国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

宮內(nèi)環(huán)境變化對(duì)子代大腦海馬發(fā)育影響的分子機(jī)制

2016-03-09 20:19:37孫樂(lè)倪云翔丁之德
關(guān)鍵詞:子代母體甲基化

孫樂(lè),倪云翔,丁之德

產(chǎn)科生理及產(chǎn)科疾病

宮內(nèi)環(huán)境變化對(duì)子代大腦海馬發(fā)育影響的分子機(jī)制

孫樂(lè),倪云翔,丁之德△

海馬是執(zhí)行大腦認(rèn)知、記憶等高級(jí)神經(jīng)活動(dòng)的重要區(qū)域,其結(jié)構(gòu)與功能的改變與多種行為學(xué)異常和神經(jīng)精神疾病的發(fā)生密切相關(guān)。海馬的發(fā)育受到基因與環(huán)境的共同影響,其中胚胎期各種母體和外界環(huán)境因素引起的宮內(nèi)環(huán)境變化均可對(duì)胎兒及出生后新生兒的海馬組織結(jié)構(gòu)與功能產(chǎn)生不可忽視的作用,其分子機(jī)制包括影響腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)、糖皮質(zhì)激素受體(glucocorticoid receptor,GR)、胰島素樣生長(zhǎng)因子1(insulin-like growth factor1,IGF-1)、IGF-2等與海馬代謝和神經(jīng)發(fā)育相關(guān)基因的表達(dá)水平和信號(hào)轉(zhuǎn)導(dǎo)的改變等?,F(xiàn)主要從產(chǎn)前應(yīng)激(prenatalstress,PS)、母體慢性疾病和子宮胎盤(pán)功能不全等各種孕期宮內(nèi)環(huán)境改變對(duì)胎兒神經(jīng)系統(tǒng),尤其是對(duì)海馬結(jié)構(gòu)和功能的影響及分子機(jī)制進(jìn)行綜述。

子宮;宮內(nèi)環(huán)境;海馬;胚胎發(fā)育;遺傳學(xué),醫(yī)學(xué);表觀遺傳學(xué);基因表達(dá);腦源性神經(jīng)營(yíng)養(yǎng)因子

海馬是大腦邊緣系統(tǒng)(limbic system)的重要組成部分,在信息編碼、短期與長(zhǎng)期記憶以及空間定位(spatialnavigation)、認(rèn)知功能等高級(jí)神經(jīng)活動(dòng)中發(fā)揮重要作用[1-2]。近年來(lái),海馬發(fā)育異常與癲癇、智力障礙、阿爾茨海默病、自閉癥等多種神經(jīng)精神疾病的相關(guān)性逐漸引起學(xué)者們的重視[1]。海馬發(fā)育可從胚胎期一直持續(xù)至出生后,但胚胎期和出生后早期為海馬發(fā)育的最重要時(shí)期,此階段其發(fā)育過(guò)程對(duì)外界環(huán)境的變化尤其敏感,而各種母體宮內(nèi)環(huán)境的改變可通過(guò)表觀遺傳學(xué)等多種機(jī)制對(duì)海馬的結(jié)構(gòu)與認(rèn)知功能產(chǎn)生不可逆的長(zhǎng)期影響,增加子代成年后對(duì)多種神經(jīng)精神疾病的易感性[3]。

1 海馬的解剖結(jié)構(gòu)與胚胎發(fā)育

海馬位于腦顳葉內(nèi)部,在結(jié)構(gòu)上分為齒狀回(dentate gyrus,DG)和海馬角(cornu ammonis,CA),后者又分為CA1、CA2和CA3共3個(gè)亞區(qū)。海馬在功能上與其他腦結(jié)構(gòu)相互聯(lián)系,與下托(subiculum)、前下托(presubiculum)、旁下托(parasubiculum)和內(nèi)嗅皮質(zhì)(entorhinal cortex)一同構(gòu)成海馬結(jié)構(gòu)(hippocampal formation),實(shí)現(xiàn)接收來(lái)自其他腦區(qū)的感覺(jué)投射與整合信息的功能[1,4]。人類大腦的海馬發(fā)育始于胚胎期第9周,海馬原基(hippocampal primordium)從終板背側(cè)發(fā)生,隨后齒狀回和海馬角逐漸折疊,海馬溝漸漸閉合,至第18~20孕周時(shí)已與成人海馬結(jié)構(gòu)相近[1]。海馬的發(fā)育受到激素、神經(jīng)營(yíng)養(yǎng)因子、基因組修飾相關(guān)酶類等多種因子的共同作用,其中包括下丘腦-垂體-腎上腺(HPA)軸調(diào)控應(yīng)激反應(yīng),Wnt信號(hào)通路調(diào)控海馬可塑性和記憶形成,DNA甲基化轉(zhuǎn)移酶1(DNA methyltransferase 1,Dnmt1)調(diào)控神經(jīng)干細(xì)胞的遷移和神經(jīng)元生長(zhǎng)[5]等;多種環(huán)境因素如產(chǎn)前應(yīng)激(prenatalstress,PS)、母體營(yíng)養(yǎng)不良、精神疾病、藥物和(或)酒精濫用、感染等均可引起上述通路失衡,并對(duì)海馬的表觀遺傳學(xué)編程、神經(jīng)發(fā)生和突觸可塑性產(chǎn)生不良影響或引起記憶與認(rèn)知功能障礙[6-7]。

