劉剛 薄占東
530000 南寧, 廣西醫(yī)科大學(xué)第一附屬醫(yī)院骨關(guān)節(jié)外科
?
連接蛋白43調(diào)控成骨細胞分子機制
劉剛薄占東
530000南寧,廣西醫(yī)科大學(xué)第一附屬醫(yī)院骨關(guān)節(jié)外科
摘要連接蛋白43(CX43)是骨細胞中表達最多的縫隙連接蛋白,由CX43構(gòu)成的縫隙連接或半通道在骨細胞間通訊中發(fā)揮至關(guān)重要的作用。大量研究表明,CX43可影響骨細胞、成骨細胞的功能,最終影響骨骼的發(fā)育和塑形。然而,關(guān)于CX43調(diào)控骨的分子機制研究較少。該文就CX43調(diào)控成骨細胞分子機制作一綜述。
關(guān)鍵詞連接蛋白43;骨細胞;成骨細胞;信號轉(zhuǎn)導(dǎo)
骨骼的正常發(fā)育和維持依賴于骨原細胞、成骨細胞、骨細胞和破骨細胞間的緊密協(xié)同作用。在構(gòu)建和維持骨骼系統(tǒng)時,為了實現(xiàn)骨骼系統(tǒng)結(jié)構(gòu)的完整性、機械能力和骨內(nèi)礦物質(zhì)平衡,4種細胞間的通訊不可或缺。研究發(fā)現(xiàn),成骨細胞、破骨細胞和骨細胞之間存在一種直接信號通道,即縫隙連接。縫隙連接是一種跨膜通道,由細胞膜中連接蛋白單體排列成的六聚體(半通道)與相鄰細胞膜中的相似六聚體配對而成,進而在兩細胞間形成親水性通道,相鄰細胞間的離子、小分子代謝物和第二信使等物質(zhì)可經(jīng)其進行自由擴散,從而實現(xiàn)相鄰細胞間的信號轉(zhuǎn)導(dǎo)[1]。Jordan等[2]研究發(fā)現(xiàn),連接蛋白43(CX43)主要在細胞核周圍表達,在成骨細胞和骨細胞的非交界質(zhì)膜處也有表達,這種亞細胞定位提示骨中的CX43可能不僅作為縫隙連接通道起作用。Gonzalez-Nieto等[3]研究證實,在細胞液與胞外環(huán)境間的物質(zhì)交換過程中,縫隙連接還可作為半通道起作用。近期研究[4]發(fā)現(xiàn),CX43蛋白C末端可與蛋白激酶結(jié)合,主動參與信號轉(zhuǎn)導(dǎo)過程而發(fā)揮作用。
1CX43與骨骼疾病
研究[5]表明,人類GJA1基因突變可導(dǎo)致眼齒指發(fā)育不良(ODDD,一種以管狀長骨增寬、顱面骨畸形及中節(jié)指骨發(fā)育不良或并指為特征的骨骼疾病)。研究[6-7]證實,在小鼠ODDD模型中GJA1基因突變可引起骨骼幾何結(jié)構(gòu)、骨微結(jié)構(gòu)改變和骨量缺失。全部或部分敲除小鼠成骨細胞系GJA1基因后,小鼠表現(xiàn)出骨細胞分化延遲、骨質(zhì)疏松及與ODDD患者相同的骨骼結(jié)構(gòu)(如長骨周長增大伴骨髓腔擴大和皮質(zhì)骨變薄)[8],這種骨髓腔擴大和皮質(zhì)變薄的表現(xiàn)與老齡及骨病患者骨表型極為相似[9]。此外,GJA1基因突變還可引起與ODDD骨表型不同的顱骨干骺端發(fā)育不良[10]。
2CX43與成骨細胞分化及骨形成
CX43可通過調(diào)控成骨細胞分化、骨細胞活動來調(diào)節(jié)骨形成和重塑,也可調(diào)控某些因子如核因子-κ B受體活化因子配體(RANKL)、骨保護素(OPG)的表達來調(diào)節(jié)骨重吸收。Lecanda等[11]建立CX43缺陷小鼠模型發(fā)現(xiàn),模型組中軸骨和四肢骨骨化明顯延遲,顱面骨畸形,從這些小鼠長骨和顱骨分離出的成骨細胞某些成骨基因表達減少,骨化延遲。此外,由CX43缺陷小鼠分離的成骨細胞或過表達CX45的成骨細胞系中,成骨標(biāo)志性物質(zhì)(如骨鈣素、Ⅰ型膠原α1、骨橋蛋白和Runx1)減少[12-13]。Loiselle等[14]建立小鼠CX43缺陷伴有股骨骨折模型,發(fā)現(xiàn)CX43可促進骨折愈合。
CX43調(diào)控骨細胞功能和骨質(zhì)量的機制非常復(fù)雜,在不同條件下會產(chǎn)生不同的作用。CX43不僅可以傳導(dǎo)骨合成代謝信號,還可傳導(dǎo)骨分解代謝信號,這取決于年齡、負荷狀態(tài),甚至其位置(骨膜或骨內(nèi)膜表面)[15]。CX43缺陷會降低力學(xué)負荷刺激引起的合成代謝效應(yīng),還會鈍化去負荷甚至高齡引起的骨丟失[16-17]。 在CX43 fl/fl、Dermol-Cre小鼠軟骨母細胞中,缺乏CX43可致使全身骨骼骨礦物質(zhì)密度降低和皮質(zhì)骨變薄[9];早期成骨細胞CX43缺陷只表現(xiàn)出骨體積、骨量和骨細胞數(shù)目輕微減少[12]。去除成熟骨細胞和成骨細胞中的CX43所導(dǎo)致的骨礦物質(zhì)密度變化幾乎不能用雙能X線骨密度測定法區(qū)別,而利用顯微CT僅檢測到股骨皮質(zhì)密度輕度降低[18-19]。
