(jī)械牽張力作用后首先發(fā)生成骨分化,進(jìn)而形成牙槽骨,并影響破骨細(xì)胞的生成,對正畸牙槽骨改建發(fā)揮著極其重要的作用[1]。因此,研究牙周膜細(xì)胞在機(jī)械牽張力作用下的成骨分化過程,對于深入了解正畸牙槽骨改建機(jī)制具有重要意義。 間隙連接通道(gap junction,GJs)是一種重要的細(xì)胞間交通系統(tǒng),在骨細(xì)胞、成骨細(xì)胞、破骨細(xì)胞中均能感應(yīng)并傳遞力學(xué)信號。本課題組前期研究顯示,骨細(xì)胞的間隙連接蛋白Connexin43(Cx43)在流體剪切力刺激下表達(dá)增強(qiáng),可促進(jìn)骨細(xì)胞向成骨轉(zhuǎn)化[2],提示Cx43對于力學(xué)信號的傳導(dǎo)起著重要作用。但目前對于機(jī)械牽張力作用下牙周膜細(xì)胞發(fā)生成骨向分化的機(jī)制仍不清楚。本研究觀察了Cx43在機(jī)械牽張力介導(dǎo)的人牙周膜成纖維細(xì)胞(human periodontal ligament fibroblasts,hPDLFs)成骨分化中的作用。 材料和方法 材料DMEM培養(yǎng)基(高糖)、胎牛血清(fetal bovine serum,F(xiàn)BS)(Gibco公司,美國),cDNA反轉(zhuǎn)錄試劑盒(TransGen生物有限公司,中國),倒置相差顯微鏡(Leica,德國),基底膜拉伸裝置(北京理工大學(xué)宇航學(xué)院力學(xué)實(shí)驗(yàn)室研制),梯度PCR儀(Bio-rad公司,德國)。 hPDLFs的體外培養(yǎng)和傳代復(fù)蘇原代hPDLFs(美國Sciencell公司),倒置相差顯微鏡下觀察細(xì)胞生長及貼壁情況,待細(xì)胞生長至80%融合后傳代,取生長良好的第4~6代hPDLFs進(jìn)行拉力實(shí)驗(yàn)。 hPDLFs的體外加力采用周期性拉力法對細(xì)胞加載機(jī)械力。拉伸基底膜由PDMS (Sylfard184,Dowcorning)膠按照1∶10的比例配置制成。制成的基底膜應(yīng)用離子濺射儀去離子化,消毒后細(xì)胞按每條2.5×105個接種于基底拉伸膜,實(shí)驗(yàn)組與對照組同時種板。待細(xì)胞融合80%,在無菌條件下固定膜于基底拉伸裝置上,置于37 ℃孵箱中,實(shí)驗(yàn)組周期性加力(1 cycle/3 min),拉伸應(yīng)變率為5%,加力時間分別為1、2、4、8、24 h。此加力方式均屬于正畸臨床輕力范圍[3]。 18α-GA阻斷hPDLFs的GJs將18α-GA粉末溶解于DMSO中,配制成20 mmol/L的溶液4°C保存?zhèn)溆?。使用時,用細(xì)胞培養(yǎng)基將該溶液稀釋至75 μmol/L。加入含75 μmol/L 18α-GA的細(xì)胞培養(yǎng)基,在孵箱中孵育30 min后,對實(shí)驗(yàn)組細(xì)胞施加不同時間的拉力。由于18α-GA對GJs的阻斷作用具有可逆性,所以在機(jī)械牽張力細(xì)胞加載系統(tǒng)中,培養(yǎng)基里也保持有75 μmol/L的18α-GA含量。同時設(shè)置陽性對照組,即加入18α-GA,但未加力。 siRNA干擾技術(shù)抑制hPDLFs Cx43的表達(dá)將配制好的siRNA轉(zhuǎn)染液(約2 ml)加入hPDLFs的培養(yǎng)瓶中,在5%CO2、飽和濕度、37°C條件的恒溫培養(yǎng)箱中孵育8 h。不吸走siRNA轉(zhuǎn)染液,加入2 ml常規(guī)細(xì)胞培養(yǎng)基(10%FBS和1%雙抗),再孵育24 h。吸凈培養(yǎng)基,換成正常的基礎(chǔ)培養(yǎng)基,孵育24 h。轉(zhuǎn)染成功后的細(xì)胞可接種于基底拉伸膜上,用于細(xì)胞加力實(shí)驗(yàn)。細(xì)胞加力實(shí)驗(yàn)設(shè)置了陰性對照組(scrambled siRNA加力)、陽性對照組(siCx43干擾但未加力)和實(shí)驗(yàn)組(siCx43干擾加力),在每個加力時間點(diǎn)均設(shè)置了1組對照組,加力0、1、2、4、8、24 h。 實(shí)時定量PCR檢測采用Trizol法提取細(xì)胞總RNA,反轉(zhuǎn)錄后取2 μl cDNA放入Bio-rad iQ5機(jī)器內(nèi),按照實(shí)驗(yàn)說明進(jìn)行逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(reverse transcription-polymerase chain reaction,RT-PCR)。反應(yīng)程序?yàn)椋?5 ℃預(yù)變性10 min;95 ℃變性30 s、95 ℃退火5 s、60 ℃延伸30 s,循環(huán)40次。 