2 宮內(nèi)應(yīng)激與海馬發(fā)育

胚胎期宮內(nèi)應(yīng)激會(huì)引起胎兒海馬中糖皮質(zhì)激素(glucocorticoid,GC)受體(glucocorticoid receptor,GR)的數(shù)量減少,并導(dǎo)致出生后長(zhǎng)期情感與認(rèn)知障礙,其機(jī)制包括海馬中基因組DNA甲基化和微小RNA(miRNA)水平的改變[8]。產(chǎn)前應(yīng)激包括感染、營(yíng)養(yǎng)、激素水平、藥物、心理應(yīng)激等,可在突觸可塑性、海馬神經(jīng)發(fā)生(hippocampalneurogenesis)、神經(jīng)內(nèi)分泌、精神障礙等方面對(duì)子代產(chǎn)生性別特異性(sex-specific)影響[6,9]。

2.1 妊娠期感染宮內(nèi)感染(intrauterine infection)及母體免疫系統(tǒng)激活是胎兒早產(chǎn)和精神分裂癥、自閉癥、智力低下等精神障礙的主要危險(xiǎn)因素[10],近年來(lái)也有研究證實(shí)其與抑郁樣行為(depressive-like behavior)和焦慮樣行為(anxiety-like behavior)的發(fā)生有關(guān)[11-12]。

2.1.1 細(xì)菌感染Nouel等[13]用大腸桿菌脂多糖(lipopolysaccharide,LPS)腹腔注射孕期大鼠為感染模型,證實(shí)胚胎期LPS暴露可引起GABA能神經(jīng)元的標(biāo)記蛋白谷氨酸脫羧酶67(glutamic acid decarboxylase 67,GAD67)和絡(luò)絲蛋白(Reelin)表達(dá)下降,子代表現(xiàn)出苯丙胺誘導(dǎo)的自主活動(dòng)(amphetamine-induced locomotion)和工作記憶下降等與精神分裂癥相關(guān)的行為學(xué)改變。此外,大鼠胚胎的多巴胺能(DA)和5-羥色胺(5-HT)神經(jīng)元在發(fā)育期如有LPS暴露可引起成年后海馬區(qū)的腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)表達(dá)下調(diào)和神經(jīng)再生減少,習(xí)得性無(wú)助(learned helplessness)和抑郁樣行為增加等[14]。

2.1.2 病毒感染小鼠孕中期感染甲型流感病毒H1N1亞型能引起胎兒Aqp4、Mbp、Nrcam等自閉癥和精神分裂癥候選基因的表達(dá)顯著下調(diào)和海馬體積減?。?5];Khan等[12]用聚肌胞苷磷酸鹽(polyinosinic: polycytidylic phosphate salt,poly I:C)刺激小鼠建立的病毒感染模型,發(fā)現(xiàn)母體免疫系統(tǒng)激活后可引起子代海馬中血管內(nèi)皮生長(zhǎng)因子A(vascularendothelial growth factor A,VEGFA)和血管內(nèi)皮生長(zhǎng)因子受體2(VEGFR2)的表達(dá)顯著下調(diào),以及海馬長(zhǎng)時(shí)程增強(qiáng)效應(yīng)(long-term potentiation,LTP)和雙脈沖易化(paired pulse facilitation,ppF)減弱,子代行為學(xué)上表現(xiàn)為抑郁樣行為;而妊娠早期注射流感疫苗能夠通過(guò)調(diào)控母體的細(xì)胞因子水平和免疫狀態(tài),促進(jìn)齒狀回神經(jīng)元的增殖與分化并改善子代的空間工作記憶(spatial workingmemory)[16]。

2.2 應(yīng)激激素與HPA軸功能海馬中含有豐富的GR,并被公認(rèn)為在HPA軸的調(diào)節(jié)中起中樞作用[17]。血液循環(huán)中的GC通過(guò)作用于海馬區(qū)GR參與HPA軸的負(fù)反饋調(diào)節(jié)。妊娠期母體血循環(huán)GC水平受皮質(zhì)醇攝入、焦慮、抑郁等多種因素影響,而病理性GC水平升高可引起HPA軸功能異常[18],進(jìn)而導(dǎo)致子代情感發(fā)育異常和精神障礙的易感性增加[6]。正常狀態(tài)下,妊娠晚期母體可出現(xiàn)生理性GC高峰(glucocorticoid surge),此GC峰在胎兒正常發(fā)育和器官成熟,以及全基因組啟動(dòng)子的甲基化編程中發(fā)揮至關(guān)重要的作用。然而,在非足月妊娠中,生理性GC峰前母體攝入高水平的合成GC(synthetic glucocorticoid,sGC)會(huì)引起胎兒海馬中多個(gè)基因啟動(dòng)子的甲基化水平增加和H3K9乙酰化水平降低,此表觀遺傳學(xué)改變可在出生后長(zhǎng)期存在,最終造成胎兒HPA軸功能失調(diào)及出生后神經(jīng)行為異常[17]。

