王國(guó)文 邵寶平 丁艷平*
(1.西北師范大學(xué)生命科學(xué)學(xué)院,蘭州730070;2.蘭州大學(xué)生命科學(xué)學(xué)院動(dòng)物學(xué)與
發(fā)育生物學(xué)研究所,蘭州730000)
?
神經(jīng)肽Y的促攝食作用及其調(diào)控機(jī)制
王國(guó)文1邵寶平2丁艷平1*
(1.西北師范大學(xué)生命科學(xué)學(xué)院,蘭州730070;2.蘭州大學(xué)生命科學(xué)學(xué)院動(dòng)物學(xué)與
發(fā)育生物學(xué)研究所,蘭州730000)
摘要:神經(jīng)肽Y(NPY)是一種廣泛存在于中樞和外周并維持內(nèi)環(huán)境穩(wěn)態(tài)的神經(jīng)遞質(zhì),其在機(jī)體攝食調(diào)控中起著主要作用。NPY神經(jīng)元主要位于下丘腦弓狀核(ARC),由其發(fā)出的纖維投射到達(dá)下丘腦室旁核(PVN)、腹內(nèi)側(cè)核(VMN)、外側(cè)區(qū)(LHA)、背內(nèi)側(cè)核(DMN)等核團(tuán),通過(guò)NPY神經(jīng)纖維與對(duì)應(yīng)的受體形成突觸,從而發(fā)揮促攝食調(diào)控作用。NPY受體是Gi/Go-蛋白偶聯(lián)受體,有Y1~Y8 8個(gè)亞型受體,其中Y1受體在下丘腦能量代謝調(diào)控中發(fā)揮著主導(dǎo)作用。本文對(duì)NPY的結(jié)構(gòu)以及ARC、PVN、VMN、LHA、DMN核團(tuán)中NPY相關(guān)的攝食調(diào)控作用及其分子機(jī)制進(jìn)行了闡述,旨在為相關(guān)研究提供基礎(chǔ)資料。
關(guān)鍵詞:神經(jīng)肽Y;Y受體;攝食;核團(tuán)
神經(jīng)肽Y(neuropeptide Y,NPY)是一種廣泛分布于中樞及周?chē)窠?jīng)系統(tǒng)的神經(jīng)遞質(zhì)。中樞神經(jīng)系統(tǒng)中,在下丘腦、大腦皮質(zhì)、海馬、紋狀體、嗅球及中腦中均有分布。在周?chē)窠?jīng)系統(tǒng)中,NPY分布在交感神經(jīng)、腎上腺神經(jīng)纖維以及腎上腺嗜鉻細(xì)胞,此外在支配肺臟、尿道、脾臟、血管以及生殖器官的神經(jīng)纖維中也表達(dá)NPY[1]。NPY最早是由Tatemoto在1982年從豬腦中分離出來(lái),之后Stanley等[2]發(fā)現(xiàn)它與攝食調(diào)控相關(guān),將NPY注入下丘腦室旁核(PVN)中可以增加食物的攝入。此后進(jìn)一步的試驗(yàn)證明在腦室中注入NPY可以劑量依賴性的增加食物的攝入并且降低能量消耗,長(zhǎng)期注射N(xiāo)PY會(huì)引發(fā)攝食量的增大而進(jìn)一步導(dǎo)致肥胖的產(chǎn)生。在反芻動(dòng)物中也有類似的研究報(bào)道,Miner等[3]報(bào)道,在飽食綿羊的側(cè)腦室中注射2.35 nmol的NPY,30 min內(nèi)攝食增加154%,同時(shí)可以增加瘦素的表達(dá)并且降低生長(zhǎng)激素的水平,表明NPY對(duì)哺乳動(dòng)物脂肪的生成以及生長(zhǎng)發(fā)育具有一定的作用。此外,禁食試驗(yàn)研究發(fā)現(xiàn),禁食72 h后NPY前體增加了2.6倍,細(xì)胞定位發(fā)現(xiàn)在下丘腦弓狀核(ARC)內(nèi)NPY前體mRNA含量增加[4]。食源性肥胖大鼠模型、瘦素缺乏等肥胖模型的NPY表達(dá)水平均升高。而脂肪分泌的厭食因子瘦素可以降低NPY誘導(dǎo)的攝食。由此,我們可以看出NPY與能量的攝入緊密相關(guān)。下丘腦參與攝食行為、溫度調(diào)節(jié)、睡眠與覺(jué)醒等多種生理活動(dòng)調(diào)節(jié),而與攝食行為相關(guān)的研究在1930年就開(kāi)始了。下丘腦ARC是NPY的主要來(lái)源,它將外周營(yíng)養(yǎng)相關(guān)的信號(hào)整合后進(jìn)一步調(diào)節(jié)攝食行為。本文主要對(duì)NPY的結(jié)構(gòu)以及下丘腦ARC、PVN、腹內(nèi)側(cè)核(VMN)、背內(nèi)側(cè)核(DMN)、外側(cè)區(qū)(LHA)中NPY的攝食調(diào)控作用及機(jī)制分別進(jìn)行闡述。