3骨組織中CX43信號轉(zhuǎn)導(dǎo)分子機制
包埋于骨基質(zhì)中的骨細胞、成骨細胞和破骨細胞經(jīng)CX43縫隙連接通道來協(xié)調(diào)相互間的功能,使骨骼對刺激產(chǎn)生精確的成骨和破骨反應(yīng)[20]。目前關(guān)于CX43調(diào)節(jié)成骨細胞分化的具體分子機制尚未明確。Niger等[21-22]研究證實,有絲分裂原激活蛋白激酶(MAPK)/細胞外調(diào)節(jié)蛋白激酶(ERK)及蛋白激酶C(PKC)信號轉(zhuǎn)導(dǎo)通路位于CX43下游,CX43高表達可激活MAPK/ERK及PKC,從而促進成骨細胞分化相關(guān)基因的轉(zhuǎn)錄;反之,則抑制MAPK/ERK及PKC信號轉(zhuǎn)導(dǎo)通路,成骨相關(guān)基因轉(zhuǎn)錄減少。也有研究[23]認為,CX43信號轉(zhuǎn)導(dǎo)與Wnt經(jīng)典信號轉(zhuǎn)導(dǎo)通路相關(guān),其可促進β-連環(huán)蛋白(β-catenin)累積、激活成骨分化和增加骨礦化。Wnt經(jīng)典信號轉(zhuǎn)導(dǎo)通路的激活又可促進CX43表達[24]。
3.1CX43與骨合成代謝信號轉(zhuǎn)導(dǎo)通路
CX43調(diào)控成骨細胞分化和基因表達與轉(zhuǎn)錄因子Runx2和Osterix(Sp7)有關(guān),而這兩個轉(zhuǎn)錄因子是骨形成的主要調(diào)控因子。在MC3T3-E1成骨細胞中,CX43過表達可增強Runx2報告基因的轉(zhuǎn)錄活性;相反,利用siRNA干擾CX43表達,Runx2依賴性轉(zhuǎn)錄則受到抑制[25]。CX43主要通過調(diào)節(jié)其下游PKC家族δ亞型(PKCδ)和ERK來調(diào)節(jié)Runx2的轉(zhuǎn)錄活性,在PKCδ轉(zhuǎn)移至細胞核內(nèi)之前,其與CX43的C末端結(jié)合,調(diào)節(jié)Runx2的轉(zhuǎn)錄[26-27]。當(dāng)用藥物抑制細胞間縫隙連接通訊或低密度培養(yǎng)細胞時,CX43對Runx2的作用減弱甚至消失;高密度培養(yǎng)時CX43才對Runx2發(fā)揮作用[22]。因此,在這一調(diào)節(jié)過程中,CX43是作為經(jīng)典縫隙連接通道而非其他功能如半通道發(fā)揮作用的。此外,成骨細胞中的Sp7也是CX43下游信號轉(zhuǎn)導(dǎo)通路的靶蛋白。在cKOTW2小鼠模型中,3月齡小鼠股骨中的Sp7 mRNA較對照組降低40%[9]。這一現(xiàn)象是繼發(fā)于Runx2轉(zhuǎn)錄活性降低還是CX43直接調(diào)節(jié)Sp7所致,至今仍不明了。
GJA1基因功能獲得性突變或功能缺失性突變可影響斑馬魚鰭片的長短,分別引起長鰭和短鰭表型[28-29]。進一步研究表明,CX43可調(diào)節(jié)影響鰭片生長的關(guān)鍵分泌因子腦信號蛋白3d(Sema 3d)的表達,Sema 3d再經(jīng)叢蛋白A3(Plexin A3)和神經(jīng)纖毛蛋白-2a(NRP-2a)轉(zhuǎn)導(dǎo)信號,依次調(diào)控關(guān)節(jié)形成和骨細胞增殖,最終影響鰭長和骨形態(tài)發(fā)生[30]。這表明在鰭片生長過程中,Sema 3d是CX43下游的關(guān)鍵靶蛋白。
3.2CX43調(diào)控骨細胞凋亡和存活
在多種骨代謝性疾病中,骨細胞凋亡增多[31]。骨細胞凋亡增多可損害骨細胞對力學(xué)刺激的反應(yīng)和細胞間信號轉(zhuǎn)導(dǎo)功能,導(dǎo)致骨吸收增加和骨質(zhì)量降低[32],以及破骨細胞形成增多,進而引起皮質(zhì)骨重吸收增多。
在cKOhOC老鼠模型中,應(yīng)用原位末端標(biāo)記法檢測股骨干皮質(zhì)骨中骨細胞的凋亡情況,結(jié)果顯示模型組凋亡骨細胞陽性率是對照組的2倍,空骨陷窩數(shù)是對照組的6倍[8]。應(yīng)用shRNA敲除MLOY4骨細胞樣細胞的GJA1基因后,細胞生存能力降低,同時破骨細胞分化因子如RANKL增多,OPG表達下降[8,33],破骨細胞形成增多。