2.3 母體營(yíng)養(yǎng)失衡胎兒神經(jīng)元生長(zhǎng)與腦發(fā)育需要多種營(yíng)養(yǎng)成分,而圍生期至關(guān)重要的大量和微量營(yíng)養(yǎng)素包括必需氨基酸、長(zhǎng)鏈多不飽和脂肪酸、鐵、鋅、碘、葉酸、膽堿和各種維生素等更是不可缺少[3],妊娠期營(yíng)養(yǎng)狀態(tài)直接參與甲基供體補(bǔ)給、DNMTs和相關(guān)轉(zhuǎn)錄因子活性的調(diào)控以及胎兒基因組的表觀遺傳學(xué)修飾等過(guò)程[3,11]。

2.3.1 母體飲食飲食中葉酸、維生素B6、維生素B12、膽堿等甲基供體與DNA和組蛋白的甲基化密切相關(guān)。研究證實(shí),限制蛋白飲食的大鼠血液中同型半胱氨酸濃度升高,并伴有DNMT1表達(dá)下調(diào)及其與GR啟動(dòng)子結(jié)合的減少,子代出現(xiàn)海馬結(jié)構(gòu)和功能的異常以及認(rèn)知、記憶功能的長(zhǎng)期受損。另外,胚胎腦發(fā)育階段膽堿的缺乏會(huì)引起基因表達(dá)、信號(hào)轉(zhuǎn)導(dǎo)、HPA軸活性及神經(jīng)元分化的異常,而母體飲食中補(bǔ)充膽堿能夠增加胎兒大腦的神經(jīng)元發(fā)生,改善子代記憶功能[3]。Li等[19]報(bào)道,在孕期母豬的飲食中補(bǔ)充甜菜堿(betaine)可上調(diào)幼豬海馬中甜菜堿-同型半胱氨酸甲基轉(zhuǎn)移酶(betaine-homocysteine methyltransferase,BHMT)、甘氨酸-N-甲基轉(zhuǎn)移酶(glycine N-methyltransferase,GNMT)和DNMT1基因的表達(dá),引起胰島素樣生長(zhǎng)因子2(insulin-like growth factor2,IGF-2)基因的差異性甲基化區(qū)域1(differentiallymethylated region 1,DMR1)和DMR2過(guò)度甲基化及IGF-2表達(dá)上調(diào),進(jìn)而IGF-2蛋白下游信號(hào)通路激活,新生幼豬海馬神經(jīng)元增殖和神經(jīng)發(fā)生(neurogenesis)增加。

2.3.2 微量元素不足鐵元素缺乏是妊娠期十分常見(jiàn)的一種微量元素不足,全球發(fā)生率約為30%。Tran等[20]研究證實(shí),胚胎期至新生兒期的鐵缺乏能夠抑制大鼠海馬胰島素樣生長(zhǎng)因子(insulin-like growth factor,IGF)和蛋白激酶B(protein kinase B,PKB)信號(hào)通路,并上調(diào)細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2信號(hào)通路(extracellular signal-regulated kinase 1/2 signaling,ERK1/2)和缺氧誘導(dǎo)因子1α(hypoxia-inducible factor 1α,HIF-1α)的表達(dá),從而抑制神經(jīng)發(fā)生并引起海馬解剖結(jié)構(gòu)與功能異常;胚胎期鐵缺乏還可引起大鼠成年后海馬中BDNF位點(diǎn)的染色質(zhì)重塑(chromatin remodeling)的改變,包括BDNF啟動(dòng)子Ⅳ位點(diǎn)的組蛋白去乙酰化酶1(histone deacetylase 1,HDAC1)水平升高,伴有K27me3、K4me1印跡的顯著增加和K4me3印跡減少,上述去乙?;负图谆降淖兓謩e引起該位點(diǎn)組蛋白乙酰化水平降低和甲基化水平升高,BDNF表達(dá)下調(diào),而B(niǎo)DNF正是調(diào)控海馬可塑性的重要蛋白之一[21]。此外,雌性大鼠孕期邊緣性碘缺乏(marginal iodine deficiency)可引起出生后早期生長(zhǎng)應(yīng)答蛋白(early growth response protein,EGR1)和BDNF的表達(dá)下調(diào)及空間學(xué)習(xí)記憶能力下降等[22]。