1NPY組成及結(jié)構(gòu)
NPY是由36個(gè)氨基酸組成的活性單鏈多肽,富含酪氨酸,C末端具有α-酰胺結(jié)構(gòu),具有多種生物活性[5]。它與胰多肽家族另外2個(gè)多肽:胰多肽(pancreatic polypeptide,PP)和酪酪肽(peptide YY,PYY)具有較高的同源性,都擁有發(fā)夾樣三維結(jié)構(gòu),也可以叫PP折疊。此結(jié)構(gòu)使分子的兩端靠攏以利于與受體結(jié)合。對(duì)人、猩猩、牛、狗、大鼠、雞、青蛙、斑馬魚(yú)等9個(gè)不同物種的NPY全基因序列分析發(fā)現(xiàn),NPY基因具有高度的進(jìn)化保守性。在核苷酸水平上,人與斑馬魚(yú)的同源性最低,同源性僅為75%,而在氨基酸水平上保守性為89%[6]。NPY進(jìn)化的高度保守性表明它在有機(jī)體正常生理功能的維持中發(fā)揮著重要的作用。
2NPY促攝食作用及其機(jī)制
NPY廣泛分布于中樞及外周神經(jīng)組織中,在參與運(yùn)動(dòng)、學(xué)習(xí)與記憶、焦慮、癲癇、晝夜節(jié)律以及血管功能等具有重要生理功能。下丘腦NPY主要來(lái)源于ARC中的NPY神經(jīng)元,該神經(jīng)元也共表達(dá)促攝食的刺鼠基因相關(guān)蛋白(agouti gene-related protein,AgRP)神經(jīng)肽。ARC通過(guò)NPY神經(jīng)元將其整合后的信息投射到下丘腦其他不同核團(tuán)的神經(jīng)元中,包括PVN、VMN、LHA及DMN,進(jìn)一步在促攝食調(diào)控中發(fā)揮作用[7]。
2.1ARC對(duì)攝食的調(diào)控
ARC位于第三腦室底部,與室周器正中隆起相鄰。正中隆起缺乏血腦屏障,這個(gè)區(qū)域的毛細(xì)血管內(nèi)皮是網(wǎng)狀的,因此血液中的分子到ARC的滲透性要高于下丘腦其他的區(qū)域。多種與攝食相關(guān)的分子如胃饑餓素、瘦素、胰島素等從血液進(jìn)入ARC并與神經(jīng)元上相應(yīng)受體結(jié)合調(diào)節(jié)攝食行為,所以可以把ARC看作攝食信號(hào)的整合器。ARC中主要有2類作用相反的神經(jīng)元來(lái)參與能量平衡的調(diào)控:一類是促進(jìn)攝食的NPY神經(jīng)元,另一類是抑制攝食的阿片黑素促皮質(zhì)激素原(proopiomelanocortin,POMC)神經(jīng)元。此外,NPY神經(jīng)元也表達(dá)AgRP和γ-氨基丁酸(γ-aminobutyric acid,GABA),POMC神經(jīng)元也表達(dá)可卡因及苯丙胺調(diào)節(jié)轉(zhuǎn)錄子。ARC中NPY神經(jīng)纖維末梢密集地分布于ARC的POMC神經(jīng)元上。NPY/AgRP神經(jīng)元是一類共同表達(dá)NPY和AgRP的神經(jīng)元,小鼠在自由攝食的條件下94%的NPY神經(jīng)元表達(dá)AgRPmRNA,在禁食條件下99%的NPY神經(jīng)元表達(dá)AgRPmRNA[8]。有研究表明NPY/AgRP共表達(dá)神經(jīng)元的促攝食作用獨(dú)立于NPY對(duì)POMC神經(jīng)元的抑制[9],說(shuō)明NPY可以通過(guò)不同的途徑來(lái)調(diào)節(jié)攝食功能。腺相關(guān)病毒載體在大鼠ARC過(guò)表達(dá)NPY,可誘發(fā)過(guò)量攝食、體重持續(xù)增加最終導(dǎo)致嚴(yán)重的肥胖;以NPY為靶標(biāo)的miRNA下調(diào)ARC的NPY表達(dá),雖沒(méi)有影響食物的正常攝入或者體重的正常增加,但是對(duì)于禁食后再攝食的應(yīng)答減弱甚至消失[10]。選擇性沉默ARC的NPY/AgRP神經(jīng)元可以顯著降低成年大鼠的攝食以及體重,但是對(duì)于新生小鼠食物的攝入則沒(méi)有顯著的變化[11],其原因可能是ARC的神經(jīng)纖維可以投射到PVN、DMN、LHA并對(duì)攝食進(jìn)行調(diào)控,但是在發(fā)育初期投射到各個(gè)核團(tuán)的神經(jīng)纖維還沒(méi)有完全成熟[12]。由此可以看出在ARC相關(guān)的攝食回路在發(fā)育完成以前存在其他的路徑補(bǔ)充,或者說(shuō)對(duì)ARC的調(diào)控還有其他的補(bǔ)償機(jī)制。NPY通過(guò)其神經(jīng)纖維直接作用于POMC神經(jīng)元突觸后Y1、Y2受體,導(dǎo)致細(xì)胞膜超極化,抑制細(xì)胞放電,阻止了厭食信號(hào)的傳遞[13]。