研究[19,33]表明,甲狀旁腺激素(PTH)和雙膦酸鹽化合物發(fā)揮抗凋亡作用時都需要CX43的參與;CX43的C末端可與β-抑制蛋白結(jié)合,有效地將β-抑制蛋白與甲狀旁腺激素受體(PTHR)1隔開,使得PTHR1可以持續(xù)發(fā)揮作用,同時細胞內(nèi)環(huán)磷酸腺苷(cAMP)積累,從而增強骨細胞存活能力。雙膦酸鹽化合物是骨重吸收的強烈抑制劑,其主要藥理作用是抑制破骨細胞的功能和存活[34]。研究發(fā)現(xiàn),雙膦酸鹽化合物可與細胞表面的磷酸酶結(jié)合[35-36],磷酸酶再作用于CX43,引起CX43半通道開放,接觸激活Src/ERK信號級聯(lián),抑制促凋亡蛋白Bad,激活CAAT/增強子結(jié)合蛋白β(C/EBPβ)的抗凋亡作用,從而抑制細胞凋亡,促進成骨細胞和骨細胞存活[19,37]。
3.3CX43與機械力傳導(dǎo)
機械應(yīng)力是調(diào)節(jié)骨合成和分解代謝的重要因素。利用剪切力刺激體外活骨可產(chǎn)生 CX43依賴性鈣波[38-39],提示在骨細胞通過縫隙連接傳導(dǎo)機械力信號時,鈣離子或鈣信號效應(yīng)器(如三磷酸肌醇)可能作為第二信使發(fā)揮作用。在MLO-Y4骨樣細胞中,流體剪切應(yīng)力可使α5β1-整合素磷酸化、構(gòu)象改變,然后與CX43的C末端物理性接觸,使CX43半通道開放,前列腺素E2(PGE2)由半通道釋放,PGE2信號通過其同源的EP2/4受體引起磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(AKT)通路活化和cAMP累積[40],促進骨細胞存活。而cAMP/PKA和PI3K/AKT通路都匯聚至β-catenin[41],從而活化Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路,促進β-catenin累積,激活成骨分化,增加骨的礦化。
綜上所述,CX43在調(diào)節(jié)骨細胞功能、信號轉(zhuǎn)導(dǎo)、基因表達、骨細胞存活和凋亡以及機械傳導(dǎo)方面均發(fā)揮著至關(guān)重要的作用。CX43不僅可作為縫隙連接蛋白發(fā)揮作用(CX43高表達,可激活MAPK/ERK及PKCδ,促進成骨細胞分化相關(guān)基因如Runx2、Sp7的轉(zhuǎn)錄),還可作為半通道發(fā)揮作用(CX43半通道與其他蛋白如磷酸酶、整合素等相互作用,使其開放,釋放PGE2,從而活化Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路,促進β-catenin的累積,激活成骨分化,增加骨的礦化)。相反,CX43的低表達可使成骨細胞分化延遲,進而影響骨骼發(fā)育與塑性,最終導(dǎo)致骨骼畸形。然而,CX43發(fā)揮功能的途徑多而復(fù)雜,目前有關(guān)CX43調(diào)節(jié)成骨細胞分化的具體分子機制尚不十分清楚,通過CX43傳遞信息的第二信使與細胞功能之間的相互關(guān)系也需進一步明確。明確CX43調(diào)節(jié)骨內(nèi)穩(wěn)態(tài)及對機械刺激、激素信號反應(yīng)的具體分子機制,可為某些骨骼疾病提供新的分子標(biāo)志物,為其治療提供新靶點。
參考文獻
[1]Stains JP, Watkins MP, Grimston SK, et al. Molecular mechanisms of osteoblast/osteocyte regulation by connexin43[J]. Calcif Tissue Int, 2014, 94(1):55-67.
[2]Jordan K, Solan JL, Dominguez M, et al. Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells[J]. Mol Biol Cell, 1999, 10(6):2033-2050.
[3]Gonzalez-Nieto D, Li L, Kohler A, et al. Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors[J]. Blood, 2012, 119(22):5144-5154.
[4]Herve JC, Derangeon M, Sarrouilhe D, et al. Gap junctional channels are parts of multiprotein complexes[J]. Biochim Biophys Acta, 2012, 1818(8):1844-1865.
[5]Paznekas WA, Boyadjiev SA, Shapiro RE, et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia[J]. Am J Hum Genet, 2003, 72(2):408-418.