2.4 孕期有毒物質(zhì)暴露

2.4.1 尼古丁胚胎期母體吸煙可引起胎兒基因組DNA甲基化和miRNA表達(dá)異常,并可增加出生后青少年期患注意力缺陷和多動(dòng)障礙(attention deficit and hyperactivity disorder,ADHD)、重度抑郁癥和毒品濫用(drug abuse)的風(fēng)險(xiǎn)[23]。Blustein等[24]發(fā)現(xiàn),吸煙引起的尼古丁暴露和宮內(nèi)缺氧可在細(xì)胞與分子水平上對(duì)豚鼠胚胎的海馬產(chǎn)生多種影響,包括CA1區(qū)突觸素(synaptophysin)和基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)表達(dá)水平,神經(jīng)元和星形膠質(zhì)細(xì)胞的數(shù)量等,且這些改變可延續(xù)至成年。另外,宮內(nèi)尼古丁暴露可引起胎兒海馬中GR表達(dá)水平的顯著升高,而下丘腦促腎上腺皮質(zhì)激素釋放激素(CRH)和腎上腺類固醇激素急性調(diào)節(jié)蛋白(steroid acute regulatory protein,StAR)及膽固醇側(cè)鏈裂解酶(cholesterol side-chain cleavage enzyme,P450scc)水平下降,提示尼古丁可引起外周血循環(huán)中GC水平升高,后者通過(guò)負(fù)反饋調(diào)節(jié)抑制胎兒HPA軸,最終導(dǎo)致胎兒生長(zhǎng)受限(fetal growth restriction,F(xiàn)GR)的風(fēng)險(xiǎn)增加及子代出生后長(zhǎng)期的糖脂代謝異常[25-26]。

2.4.2 酒精妊娠期酒精暴露(prenatal alcohol exposure,PAE)是子代認(rèn)知缺陷的另一個(gè)重要誘因之一。Caldwell等[27]發(fā)現(xiàn)PAE能夠引起子代小鼠海馬中FK506-結(jié)合蛋白51(FK506-binding protein51,F(xiàn)KBP51)下調(diào)和11β-羥甾類固醇脫氫酶I(11-βhydroxysteroid dehydrogenaseⅠ,11-β-HSDⅠ)上調(diào)及GR表達(dá)升高,并在細(xì)胞核內(nèi)定位增加,上述神經(jīng)細(xì)胞生化特性的改變與子代行為學(xué)中環(huán)境辨別(contextdiscrimination)能力的降低密切相關(guān)。此外,Elibol-Can等[28]發(fā)現(xiàn)PAE能引起突觸素和突觸后致密物質(zhì)95(postsynaptic density 95,PSD-95)的表達(dá)顯著升高,同時(shí)伴隨有突觸棘密度(spine density)的增加,子代出現(xiàn)了顯著的認(rèn)知障礙癥狀。

2.4.3 其他有毒物質(zhì)目前已證實(shí),多種重金屬及化工藥品的孕期暴露能引起胎兒神經(jīng)發(fā)育異常和子代亞臨床腦功能障礙(subclinicalbrain dysfunction)的發(fā)生;其中,雙酚A(bisphenol A,BPA)廣泛應(yīng)用于塑料、樹(shù)脂和紙制品中,現(xiàn)代社會(huì)中由于工業(yè)化和經(jīng)濟(jì)的發(fā)展,人群BPA暴露尤為普遍。Elsworth等[29]研究發(fā)現(xiàn),妊娠晚期雌性恒河猴的低劑量BPA暴露能夠引起子代腦多巴胺神經(jīng)元和海馬CA1區(qū)軸棘突觸數(shù)目減少;而出生14~18個(gè)月的幼年猴BPA暴露卻未能引起上述改變,提示胚胎期哺乳動(dòng)物的神經(jīng)發(fā)育遠(yuǎn)較幼年期或青年期敏感。另外,胚胎期甲基苯丙胺暴露也可引起子代海馬的表觀遺傳學(xué)變化,包括海馬組織DNA甲基化水平的差異性改變,對(duì)咖啡因興奮性的增加以及對(duì)條件性恐懼反應(yīng)的減弱等[30]。

3 母體疾病對(duì)海馬發(fā)育的影響

母體慢性疾病是導(dǎo)致宮內(nèi)環(huán)境病理性改變的重要因素,如孕婦的精神障礙、糖尿病、肥胖、子癇前期等疾病狀態(tài)均可通過(guò)胎盤(pán)傳遞給胎兒,影響其大腦結(jié)構(gòu)及功能的發(fā)育[31]。

3.1 糖尿病母體糖尿病可引起子代神經(jīng)發(fā)育和認(rèn)知的障礙,Hami等[32]檢測(cè)了糖尿病大鼠子代出生后胰島素受體(insulin receptor,INSR)和海馬中IGF-1的表達(dá),發(fā)現(xiàn)仔鼠出生后不同時(shí)段的InsR和IGF-1R在轉(zhuǎn)錄和蛋白水平上均有顯著的改變,而胰島素和IGF-1被證實(shí)為調(diào)控中樞神經(jīng)發(fā)育與認(rèn)知功能的重要因子。母體糖尿病并發(fā)的慢性高血糖還可激活糖基化終末產(chǎn)物受體(receptor for advanced glycation end-products,RAGE)信號(hào)通路,導(dǎo)致子代海馬發(fā)育異常[33]。