2.2PVN對(duì)攝食的調(diào)控
PVN是ARC的NPY能神經(jīng)纖維投射最重要的靶標(biāo)之一,早有研究表明,PVN中NPY與攝食行為相關(guān)。禁食3 d后大鼠PVN中NPY的含量顯著增加,補(bǔ)充食物在進(jìn)食的過(guò)程當(dāng)中NPY含量顯著降低[14]。這表明PVN中的NPY可以喚起動(dòng)物的攝食行為。將NPY注入PVN能促進(jìn)食物的攝入并且降低棕色脂肪解偶聯(lián)蛋白和磷脂酶mRNA的表達(dá)[15],NPY慢病毒重組載體注射入大鼠PVN中使NPY過(guò)表達(dá),觀察到攝食與體重增加,易誘發(fā)肥胖和葡萄糖代謝紊亂[16]。在特殊條件下,PVN中NPY的表達(dá)模式會(huì)發(fā)生變化:與對(duì)照組相比,早期離乳大鼠成年后,其PVN中NPY處于高表達(dá)狀態(tài),進(jìn)而長(zhǎng)期呈現(xiàn)攝食過(guò)量,更易產(chǎn)生肥胖[17]。一方面表明PVN中NPY食欲的調(diào)控起到重要作用,另一方面也說(shuō)明早期的營(yíng)養(yǎng)信號(hào)對(duì)于攝食通路的形成十分關(guān)鍵。PVN中有多種神經(jīng)元(催產(chǎn)素神經(jīng)元、促甲狀腺素釋放激素神經(jīng)元等)可以刺激ARC中NPY/AgRP神經(jīng)元,而興奮的神經(jīng)元?jiǎng)t通過(guò)NPY/AgRP神經(jīng)纖維抑制PVN中的厭食神經(jīng)元形成促攝食回路[18-19]。
NPY是通過(guò)突觸前與突觸后機(jī)制調(diào)控PVN的神經(jīng)活動(dòng),對(duì)于前者,在PVN中,NPY將會(huì)抑制小胞體神經(jīng)元上GABA能突觸GABA的釋放,進(jìn)而降低NPY對(duì)于攝食的效應(yīng)。這解釋了為什么雖然具有高表達(dá)NPY的肥胖大鼠對(duì)NPY促攝食反應(yīng)不明顯[20];對(duì)于后者,NPY通過(guò)膜超極化抑制PVN中表達(dá)黑皮質(zhì)激素受體4的神經(jīng)元,進(jìn)而調(diào)節(jié)攝食行為[21-22]。
2.3VMN對(duì)攝食的調(diào)控
VMN是下丘腦早期被發(fā)現(xiàn)與攝食有關(guān)的區(qū)域之一。有大量證據(jù)表明VMN在攝食行為中起到重要的作用。神經(jīng)成像研究表明,在攝食過(guò)程中,VMN的活動(dòng)顯著增加而它的神經(jīng)元激活會(huì)抑制攝食行為。VMN對(duì)于具有促攝食作用的NPY具有高度的敏感性,它與受體結(jié)合,可以降低VMN神經(jīng)元的放電。VMN中有大量的NPY陽(yáng)性纖維,可以與其神經(jīng)元樹(shù)突形成突觸連接,釋放的NPY可以激活突觸后膜Y1受體而活化該神經(jīng)元的鉀離子通道,使其超極化并降低其興奮性,而直接抑制VMN的神經(jīng)活動(dòng)[23]。VMN中的興奮性神經(jīng)元投射到ARC中的POMC神經(jīng)元使其激活,從而抑制攝食[24]。
2.4LHA對(duì)攝食的調(diào)控
LHA在攝食調(diào)控中發(fā)揮著關(guān)鍵作用,相對(duì)于PVN,電刺激LHA會(huì)引起厭食行為。因此,臨床上應(yīng)用電刺激LHA來(lái)進(jìn)行有效地減肥[25]。下丘腦LHA中注射N(xiāo)PY會(huì)誘發(fā)強(qiáng)烈的攝食行為。同樣,在LHA中注射腺相關(guān)病毒(adeno-associated virus,AAV)載體,使其長(zhǎng)期過(guò)量表達(dá)NPY,會(huì)導(dǎo)致食量的增大及體重增加[26]。LHA中有2類主要的促攝食神經(jīng)元,即促食欲素(orexin)神經(jīng)元和黑色素凝集激素(melanin concentrating hormone,MCH)神經(jīng)元。orexin神經(jīng)元是下丘腦中普遍存在的興奮性神經(jīng)元,orexin神經(jīng)元與ARC中NPY神經(jīng)元有反饋聯(lián)系。免疫組化結(jié)果表明,LHA有大量的來(lái)自ARC的NPY神經(jīng)纖維分布,而且投射到orexin神經(jīng)元的纖維要比投射到MCH神經(jīng)元的NPY纖維更加密集[27]。在LHA中的orexin神經(jīng)元也將神經(jīng)纖維投射到ARC中的NPY神經(jīng)元。興奮的orexin神經(jīng)元能使NPY的表達(dá)增加,使食物的攝入增加。這暗示著ARC-LHA構(gòu)成調(diào)控?cái)z食行為神經(jīng)環(huán)路,但是NPY軸突也可能來(lái)自于其他核團(tuán),比如腦干和外側(cè)漆狀體[28]。