[6]Dobrowolski R, Sasse P, Schrickel JW, et al. The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans[J]. Hum Mol Genet, 2008, 17(4):539-554.
[7]Flenniken AM, Osborne LR, Anderson N, et al. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia[J]. Development, 2005, 132(19):4375-4386.
[8]Bivi N, Condon KW, Allen MR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation[J]. J Bone Miner Res, 2012, 27(2):374-389.
[9]Watkins M, Grimston SK, Norris JY, et al. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling[J]. Mol Biol Cell, 2011, 22(8):1240-1251.
[10]Hu Y, Chen IP, de Almeida S, et al. A novel autosomal recessive GJA1 missense mutation linked to Craniometaphyseal dysplasia[J]. PLoS One, 2013, 8(8):e73576.
[11]Lecanda F, Warlow PM, Sheikh S, et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction[J]. J Cell Biol, 2000, 151(4):931-944.
[12]Chung DJ, Castro CH, Watkins M, et al. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43[J]. J Cell Sci, 2006, 119(Pt 20):4187-4198.
[13]Lecanda F, Towler DA, Ziambaras K, et al. Gap junctional communication modulates gene expression in osteoblastic cells[J]. Mol Biol Cell, 1998, 9(8):2249-2258.
[14]Loiselle AE, Paul EM, Lewis GS, et al. Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing[J]. J Orthop Res, 2013, 31(1):147-154.
[15]Grimston SK, Watkins MP, Stains JP, et al. Connexin43 modulates post-natal cortical bone modeling and mechano-responsiveness[J]. Bonekey Rep, 2013, 2:446.
[16]Lloyd SA, Loiselle AE, Zhang Y, et al. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling[J]. Bone, 2013, 57(1):76-83.
[17]Lloyd SA, Lewis GS, Zhang Y, et al. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading[J]. J Bone Miner Res, 2012, 27(11):2359-2372.
[18]Zhang Y, Paul EM, Sathyendra V, et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone[J]. PLoS One, 2011, 6(8):e23516.
[19]Plotkin LI, Lezcano V, Thostenson J, et al. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo[J]. J Bone Miner Res, 2008, 23(11):1712-1721.