3.2 肥胖與高脂飲食母體肥胖和妊娠期高脂飲食可造成一個(gè)營(yíng)養(yǎng)過(guò)剩(over nutrition)的宮內(nèi)環(huán)境,后者與子代多種代謝性疾病和精神障礙的發(fā)生密切相關(guān)。Sasaki等[34]研究發(fā)現(xiàn),孕鼠高脂飲食可引起后代海馬中GR和相關(guān)炎癥因子的表達(dá)上調(diào),并在子代的青春期和成年期分別導(dǎo)致不同程度焦慮行為的發(fā)生。此外,孕鼠高脂飲食還可引起子代突觸可塑性相關(guān)基因Arc、BDNF、NGF的表達(dá)下調(diào),行為學(xué)表現(xiàn)為空間定位能力的下降[35]。

3.3 子癇前期子癇前期與幼兒發(fā)育遲緩和多種成年性疾病的發(fā)生顯著相關(guān)。子癇前期引起的子宮胎盤(pán)病理性改變可削弱胎兒與母體之間的營(yíng)養(yǎng)物質(zhì)交換,造成宮內(nèi)營(yíng)養(yǎng)不良的環(huán)境,進(jìn)而對(duì)胎兒的神經(jīng)發(fā)育產(chǎn)生不良影響。子癇前期大鼠其后代成年后海馬中神經(jīng)元增殖顯著減少,同時(shí)伴有神經(jīng)再生相關(guān)基因如成纖維細(xì)胞生長(zhǎng)因子2(fibroblast growth factor 2,F(xiàn)GF-2)、環(huán)磷酸腺苷反應(yīng)元件結(jié)合蛋白(cAMP-response element binding protein,Creb)和E1A結(jié)合蛋白P300(EIA-binding protein P300,Ep300)的表達(dá)下調(diào);雖然子癇前期孕鼠所生產(chǎn)的仔鼠成年后其腦結(jié)構(gòu)無(wú)大體改變,但行為學(xué)研究發(fā)現(xiàn)其空間學(xué)習(xí)能力和記憶能力明顯下降[36]。

4 子宮胎盤(pán)功能不全(uterop lacental insufficiency,UPI)

在正常妊娠中,胎盤(pán)通過(guò)氧氣和營(yíng)養(yǎng)物質(zhì)交換、分泌激素和生長(zhǎng)因子、對(duì)胎兒免疫保護(hù)等作用以維持宮內(nèi)環(huán)境的穩(wěn)定,胎盤(pán)發(fā)育不良等因素引起的UPI可導(dǎo)致宮內(nèi)缺氧、FGR等病理狀態(tài),并進(jìn)一步對(duì)胎兒的腦發(fā)育產(chǎn)生長(zhǎng)期影響[31]。

4.1 產(chǎn)前缺氧(prenatal hypoxia,PH)Hartley等[37]通過(guò)體外實(shí)驗(yàn)發(fā)現(xiàn),海馬神經(jīng)元原代培養(yǎng)初期如一過(guò)性缺氧可引起基因組DNA甲基化狀態(tài)的持續(xù)變化,進(jìn)而在轉(zhuǎn)錄組水平調(diào)控神經(jīng)發(fā)育和功能相關(guān)基因的表達(dá)。體內(nèi)試驗(yàn)證實(shí),生理狀態(tài)下,妊娠晚期胎兒海馬CA3區(qū)鉀-氯共轉(zhuǎn)運(yùn)體2(KCC2)數(shù)量增加,KCC2可通過(guò)調(diào)控氯離子的胞外轉(zhuǎn)運(yùn)參與神經(jīng)環(huán)路的調(diào)節(jié);然而,妊娠晚期宮內(nèi)缺氧可引起大鼠出生后其幼年期海馬中KCC2的上調(diào)被阻斷,并伴有海馬CA3亞區(qū)超微結(jié)構(gòu)的完整性受損[38]。另外,N-甲基-D-天冬氨酸受體(N-methyl-D-aspartate receptor,NMDAR)參與突觸可塑性、記憶功能和LTP的調(diào)控,PH出生后的幼鼠海馬中NMDAR的亞基Grin1/ NR1、Grin2a/NR2A、Grin2b/NR2B表達(dá)下調(diào),NMDARWnt-Catenin信號(hào)通路失衡[39],而Wnt信號(hào)通路已被證實(shí)在調(diào)節(jié)海馬的學(xué)習(xí)記憶中發(fā)揮重要作用[7]。

4.2 FGR其影響雄性大鼠海馬中GR基因表達(dá)及其組蛋白修飾。Brahma相關(guān)基因1(Brahmarelated gene 1,Brg1)是交配型轉(zhuǎn)換/蔗糖不發(fā)酵(SWItch/Sucrose Nonfermentable,SWI/SNF)復(fù)合體家族成員,其可通過(guò)影響核小體定位、招募轉(zhuǎn)錄因子參與GR基因的ATP依賴性染色質(zhì)重塑,進(jìn)而調(diào)控GR的表達(dá)水平。Ke等[40]發(fā)現(xiàn)FGR可上調(diào)新生雄性大鼠海馬中染色質(zhì)重構(gòu)因子Brg1的表達(dá)及其與GR外顯子1.7啟動(dòng)子的結(jié)合,進(jìn)而可促使出生后的雄性大鼠海馬中GR和GR外顯子1.7的mRNA變異體表達(dá)增加,以及GR外顯子1.7的三甲基H3/K4(histone H3 lysine 4 trimethylation,H3K4me3)聚集,此組蛋白修飾參與GR表達(dá)的調(diào)控,對(duì)出生后的HPA軸編程和子代神經(jīng)精神疾病的發(fā)生產(chǎn)生長(zhǎng)期影響[41]。