2.5DMN對(duì)攝食的調(diào)控
DMN含有大量的促攝食NPY神經(jīng)元,其神經(jīng)纖維投射到PVN、LHA、穹窿周區(qū)。電刺激DMN會(huì)引發(fā)大量攝食,而損傷DMN則可誘發(fā)厭食,表明該核輸出的信號(hào)主要是促攝食作用。DMN對(duì)于小鼠的攝食回路的正常發(fā)育起到了非常重要的作用:出生后,ARC中NPY神經(jīng)元投射還不成熟,它陸續(xù)投射到DMN、PVN和LHA這些區(qū)域。其中,從ARC到DMN的投射發(fā)育最快,在出生后第6天就已經(jīng)完全建立起來(lái)了[12]。DMN中NPY短期表達(dá),可能增加對(duì)能量需求:在出生后快速生長(zhǎng)的時(shí)期中,NPY表達(dá)量增加,到成年時(shí)期NPY含量降低,一直維持在較低水平。而懷孕的雌性動(dòng)物需要大量的食物來(lái)滿足能量需求,DMN中NPY含量升高[6]。楊亮等[29]的研究表明,瘦鼠DMN兩側(cè)通過(guò)AAV介導(dǎo)過(guò)量表達(dá)NPY會(huì)導(dǎo)致攝食與體重的增加,相反,沉默NPY基因會(huì)改善大鼠肥胖癥狀。由此說(shuō)明DMN在NPY攝食調(diào)控中起到了重要的作用,它的異常調(diào)節(jié)會(huì)引起代謝紊亂而導(dǎo)致肥胖。DMN中的NPY基因敲除增加了對(duì)胰島素的敏感性,能提升葡萄糖耐受力,防止高脂飲食誘導(dǎo)的高血糖癥與高胰島素癥的發(fā)生。這表明該核團(tuán)NPY在葡萄糖穩(wěn)態(tài)的維持中也發(fā)揮著一定的作用[30]。在長(zhǎng)期限量進(jìn)食后,DMN中NPY基因的表達(dá)上升,而短期食物的剝奪則沒(méi)有影響到該基因的表達(dá)[31]。與ARC中NPY受瘦素的直接調(diào)控相比較,DMN中NPY則是由腦膽囊收縮素和其他分子來(lái)調(diào)節(jié)的。用AAV-RNA干擾敲除肥胖OLETF(otsuka long-evans tokushima fatty)大鼠DMN中的NPY基因,會(huì)誘發(fā)攝食下降,且肥胖與葡萄糖耐受性也均顯著改善;并且大鼠DMN中NPY基因的敲除會(huì)促進(jìn)棕色脂肪的生成,棕色脂肪的增多進(jìn)一步會(huì)阻礙食物誘導(dǎo)的肥胖發(fā)生[32],而且DMN神經(jīng)元的刺激與去抑制均會(huì)導(dǎo)致肩胛褐色脂肪交感神經(jīng)的活動(dòng)增強(qiáng),進(jìn)而提升褐色脂肪的水平及體溫[33]。
3攝食相關(guān)的NPY受體
NPY受體是Gi/Go-蛋白偶聯(lián)受體,簡(jiǎn)稱為Y受體。它們也可被PYY以及PP活化。Y受體有Y1~Y8 8個(gè)亞型受體[34]。絕大多數(shù)物種體內(nèi)存在Y1、Y2、Y4及Y5受體,且NPY優(yōu)先與Y1、Y2及Y5受體結(jié)合,而與Y4的親和力相對(duì)較弱;Y3受體被認(rèn)為只在藥理學(xué)數(shù)據(jù)上存在,而嚙齒類、靈長(zhǎng)類及人類的該藥理學(xué)特性受體還未被發(fā)現(xiàn);Y6受體在人體中沒(méi)有功能,在大鼠中沒(méi)有發(fā)現(xiàn);Y7和Y8受體在哺乳類動(dòng)物中也未發(fā)現(xiàn)[35]。氨基酸序列同源性分析結(jié)果表明各亞型受體間的同源性極低,其中Y1、Y4、Y6間的同源性相對(duì)較高,但也僅有50%;Y2受體與這3個(gè)受體序列的同源性僅為30%,與Y4的也僅有31%。在上述受體中,Y4的可變性較Y1、Y2及Y5的高,其原因可能是它的內(nèi)源性配體可能是PP而不是NPY或者PYY;然而,Y1、Y2及Y5間的同源性也僅有27%~32%,但它們卻結(jié)合著相同的配體。雖然,上述Y1、Y2及Y5受體廣泛存在于下丘腦、腦干、血管、肺臟、腎臟、腎上腺、胃、結(jié)腸、心臟、胰腺及腸道中,但是,其中Y1受體在下丘腦能量代謝調(diào)控中發(fā)揮著主導(dǎo)作用[36]。