[20]鄭創(chuàng)義. 縫隙連接蛋白43在骨骼發(fā)育和塑形中的作用[J]. 國際骨科學(xué)雜志, 2009, 30(2):134-136.
[21]Niger C, Luciotti MA, Buo AM, et al. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase Cdelta cascade[J]. J Bone Miner Res, 2013, 28(6):1468-1477.
[22]Niger C, Buo AM, Hebert C, et al. ERK acts in parallel to PKCdelta to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts[J]. Am J Physiol Cell Physiol, 2012, 302(7):C1035-C1044.
[23]Bivi N, Pacheco-Costa R, Brun LR, et al. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice[J]. J Orthop Res, 2013, 31(7):1075-1081.
[24]Mureli S, Gans CP, Bare DJ, et al. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling[J]. Am J Physiol Heart Circ Physiol, 2013, 304(4):H600-H609.
[25]Lima F, Niger C, Hebert C, et al. Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-Delta/Runx2-dependent mechanism[J]. Mol Biol Cell, 2009, 20(11):2697-2708.
[26]Hebert C, Stains JP. An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells[J]. J Cell Biochem, 2013, 114(11):2542-2550.
[27]Niger C, Hebert C, Stains JP. Interaction of connexin43 and protein kinase C-delta during FGF2 signaling[J]. BMC Biochem, 2010, 11:14.
[28]Sims K Jr, Eble DM, Iovine MK. Connexin43 regulates joint location in zebrafish fins[J]. Dev Biol, 2009, 327(2):410-418.
[29]Hoptak-Solga AD, Nielsen S, Jain I, et al. Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration[J]. Dev Biol, 2008, 317(2):541-548.
[30]Ton QV, Kathryn-Iovine M. Semaphorin3d mediates Cx43-dependent phenotypes during fin regeneration[J]. Dev Biol, 2012, 366(2):195-203.
[31]Schaffler MB, Kennedy OD. Osteocyte signaling in bone[J]. Curr Osteoporos Rep, 2012, 10(2):118-125.
[32]Jahani M, Genever PG, Patton RJ, et al. The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: a computer simulation[J]. J Biomech, 2012, 45(16):2876-2883.
[33]Bivi N, Lezcano V, Romanello M, et al. Connexin43 interacts with betaarrestin: a pre-requisite for osteoblast survival induced by parathyroid hormone[J]. J Cell Biochem, 2011, 112(10):2920-2930.
[34]Rogers MJ, Crockett JC, Coxon FP, et al. Biochemical and molecular mechanisms of action of bisphosphonates[J]. Bone, 2011, 49(1):34-41.
[35]Lezcano V, Bellido T, Plotkin LI, et al. Role of connexin 43 in the mechanism of action of alendronate: dissociation of anti-apoptotic and proliferative signaling pathways[J]. Arch Biochem Biophys, 2012, 518(2):95-102.
[36]Morelli S, Bilbao PS, Katz S, et al. Protein phosphatases: possible bisphosphonate binding sites mediating stimulation of osteoblast proliferation[J]. Arch Biochem Biophys, 2011, 507(2):248-253.
[37]Plotkin LI, Aguirre JI, Kousteni S, et al. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation[J]. J Biol Chem, 2005, 280(8):7317-7325.
[38]Ishihara Y, Sugawara Y, Kamioka H, et al. Ex vivo real-time observation of Ca(2+) signaling in living bone in response to shear stress applied on the bone surface[J]. Bone, 2013, 53(1):204-215.
[39]Ishihara Y, Sugawara Y, Kamioka H, et al. In situ imaging of the autonomous intracellular Ca(2+) oscillations of osteoblasts and osteocytes in bone[J]. Bone, 2012, 50(4):842-852.
[40]Batra N, Burra S, Siller-Jackson AJ, et al. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels[J]. Proc Natl Acad Sci USA, 2012, 109(9):3359-3364.
[41]Tu XL, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading[J]. Bone, 2012, 50(1):209-217.
(收稿:2015-06-03; 修回:2015-10-28)
(本文編輯:盧千語)
DOI:10.3969/j.issn.1673-7083.2016.01.010
通信作者:薄占東E-mail: zdb71718@163.com
基金項目:國家自然科學(xué)基金(81460348)、廣西教育廳一般項目(2013YB314)