5 結(jié)語(yǔ)

胚胎期是各器官系統(tǒng)對(duì)外界因素影響尤為敏感的時(shí)期,各種宮內(nèi)不良環(huán)境(adverse intrauterine environment)如宮內(nèi)應(yīng)激、母體慢性疾病、子宮胎盤(pán)功能不全等均會(huì)通過(guò)胎盤(pán)向子代傳遞,影響胎兒宮內(nèi)和出生后發(fā)育過(guò)程中的編程,增加其成年后對(duì)各類代謝性疾病、神經(jīng)精神疾病等的易感性[31,42]。其中,海馬作為實(shí)現(xiàn)大腦認(rèn)知、記憶和成年后神經(jīng)再生等功能的重要組織結(jié)構(gòu),胚胎期和出生早期各種環(huán)境因素的改變均可通過(guò)表觀遺傳學(xué)機(jī)制等途徑影響其組織結(jié)構(gòu)的構(gòu)建與功能的完善,進(jìn)而導(dǎo)致出生后腦功能受損[3]。因此,充分了解各種宮內(nèi)環(huán)境改變對(duì)胚胎神經(jīng)發(fā)育,尤其是對(duì)大腦海馬影響的分子機(jī)制及其與成年后多種疾病發(fā)生的相關(guān)性,與此同時(shí),針對(duì)相關(guān)的不良影響,在妊娠期內(nèi)采取有效的干預(yù)措施,這對(duì)預(yù)防胎兒神經(jīng)系統(tǒng)的發(fā)育異常和后期的相關(guān)疾病,以及對(duì)胚胎源性疾病制定有效的靶向治療方案均有著至關(guān)重要的臨床和社會(huì)意義。

[1]Khalaf-NazzalR,F(xiàn)rancis F.Hippocampaldevelopment-old and new findings[J].Neuroscience,2013,248:225-242.

[2]Qin S,Cho S,Chen T,et al.Hippocampal-neocortical functional reorganization underlies children′s cognitive development[J].Nat Neurosci,2014,17(9):1263-1269.

[3]Lucassen PJ,Naninck EF,van Goudoever JB,et al.Perinatal programming of adult hippocampal structure and function;emerging roles of stress,nutrition and epigenetics[J].Trends Neurosci,2013,36(11):621-631.

[4]Schultz C,EngelhardtM.Anatomy of the hippocampal formation[J]. FrontNeurolNeurosci,2014,34:6-17.

[5]Noguchi H,Murao N,Kimura A,et al.DNA Methyltransferase 1 Is Indispensible for Development of the Hippocampal Dentate Gyrus[J].JNeurosci,2016,36(22):6050-6068.

[6]Bock J,Wainstock T,Braun K,et al.Stress In Utero:Prenatal Programming of Brain Plasticity and Cognition[J].Biol Psychiatry,2015,78(5):315-326.

[7]Fortress AM,F(xiàn)rick KM.Hippocampal Wnt Signaling:Memory Regulation and Hormone Interactions[J].Neuroscientist,2016,22(3):278-294.

[8]Babenko O,Kovalchuk I,Metz GA.Stress-induced perinatal and transgenerational epigenetic programming of brain development and mentalhealth[J].NeurosciBiobehav Rev,2015,48:70-91.

[9]Bock J,Rether K,Gr?ger N,et al.Perinatal programming of emotional brain circuits:an integrative view from systems to molecules[J].FrontNeurosci,2014,8:11.

[10]Jiang P,Zhu T,Zhao W,et al.The persistent effects of maternal infection on the offspring′s cognitive performance and rates of hippocampal neurogenesis[J].Prog Neuropsychopharmacol Biol Psychiatry,2013,44:279-289.

[11]Hoeijmakers L,Lucassen PJ,Korosi A.The interplay of early-life stress,nutrition,and immune activation programsadulthippocampal structureand function[J].FrontMolNeurosci,2014,7:103.

[12]Khan D,F(xiàn)ernando P,Cicvaric A,etal.Long-term effectsofmaternal immune activation on depression-like behavior in the mouse[J]. TranslPsychiatr,2014,4:e363.

[13]Nouel D,Burt M,Zhang Y,et al.Prenatal exposure to bacterial endotoxin reduces the number of GAD67-and reelinimmunoreactiveneurons in thehippocampusof ratoffspring[J].Eur Neuropsychopharmacol,2012,22(4):300-307.

[14]Lin YL,Wang S.Prenatal lipopolysaccharide exposure increases depression-like behaviorsand reduceshippocampal neurogenesis in adult rats[J].Behav Brain Res,2014,259:24-34.