3.1Y1受體與攝食調(diào)控
Y1受體在大腦中廣泛分布,包括大腦皮質(zhì)、丘腦、海馬、杏仁核、外側(cè)漆狀體、孤束核、下丘腦、孤束核。下丘腦中Y1受體則主要表達(dá)在ARC、PVN、DMN、VMN。Y1受體常與Y5受體共表達(dá)在同一個(gè)細(xì)胞[37-38]。除了在中樞神經(jīng)系統(tǒng)以外,Y1受體mRNA在嚙齒動(dòng)物心臟、腎臟、胰腺、骨骼肌、骨髓和肺中大量表達(dá),在人的結(jié)腸、腎臟、腎上腺和心臟中也有表達(dá)。
單基因肥胖大鼠模型Zucker肥胖大鼠(fa/fa)與瘦鼠(FA/FA)模型相比,下丘腦中Y1受體mRNA的表達(dá)水平上升25%[39],這一研究結(jié)果與NPY在肥胖動(dòng)物中誘導(dǎo)的攝食反應(yīng)降低相一致。在食源性肥胖(diet induced obesity,DIO)敏感型大鼠中Y1受體的表達(dá)水平上升,而在DIO抗性大鼠中Y1受體的表達(dá)水平則下降,表明Y1受體基因的表達(dá)水平與肥胖易感或者肥胖發(fā)生相關(guān)[40]。在上述DIO模型小鼠中,ARC中Y1受體mRNA水平的變化,但是,在VMN和DMN中Y1受體mRNA的表達(dá)則均下調(diào),表明雄性肥胖的易感性與Y1受體在VMN與DMN中的表達(dá)變化有關(guān)[41]。此外,有研究報(bào)道,禁食或者食物缺乏會(huì)導(dǎo)致Y1受體在ARC和PVN中的表達(dá)下調(diào)[42-43],這表明Y1受體在ARC和PVN中的表達(dá)變化在能量平衡中發(fā)揮著重要作用。
3.2Y2受體與攝食調(diào)控
免疫組化研究表明,Y2受體主要表達(dá)在嗅球、伏隔核、杏仁核、海馬體、下丘腦及孤束核等小鼠腦區(qū);在小鼠下丘腦中,Y2受體主要表達(dá)于ARC、PVN和LHA。此外,在胃腸道、心血管系統(tǒng)以及脂肪等外周組織中均有Y2受體的表達(dá)[44]。雖然,在大鼠中,禁食對(duì)ARC中Y2受體基因的表達(dá)不會(huì)產(chǎn)生較大的影響,但是,DIO敏感模型下丘腦Y2受體的表達(dá)會(huì)明顯上升,而在DIO抗性模型中該表達(dá)則明顯下調(diào)[40]。以上結(jié)果說(shuō)明,Y2受體在長(zhǎng)期能量代謝平衡的調(diào)控中發(fā)揮著重要作用。進(jìn)一步研究表明,敲除小鼠外周的Y2受體基因可以防止食物誘導(dǎo)的肥胖,而且內(nèi)臟脂肪Y2受體的高表達(dá)與肥胖相關(guān)[45]。
3.3Y5受體與攝食調(diào)控
在人和大鼠下丘腦中,Y5受體的mRNA在PVN、ARC、LHA、DMN、VMN中均有較高的表達(dá)。與Y1相似,Y5受體也具有促攝食作用。然而,在Zucker肥胖大鼠模型中,下丘腦Y5受體mRNA的表達(dá)下調(diào);同樣,在ob/ob肥胖大鼠模型中,下丘腦ARC、VMN及DMN中Y5受體mRNA的表達(dá)也均顯著下調(diào)。但是,與遺傳肥胖模型相比,DIO敏感性模型下丘腦Y5受體mRNA的表達(dá)卻被上調(diào)[40];此外,Y5受體mRNA的表達(dá)水平會(huì)因能量攝入的限制而進(jìn)一步下調(diào)。由此表明,Y5受體在下丘腦促攝食調(diào)節(jié)中的作用機(jī)制是復(fù)雜的,會(huì)因不同的干預(yù)手段或誘因而發(fā)生改變。
4小結(jié)
下丘腦NPY系統(tǒng)在機(jī)體攝食與能量代謝調(diào)控中發(fā)揮著重要作用。該系統(tǒng)將能量平衡中樞與邊緣信號(hào)在ARC中與黑皮質(zhì)素系統(tǒng)進(jìn)行整合;其后,ARC中NPY系統(tǒng)進(jìn)一步通過(guò)神經(jīng)纖維將其整合后的信息投射到下丘腦PVN、VMN、DMN和LHA不同核團(tuán)的神經(jīng)元中;最后,釋放的NPY與不同亞型受體相結(jié)合,通過(guò)各神經(jīng)元及外周相關(guān)分泌信號(hào)間的反饋?zhàn)饔寐?lián)合調(diào)控著機(jī)體的攝食與能量代謝。機(jī)體所處的能量狀態(tài)影響著體內(nèi)激素的水平,NPY表達(dá)水平提高會(huì)抑制黃體生成素的生成,進(jìn)而影響著家畜的生殖行為[46-47],所以對(duì)家畜的能量代謝與生殖的深入研究可以為提高家畜的產(chǎn)量奠定基礎(chǔ)。另外,代謝性疾病患者在全球范圍內(nèi)與日俱增,嚴(yán)重影響著人類的健康與發(fā)展,到目前為止,盡管有關(guān)“攝食和能量代謝調(diào)控的研究”已取得巨大突破,但因其調(diào)控網(wǎng)絡(luò)的多元化及其復(fù)雜性,多種外周與中樞能量平衡信號(hào)與NPY系統(tǒng)相互作用,“下丘腦NPY系統(tǒng)參與攝食和能量代謝調(diào)控”的具體機(jī)理還需進(jìn)一步深究。