統(tǒng)計(jì)學(xué)處理采用SPSS 13.0統(tǒng)計(jì)軟件,實(shí)驗(yàn)重復(fù)3次,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差表示,組間均數(shù)比較采用單因素方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。 結(jié)果 周期性牽張力作用對hPDLFs Cx43 mRNA及成骨相關(guān)轉(zhuǎn)錄因子表達(dá)的影響對hPDLFs施加牽張力時,hPDLFs內(nèi)的Cx43 mRNA表達(dá)水平逐漸上升,至24 h時達(dá)到最大(6.4-fold,P=0.014);在加力的24 h 中,RUNX2 表達(dá)量在受力1 h時即出現(xiàn)顯著變化(P=0.032),其表達(dá)量隨時間逐漸增加;Osterix表達(dá)量在受力4 h后才出現(xiàn)明顯增加(P=0.0275),受力24 h表達(dá)量增至峰值(13.6-fold)(圖1)。 阻斷GJs對牽張力作用下hPDLFs的Cx43 mRNA及成骨相關(guān)基因表達(dá)的影響實(shí)時熒光定量PCR結(jié)果顯示,用間隙連接蛋白阻斷劑18α-GA把hPDLFs的GJs阻斷后,胞內(nèi)Cx43 mRNA表達(dá)水平受到明顯抑制(0.44-fold,P=0.028)。對hPDLFs施加機(jī)械牽張力4 h后,Cx43 mRNA水平即恢復(fù)到陰性對照組水平(P=0.64),此后表達(dá)量繼續(xù)增加,至24 h時較陰性對照組(P=0.032)和陽性對照組(P=0.041)都明顯增加;而進(jìn)行了GJs阻斷卻未加力的hPDLFs隨時間推移Cx43 mRNA表達(dá)量一直受到抑制,24 h時也未達(dá)到陰性對照組表達(dá)水平。間隙連接阻斷后成骨轉(zhuǎn)錄因子RUNX2 表達(dá)水平也受到明顯抑制(0.59-fold,P=0.029),隨加力刺激時間增加表達(dá)量逐漸恢復(fù),受力4 h后恢復(fù)至陰性對照組水平(P=0.61)。Osterix mRNA表達(dá)也受到間隙連接阻斷劑的抑制(0.61-fold,P=0.023),但在受力2 h后Osterix mRNA表達(dá)水平即恢復(fù)至陰性對照組水平(P=0.53)(圖2)。 與0 h組比較,aP<0.05 aP<0.05 compared with 0 h 圖1周期性拉力對Cx43、RUNX2和Osterix mRNA 表達(dá)的影響(n=3) Fig1Effect of cyclic mechanical tension on relative mRNA levels of Cx43,RUNX2,and Osterix in hPDLFs by qPCR normalized to GAPDH(n=3) 與對照組比較,aP<0.05;與0 h組比較,bP<0.05 aP<0.05,compared with control;bP<0.05,compared with 0 h 圖2阻斷GJs后周期性拉力對Cx43、RUNX2和Osterix mRNA 表達(dá)的影響(n=3) Fig2Effect of cyclic mechanical tension on relative mRNA levels of Cx43,RUNX2,and Osterix in hPDLFs blocking gap junctions by qPCR normalized to GAPDH (n=3) 抑制間隙連接蛋白Cx43對hPDLFs中成骨相關(guān)轉(zhuǎn)錄因子表達(dá)的影響對hPDLFs施加siRNA干擾技術(shù)后,胞內(nèi)Cx43 mRNA水平受到明顯抑制(0.39-fold,P=0.012)。隨后施加機(jī)械牽張力刺激,結(jié)果顯示隨加力時間延長Cx43 mRNA水平逐步恢復(fù),8 h后恢復(fù)至陰性對照組水平(P=0.44),24 h后表達(dá)量比陽性對照組(siRNA,0 h組)和陰性對照組(scrambled siRNA組)都明顯增加(P=0.025)。而施加了siRNA技術(shù)卻未加力的hPDLFs,隨時間增加Cx43 mRNA表達(dá)量增加,但24 h后仍遠(yuǎn)低于陰性對照組(P=0.027)。Cx43基因被沉沒后,RUNX2 mRNA水平也明顯受到抑制(0.64-fold,P=0.023),并且機(jī)械刺激后表達(dá)量仍在基線上下波動,直至受力8 h后出現(xiàn)較明顯的增加(1.2-fold,P=0.014)。Osterix mRNA在Cx43基因被抑制時表達(dá)量也明顯受到抑制(0.62-fold,P=0.031),施加機(jī)械牽張力后表達(dá)量隨時間延長而增加,在4 h即出現(xiàn)明顯增加(P=0.019)(圖3)。 討論 正畸治療中,牙周膜對牙齒移動、牙槽骨重建起著重要的作用,其中hPDLFs被視為成骨及破骨信號分子傳導(dǎo)的直接效應(yīng)細(xì)胞[1,4]。