[15]FatemiSH,F(xiàn)olsom TD,Reutiman TJ,etal.Prenatal viral infection of mice atE16 causes changes in gene expression in hippocampiof the offspring[J].Eur Neuropsychopharmacol,2009,19(9):648-653.

[16]Xia Y,QiF,Zou J,etal.Influenza A(H1N1)vaccination during early pregnancy transiently promotes hippocampal neurogenesis and workingmemory.Involvement of Th1/Th2 balance[J].Brain Res,2014,1592:34-43.

[17]Crudo A,Suderman M,Moisiadis VG,et al.Glucocorticoid programming of the fetal male hippocampal epigenome[J]. Endocrinology,2013,154(3):1168-1180.

[18]Proven?al N,Binder EB.The effects of early life stress on the epigenome:From the womb to adulthood and even before[J].Exp Neurol,2015,268:10-20.

[19]Li X,Sun Q,Li X,et al.Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions[J].Eur JNutr,2015,54(7):1201-1210.

[20]Tran PV,F(xiàn)retham SJ,Wobken J,et al.Gestational-neonatal iron deficiency suppressesand iron treatment reactivates IGF signaling in developing rat hippocampus[J].Am JPhysiol Endocrinol Metab,2012,302(3):E316-E324.

[21]Tran PV,Kennedy BC,Lien YC,et al.Fetal iron deficiency induces chromatin remodelingat the Bdnf locus in adult rathippocampus[J]. Am JPhysiol Regul Integr Comp Physiol,2015,308(4):R276-R282.

[22]Liu Y,Zhang L,Li J,et al.Maternal marginal iodine deficiency affects the expression of relative proteins during brain development in ratoffspring[J].JEndocrinol,2013,217(1):21-29.

[23]Knopik VS,Maccani MA,F(xiàn)rancazio S,et al.The epigenetics of maternal cigarette smoking during pregnancy and effects on child development[J].Dev Psychopathol,2012,24(4):1377-1390.

[24]Blutstein T,Castello MA,Viechweg SS,et al.Differential responses ofhippocampalneuronsand astrocytes to nicotineand hypoxia in the fetalguinea pig[J].Neurotox Res,2013,24(1):80-93.

[25]Xu D,Liang G,Yan YE,et al.Nicotine-induced over-exposure to maternal glucocorticoid and activated glucocorticoid metabolism causes hypothalamic-pituitary-adrenal axis-associated neuroendocrinemetabolic alterations in fetal rats[J].Toxicol Lett,2012,209(3):282-290.

[26]Liu L,Liu F,Kou H,et al.Prenatal nicotine exposure induced a hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in intrauterine growth retardation offspring rats[J].Toxicol Lett,2012,214(3):307-313.

[27]Caldwell KK,Goggin SL,Tyler CR,et al.Prenatal alcohol exposure is associated with altered subcellular distribution of glucocorticoid and mineralocorticoid receptors in the adolescent mouse hippocampal formation[J].Alcohol Clin Exp Res,2014,38(2):392-400.

[28]Elibol-Can B,Kilic E,Yuruker S,etal.Investigation into the effects of prenatal alcohol exposure on postnatal spine development and expression of synaptophysin and PSD95 in rathippocampus[J].Int J Dev Neurosci,2014,33:106-114.

[29]Elsworth JD,Jentsch JD,Vandevoort CA,et al.Prenatal exposure to bisphenol A impactsmidbrain dopamine neurons and hippocampal spine synapses in non-human primates[J].Neurotoxicology,2013,35:113-120.

[30]Itzhak Y,Ergui I,Young JI.Long-term parentalmethamphetamine exposure of mice influences behavior and hippocampal DNA methylationoftheoffspring[J].MolPsychiatr,2015,20(2):232-239.

[31]Bronson SL,Bale TL.The PlacentaasaMediator of Stress Effectson NeurodevelopmentalReprogramming[J].Neuropsychopharmacology,2016,41(1):207-218.

[32]Hami J,Sadr-Nabavi A,Sankian M,et al.The effects ofmaternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus[J].Brain Struct Funct,2013,218(1):73-84.

[33]Chandna AR,Kuhlmann N,Bryce CA,et al.Chronic maternal hyperglycemia induced during mid-pregnancy in rats increases RAGE expression,augments hippocampal excitability,and alters behaviorof theoffspring[J].Neuroscience,2015,303:241-260.

[34]Sasaki A,de VegaWC,St-Cyr S,et al.Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood[J]. Neuroscience,2013,240:1-12.

[35]Page KC,Jones EK,Anday EK.Maternal and postweaning high-fat diets disturb hippocampal gene expression,learning,and memory function[J].Am JPhysiol Regul Integr Comp Physiol,2014,306(8):R527-R537.

[36]Liu X,Zhao W,Liu H,et al.Developmental and Functional Brain Impairment in Offspring from Preeclampsia-Like Rats[J].Mol Neurobiol,2016,53(2):1009-1019.

[37]Hartley I,Elkhoury FF,Heon Shin J,et al.Long-lasting changes in DNAmethylation following short-term hypoxic exposure in primary hippocampalneuronal cultures[J].PLoSOne,2013,8(10):e77859.