參考文獻(xiàn):
[1]SAH R,GERACIOTI T D.Neuropeptide Y and posttraumatic stress disorder[J].Molecular Psychiatry,2013,18(6):646-655.
[2]STANLEY B G,LEIBOWITZ S F.Neuropeptide Y injected in the paraventricular hypothalamus:a powerful stimulant of feeding behavior[J].Proceedings of the National Academy of Sciences of the United States of America,1985,82(11):3940-3943.
[3]MINER J L,DELLA-FERA M A,PATERSON J A,et al.Lateral cerebroventricular injection of neuropeptide Y stimulates feeding in sheep[J].American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,1989,257(2):R383-R387.
[4]SHERMAN E L,NKRUMAH J D,MURDOCH B M,et al.Polymorphisms and haplotypes in the bovine neuropeptide Y,growth hormone receptor,ghrelin,insulin-like growth factor 2,and uncoupling proteins 2 and 3 genes and their associations with measures of growth,performance,feed efficiency,and carcass merit in beef cattle[J].Journal of Animal Science,2008,86(1):1-16.
[5]GEHLERT D R.Introduction to the reviews on neuropeptide Y[J].Neuropeptides,2004,38(4):135-140.
[6]MERCER R E,CHEE M J S,COLMERS W F.The role of NPY in hypothalamic mediated food intake[J].Frontiers in Neuroendocrinology,2011,32(4):398-415.
[7]KOHNO D,YADA T.Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding[J].Neuropeptides,2012,46(6):315-319.
[8]HAHN T M,BREININGER J F,BASKIN D G,et al.Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons[J].Nature Neuroscience,1998,1(4):271-272.
[9]APONTE Y,ATASOY D,STERNSON S M.AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training[J].Nature Neuroscience,2011,14(3):351-355.
[10]SOUSA-FERREIRA L,GARRIDO M,NASCIMENTO-FERREIRA I,et al.Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats[J].PLoS One,2011,6(7):e22333.