研究顯示間隙連接蛋白Cx43是響應(yīng)機(jī)械力、激素和生長因子對骨細(xì)胞刺激時的重要調(diào)節(jié)器[5- 6]。與整合素類似,間隙連接蛋白也是一種跨膜蛋白,它以六聚體的形式組成1個連接子。GJs由相鄰細(xì)胞的連接子構(gòu)成跨膜的區(qū)域,允許相對分子質(zhì)量小于1000的分子和離子通過其擴(kuò)散[7]。骨組織中含量最豐富的間隙連接蛋白是Cx43,其廣泛存在于骨細(xì)胞的胞質(zhì)、胞膜和突觸中,參與調(diào)節(jié)了骨細(xì)胞的增殖、分化和存活。本課題組以往研究表明,流體剪切力可促進(jìn)骨細(xì)胞中Cx43的表達(dá)且通過Cx43調(diào)節(jié)骨細(xì)胞的成骨和破骨相關(guān)基因表達(dá)[2]。本研究也發(fā)現(xiàn)機(jī)械牽張力可促進(jìn)hPDLFs Cx43的表達(dá),與早期體內(nèi)、外研究結(jié)果一致[8- 9]。本研究還發(fā)現(xiàn),在機(jī)械牽張力刺激下隨加力時間的增加成骨轉(zhuǎn)錄因子Osterix和RUNX2表達(dá)也明顯增加,與以往體內(nèi)、外研究證明的Osterix和RUNX2表達(dá)具有時間依賴性結(jié)果一致[10- 12]。而siRNA干擾抑制Cx43基因或是18α-GA阻斷GJs后,RUNX2和Osterix基因的表達(dá)明顯受到抑制,提示間隙連接蛋白Cx43是牽張力作用下hPDLFs中成骨轉(zhuǎn)錄因子RUNX2及Osterix的表達(dá)調(diào)控因子。 與對照組比較,aP<0.05;與0 h組比較,bP<0.05;與未加力組比較,cP<0.05 aP<0.05 compared with control;bP<0.05 compared with 0 h;cP<0.05 compared with siRNA no tension 圖3Cx43沉沒后周期性拉力對Cx43、RUNX2和Osterix mRNA 表達(dá)的影響(n=3) Fig3Silencing Cx43 in hPDLFs under cyclic mechanical tension,relative mRNA levels of Cx43,RUNX2 and Osterix were normalized to GAPDH (n=3) RUNX2可與調(diào)節(jié)成骨特異性基因表達(dá)的啟動子成骨細(xì)胞特異性元件(osteoblast-specific cis-acting element 2,OSE2)相互結(jié)合,是促進(jìn)成骨的早期轉(zhuǎn)錄因子[13]。Osterix是成骨細(xì)胞分化和骨形成不可缺少的調(diào)節(jié)因子[14],其調(diào)控許多重要的成骨早晚期表型和功能蛋白表達(dá)[15]。在Osx基因剔除小鼠胚胎中,各種成骨分化標(biāo)志物的表達(dá)水平嚴(yán)重降低或缺如,成骨細(xì)胞的分化、成熟被完全阻斷[16]。Li等[17]研究發(fā)現(xiàn),周期性牽張力刺激Osterix和RUNX2的表達(dá)是通過MAPK信號通路介導(dǎo)的。Fujihara等[11]研究結(jié)果顯示,谷氨酸信號通路也可以調(diào)節(jié)由機(jī)械力刺激牙周膜細(xì)胞引起的RUNX2表達(dá)增加。本研究結(jié)果證實(shí),在機(jī)械牽張力作用下,間隙連接蛋白Cx43參與了hPDLFs的成骨轉(zhuǎn)錄因子表達(dá),可能在正畸牙槽骨改建中發(fā)揮重要作用。但也有文獻(xiàn)報(bào)道不同的信號通路對細(xì)胞生理變化有不同的影響[18-19],關(guān)于在機(jī)械牽張力作用下hPDLFs成骨分化過程中Cx43與其他信號通路的相互作用尚未見報(bào)道。本課題組將繼續(xù)深入地進(jìn)行研究,以期為完善正畸臨床理論及相關(guān)骨生物力學(xué)理論作出貢獻(xiàn)。 參考文獻(xiàn) [1]Wongkhantee S,Yongchaitrakul T,Pavasant P. Mechanical stress induces osteopontin via ATP/P2Y1 in periodontal cells[J]. J Dent Res,2008,87(6):564- 568. [2]Li X,Liu C,Li P,et al. Connexin 43 is a potential regulator in fluid shear stress-induced signal transduction in osteocytes[J]. J Orthop Res,2013,31(12):1959- 1965. [3]Yamaguchi M,Shimizu N,Shibata Y,et al. Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells[J]. J Dent Res,1996,75(3):889- 894. [4]Kook SH,Son YO,Hwang JM,et al. Mechanical force inhibits osteoclastogenic potential of human periodontal ligament fibroblasts through OPG production and ERK-mediated signaling[J]. J Cell Biochem,2009,106(6):1010- 1019. [5]Plotkin LI,Manolagas SC,Bellido T. Transduction of cell survival signals by connexin- 43 hemichannels[J]. J Biol Chem,2002,277(10):8648- 8657. [6]Morelli S,Bilbao PS,Katz S,et al. Protein phosphatases:possible bisphosphonate binding sites mediating stimulation of osteoblast proliferation[J]. Arch Biochem Biophys,2011,507(2):248- 253. [7]Laing JG,Chou BC,Steinberg TH. ZO- 1 alters the plasma membrane localization and function of Cx43 in osteoblastic cells[J]. J Cell Sci,2005,118(Pt 10):2167- 2176. [8]Xu C,F(xiàn)an Z,Shan W,et al. Cyclic stretch influenced expression of membrane connexin 43 in human periodontal ligament cell[J]. Arch Oral Biol,2012,57(12):1602- 1608. [9]Su M,Borke JL,Donahue HJ,et al. Expression of connexin 43 in rat mandibular bone and periodontal ligament (PDL) cells during experimental tooth movement[J]. J Dent Res,1997,76(7):1357- 1366. [10]趙艷紅,李洪發(fā),王春玲,等. 機(jī)械力作用下人牙周膜細(xì)胞Osterix mRNA和蛋白的表達(dá)[J]. 華西口腔醫(yī)學(xué)雜志,2010,28(2):214- 218. [11]Fujihara C,Yamada S,Ozaki N,et al. Role of mechanical stress-induced glutamate signaling-associated molecules in cytodifferentiation of periodontal ligament cells[J]. J Biol Chem,2010,285(36):28286- 28297. [12]Kawarizadeh A,Bourauel C,Gotz W,et al. Early responses of periodontal ligament cells to mechanical stimulusinvivo[J]. J Dent Res,2005,84(10):902- 906. [13]Ducy P,Zhang R,Geoffroy V,et al. Osf 2/Cbfa1:a transcriptional activator of osteoblast differentiation[J]. Cell,1997,89(5):747- 754. [14]Ohyama Y,Nifuji A,Maeda Y,et al. Spaciotemporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis[J]. Endocrinology,2004,145(10):4685- 4692. [15]Nakashima K,Zhou X,Kunkel G,et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell,2002,108(1):17- 29. [16]Kumamoto H,Ooya K. Expression of bone morphogenetic proteins and their associated molecules in ameloblastomas and adenomatoid odontogenic tumors[J]. Oral Dis,2006,12(2):163- 170. [17]Li L,Han M,Li S,et al. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J]. DNA Cell Biol,2013,32(9):488- 497. [18]Watkins M,Grimston SK,Norris JY,et al. Osteoblast connexin 43 modulates skeletal architecture by regulating both arms of bone remodeling[J]. Mol Biol Cell,2011,22(8):1240- 1251. [19]Thi MM,Islam S,Suadicani SO,et al. Connexin43 and pannexin1 channels in osteoblasts:who is the “hemichannel”[J]. J Membr Biol,2012,245(7):401- 409. Effect of Connexin43 on Mechanical Tension-stimulated Osteogenic Transcription Factors of Human Periodontal Ligament Fibroblasts LI Sheng-nan1,ZHANG Hua-jing1,HUO Bo2,ZHANG Ding1 1Department of Stomatology,PUMC Hospital,CAMS and PUMC,Beijing100730,China2Department of Biomechanics,School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China Corresponding author:ZHANG DingTel:010- 69151740,E-mail:dingz77@sina.com ABSTRACT:ObjectiveTo investigate the expression and effect of Connexin43 (Cx43) on tensile tension-stimulated osteogenic transcription factors of human periodontal ligament fibroblasts (hPDLFs).MethodsAfter hPDLFs were treated with 5% elongation tension for 1 h,2 h,4 h,8 h,and 24 h,we examined the expressions of Cx43,Osterix,and RUNX2 at the mRNA level. After Cx43 expression was suppressed by siRNA or 18α-GA,the changes The mRNA in hPDLFs of Osterix and RUNX2 were observed. ResultsThe expressions of Cx43,Osterix,and RUNX2 mRNA in hPDLFs increased in a time-dependent fashion following tensile strain (all P<0.05),with the highest level at 5% elongation for 24 h. After Cx43 expression was blocked by two different methods,the increasing expressions of Osterix and RUNX2 were inhibited. Conclusions5% cyclic tension upregulates Cx43 expression and promotes the expression of Osterix and RUNX2 in a time-dependent manner. Cx43 may be involved in the osteogenic response of hPDLFs to mechanical tension. Key words:periodontal ligament cell;mechanical stretch;Connexin43;osteogenic transcription factors (收稿日期:2015- 04- 05) DOI:10.3881/j.issn.1000- 503X.2016.01.004 中圖分類號:R783.5 文獻(xiàn)標(biāo)志碼:A 文章編號:1000- 503X(2016)01- 0022- 05 通信作者:張丁電話:010- 69151740,電子郵件:dingz77@sina.com 基金項(xiàng)目:國家自然科學(xué)基金(31371389)Supported by the National Natural Sciences Foundation of China (31371389)