[38]Jantzie LL,Getsy PM,Denson JL,et al.Prenatal Hypoxia-Ischemia Induces Abnormalities in CA3 Microstructure,Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone[J].Front Cell Neurosci,2015,9:347.

[39]Wei B,Li L,He A,et al.Hippocampal NMDAR-Wnt-Catenin signaling disrupted with cognitive deficits in adolescent offspring exposed to prenatalhypoxia[J].Brain Res,2016,1631:157-164.

[40]Ke X,McKnight RA,Gracey Maniar LE,et al.IUGR increases chromatin-remodeling factor Brg1 expression and binding to GR exon 1.7 promoter in newborn male rat hippocampus[J].Am J PhysiolRegul IntegrComp Physiol,2015,309(2):R119-R127.

[41]Ke X,Schober ME,McKnight RA,et al.Intrauterine growth retardation affectsexpression and epigenetic characteristicsof the rat hippocampal glucocorticoid receptor gene[J].Physiol Genomics,2010,42(2):177-189.

[42]El Hajj N,Schneider E,Lehnen H,et al.Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment[J].Reproduction,2014,148(6):R111-R120.

The Epigenetic Influence of Intrauterine Environment Changes on Offspring′s Hippocampal Development

SUN Le,NI

Yun-xiang,DING Zhi-de.Department of Clinical Medicine,Grade 2012(English Program),School of Medicine,Shanghai Jiao Tong University,Shanghai 200025,China(SUN Le);Department of Gynaecology and Obstetrics,Tong Ren Hospital,School of Medicine,Shanghai Jiao Tong University,Shanghai 200336,China(NI Yun-xiang);Department of Anatomy,Histology and Embryology,SchoolofMedicine,Shanghai Jiao Tong University,Shanghai200025,China(DINGZhi-de)

s:NIYun-xiang,E-mail:niyy@hotmail.com;DINGZhi-de,E-mail:zding@shsmu.edu.cn

Hippocampus isa remarkable brain structure playing important roles in advanced neuronalactivities including cognitive function and memory,of which the structural and functional alterations are closely associated with behavioral abnormalities,neurological diseases and psychiatric disorders.Hippocampal development is influenced by both genetic and environmental factors,among which changes of the intrauterine environment from thematernal and external factors exerthuge influences on the structure and function of both fetal and infanthippocampus.Themolecularmechanisms include variations in the expression levelsofgenesassociated with hippocampalmetabolism and neurogenesis such as BDNF,GR,IGF-1 and IGF-2,aswell as alterations of signaling transduction in the hippocampus.This review attempts to summarize the changes of structure and function as well as the molecular mechanisms in fetal nervous system,especially in the hippocampus induced by the alterations of intrauterine environmentsuch as prenatalstress,maternal chronic diseasesand uteroplacental insufficiency during pregnancy.

Uterus;Intrauterine environment;Hippocampus;Embryonic development;Genetics,medical;Epigenetics;Gene expression;BDNF(JIntObstetGynecol,2016,43:547-551,560)

2016-02-22)

[本文編輯王昕]

200025上海交通大學(xué)醫(yī)學(xué)院臨床醫(yī)學(xué)系2012級(jí)臨床五年制英文班(孫樂(lè));上海交通大學(xué)醫(yī)學(xué)院附屬同仁醫(yī)院婦產(chǎn)科(倪云翔);上海交通大學(xué)醫(yī)學(xué)院解剖學(xué)與組織胚胎學(xué)系(丁之德)

倪云翔,E-mail:niyy@hotmail.com;

丁之德,E-mail:zding@shsmu.edu.cn

△審校者

猜你喜歡
子代母體甲基化
蒲公英
遼河(2021年10期)2021-11-12 04:53:58
火力楠優(yōu)樹(shù)子代測(cè)定與早期選擇
24年生馬尾松種子園自由授粉子代測(cè)定及家系選擇
杉木全同胞子代遺傳測(cè)定與優(yōu)良種質(zhì)選擇
火力楠子代遺傳變異分析及優(yōu)良家系選擇
多胎妊娠發(fā)生的原因及母體并發(fā)癥處理分析
鼻咽癌組織中SYK基因啟動(dòng)子區(qū)的甲基化分析
胃癌DNA甲基化研究進(jìn)展
三種稠環(huán)硝胺化合物的爆炸性能估算及其硝化母體化合物的合成
基因組DNA甲基化及組蛋白甲基化
遺傳(2014年3期)2014-02-28 20:58:49
邵东县| 大悟县| 同德县| 肃北| 舒城县| 永嘉县| 绥芬河市| 忻州市| 九台市| 大关县| 青神县| 抚顺县| 江达县| 衡山县| 普安县| 镇坪县| 霞浦县| 汤阴县| 泸西县| 仙居县| 梓潼县| 香港| 辉南县| 长沙市| 香格里拉县| 白玉县| 醴陵市| 太谷县| 文水县| 麻城市| 金平| 神农架林区| 吴桥县| 邮箱| 阳西县| 镶黄旗| 浦东新区| 龙胜| 宜城市| 万安县| 广饶县|