[11]LUQUET S,PEREZ F A,HNASKO T S,et al.NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates[J].Science,2005,310(5748):683-685.
[12]BOURET S G,DRAPER S J,SIMERLY R B.Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice[J].The Journal of Neuroscience,2004,24(11):2797-2805.
[13]GHAMARI-LANGROUDI M,COLMERS W F,CONE R D.PYY3-36inhibits the action potential firing activity of POMC neurons of arcuate nucleus through postsynaptic Y2 receptors[J].Cell Metabolism,2005,2(3):191-199.
[14]SAHU A,KALRA P S,KALRA S P.Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus[J].Peptides,1988,9(1):83-86.
[15]KOTZ C M,BRIGGS J E,GRACE M K,et al.Divergence of the feeding and thermogenic pathways influenced by NPY in the hypothalamic PVN of the rat[J].American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,1998,275(2):R471-R477.
[16]LONG M,ZHOU J Y,LI D D,et al.Long-term over-expression of neuropeptide Y in hypothalamic paraventricular nucleus contributes to adipose tissue insulin resistance partly via the Y5 Receptor[J].PLoS One,2015,10(5):e0126714.
[17]YOUNES-RAPOZO V,DE MOURA E G,DA SILVA LIMA N,et al.Early weaning is associated with higher neuropeptide Y (NPY) and lower cocaine-and amphetamine-regulated transcript (CART) expressions in the paraventricular nucleus (PVN) in adulthood[J].British Journal of Nutrition,2012,108(12):2286-2295.
[18]ATASOY D,BETLEY J N,SU H H,et al.Deconstruction of a neural circuit for hunger[J].Nature,2012,488(7410):172-177.
[19]KRASHES M J,SHAH B P,MADARA J C,et al.An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger[J].Nature,2014,507(7491):238-242.
[20]PRONCHUK N,COLMERS W F.NPY presynaptic actions are reduced in the hypothalamic mpPVN of obese (fa/fa),but not lean,Zucker ratsinvitro[J].British Journal of Pharmacology,2004,141(6):1032-1036.
[21]CONE R D.Anatomy and regulation of the central melanocortin system[J].Nature Neuroscience,2005,8(5):571-578.
[22]GHAMARI-LANGROUDI M,SRISAI D,CONE R D.Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(1):355-360.
[23]CHEE M J S,MYERS M G,Jr,PRICE C J,et al.Neuropeptide Y suppresses anorexigenic output from the ventromedial nucleus of the hypothalamus[J].The Journal of Neuroscience,2010,30(9):3380-3390.
[24]STERNSON S M,SHEPHERD G M G,FRIEDMAN J M.Topographic mapping of VMH→ arcuate nucleus microcircuits and their reorganization by fasting[J].Nature Neuroscience,2005,8(10):1356-1363.
[25]BERTHOUD H R,MüNZBERG H.The lateral hypothalamus as integrator of metabolic and environmental needs:from electrical self-stimulation to opto-genetics[J].Physiology & Behavior,2011,104(1):29-39.
[26]PARKER J A,BLOOM S R.Hypothalamic neuropeptides and the regulation of appetite[J].Neuropharmacology,2012,63(1):18-30.
[27]BROBERGER C,DE LECEA L,SUTCLIFFE J G,et al.Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus:relationship to the neuropeptide Y and Agouti gene-related protein systems[J].Journal of Comparative Neurology,1998,402(4):460-474.
[28]HORVATH T L,DIANO S,VAN DEN POL A N.Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus:a novel circuit implicated in metabolic and endocrine regulations[J].The Journal of Neuroscience,1999,19(3):1072-1087.
[29]YANG L,SCOTT K A,HYUN J,et al.Role of dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance[J].The Journal of Neuroscience,2009,29(1):179-190.
[30]BI S,KIM Y J,ZHENG F P.Dorsomedial hypothalamic NPY and energy balance control[J].Neuropeptides,2012,46(6):309-314.
[31]BI S.Role of dorsomedial hypothalamic neuropeptide Y in energy homeostasis[J].Peptides,2007,28(2):352-356.
[32]CHAO P T,YANG L,AJA S,et al.Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity[J].Cell Metabolism,2011,13(5):573-583.
[33]BI S.Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis[J].Physiology & Behavior,2013,121:56-60.
[34]LARHAMMAR D,SALANECK E.Molecular evolution of NPY receptor subtypes[J].Neuropeptides,2004,38(4):141-151.
[35]WALTHER C,M?RL K,BECK-SICKINGER A G.Neuropeptide Y receptors:ligand binding and trafficking suggest novel approaches in drug development[J].Journal of Peptide Science,2011,17(4):233-246.
[36]ZHANG L,BIJKER M S,HERZOG H.The neuropeptide Y system:pathophysiological and therapeutic implications in obesity and cancer[J].Pharmacology & Therapeutics,2011,131(1):91-113.
[37]MAHAUT S,DUMONT Y,FOURNIER A,et al.Neuropeptide Y receptor subtypes in the dorsal vagal complex under acute feeding adaptation in the adult rat[J].Neuropeptides,2010,44(2):77-86.
[38]EVA C,SERRA M,MELE P,et al.Physiology and gene regulation of the brain NPY Y1receptor[J].Frontiers in Neuroendocrinology,2006,27(3):308-339.
[39]BECK B,RICHY S,DIMITROV T,et al.Opposite regulation of hypothalamic orexin and neuropeptide Y receptors and peptide expressions in obese Zucker rats[J].Biochemical and Biophysical Research Communications,2001,286(3):518-523.
[40]WANG C,YANG N,WU S,et al.Difference of NPY and its receptor gene expressions between obesity and obesity-resistant rats in response to high-fat diet[J].Hormone and Metabolic Research,2007,39(4):262-267.
[41]ZAMMARETTI F,PANZICA G,EVA C.Sex-dependent regulation of hypothalamic neuropeptide Y-Y1receptor gene expression in moderate/high fat,high-energy diet-fed mice[J].The Journal of Physiology,2007,583(2):445-454.
[42]ZAMMARETTI F,PANZICA G,EVA C.Fasting,leptin treatment,and glucose administration differentially regulate Y1receptor gene expression in the hypothalamus of transgenic mice[J].Endocrinology,2001,142(9):3774-3782.
[43]CHENG X P,BROBERGER C,TONG Y G,et al.Regulation of expression of neuropeptide Y Y1 and Y2 receptors in the arcuate nucleus of fasted rats[J].Brain Research,1998,792(1):89-96.
[44]JANSSEN P,VERSCHUEREN S,ROTONDO A,et al.Role of Y2receptors in the regulation of gastric tone in rats[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2012,302(7):G732-G739.
[45]CHATREE S,CHURINTARAPHAN M,NWAY N C,et al.Expression of Y2R mRNA expression in subcutaneous and visceral adipose tissues compared between normal weight and obese female subjects[J].Siriraj Medical Journal,2013,65(6):163-167.
[46]AMSTALDEN M,CARDOSO R C,ALVES B R C,et al.reproduction symposium:hypothalamic neuropeptides and the nutritional programming of puberty in heifers[J].Journal of Animal Science,2014,92(8):3211-3222.
[47]KEISLER D H,LUCY M C.Perception and interpretation of the effects of undernutrition on reproduction[J].Journal of Animal Science,1996,74(Suppl 3):1-17.
(責(zé)任編輯武海龍)
The Orexigenic Role and Mechanism of Neuropeptide Y
WANG Guowen1SHAO Baoping2DING Yanping1*
(1. School of Life Science, Northwest Normal University, Lanzhou 730070, China; 2. Institute of Zoology and Developmental Biology, College of Life Sciences, Lanzhou University, Lanzhou 730000, China)
Abstract:Neuropeptide Y (NPY) is a neurotransmitter widely spread in central and peripheral nervous system for sustaining homeostasis. The prominent role for NPY is its regulation of food intake. NPY neurons are mainly localized in arcuate nucleus (ARC) of hypothalamus. The projection of these neurons mainly reach paraventricular nucleus (PVN), ventromedial nucleus (VMN), lateral hypothalamic area (LHA) and dorsomedial nucleus (DMN) of hypothalamus forming synaptic connection and further regulate food intake. NPY receptors are Gi/Go-protein coupled receptors including Y1 to Y8 8 kinds of subtypes. Y1 receptor plays a major role in the regulation of energy metabolism. This article reviews the structure of NPY and its role of regulating food intake in ARC, PVN, VMN, LHA and DMN providing basic material for relative research.[Chinese Journal of Animal Nutrition, 2016, 28(2):385-391]
Key words:neuropeptide Y; Y receptor; food intake; nuclei
*Corresponding author, associate professor, E-mail: dingyp05@163.com
中圖分類號(hào):S811.3
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-267X(2016)02-0385-07
作者簡(jiǎn)介:王國(guó)文(1988—),男,青海樂(lè)都人,碩士研究生,從事高原動(dòng)物營(yíng)養(yǎng)代謝研究。E-mail: jimmy123wgw@163.com*通信作者:丁艷平,副教授,碩士生導(dǎo)師,E-mail: dingyp05@163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(青年基金31000190;地區(qū)基金31060141)
收稿日期:2015-09-01
doi:10.3969/j.issn.1006-267x.2016.02.011
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2016年2期